ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

ProForma: A Standard Proteoform Notation

View Author Information
National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
§ Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
# Consortium for Top-Down Proteomics, Cambridge, Massachusetts 02142, United States
Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris Cedex 15, France
Department of Chemistry and Biochemistry and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
+ Spectroswiss, 1015 Lausanne, Switzerland
*E-mail: [email protected]. Tel: +1.847.467.4362.
Cite this: J. Proteome Res. 2018, 17, 3, 1321–1325
Publication Date (Web):February 5, 2018
https://doi.org/10.1021/acs.jproteome.7b00851
Copyright © 2018 American Chemical Society

    Article Views

    1529

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)

    Abstract

    Abstract Image

    The Consortium for Top-Down Proteomics (CTDP) proposes a standardized notation, ProForma, for writing the sequence of fully characterized proteoforms. ProForma provides a means to communicate any proteoform by writing the amino acid sequence using standard one-letter notation and specifying modifications or unidentified mass shifts within brackets following certain amino acids. The notation is unambiguous, human-readable, and can easily be parsed and written by bioinformatic tools. This system uses seven rules and supports a wide range of possible use cases, ensuring compatibility and reproducibility of proteoform annotations. Standardizing proteoform sequences will simplify storage, comparison, and reanalysis of proteomic studies, and the Consortium welcomes input and contributions from the research community on the continued design and maintenance of this standard.

    Cited By

    This article is cited by 29 publications.

    1. David J. Degnan, Kevin J. Zemaitis, Logan A. Lewis, Lee Ann McCue, Lisa M. Bramer, James M. Fulcher, Dušan Veličković, Ljiljana Paša-Tolić, Mowei Zhou. IsoMatchMS: Open-Source Software for Automated Annotation and Visualization of High Resolution MALDI-MS Spectra. Journal of the American Society for Mass Spectrometry 2023, 34 (9) , 2061-2064. https://doi.org/10.1021/jasms.3c00180
    2. David L. Tabb, Kyowon Jeong, Karen Druart, Megan S. Gant, Kyle A. Brown, Carrie Nicora, Mowei Zhou, Sneha Couvillion, Ernesto Nakayasu, Janet E. Williams, Haley K. Peterson, Michelle K. McGuire, Mark A. McGuire, Thomas O. Metz, Julia Chamot-Rooke. Comparing Top-Down Proteoform Identification: Deconvolution, PrSM Overlap, and PTM Detection. Journal of Proteome Research 2023, 22 (7) , 2199-2217. https://doi.org/10.1021/acs.jproteome.2c00673
    3. Eric W. Deutsch, Juan Antonio Vizcaíno, Andrew R. Jones, Pierre-Alain Binz, Henry Lam, Joshua Klein, Wout Bittremieux, Yasset Perez-Riverol, David L. Tabb, Mathias Walzer, Sylvie Ricard-Blum, Henning Hermjakob, Steffen Neumann, Tytus D. Mak, Shin Kawano, Luis Mendoza, Tim Van Den Bossche, Ralf Gabriels, Nuno Bandeira, Jeremy Carver, Benjamin Pullman, Zhi Sun, Nils Hoffmann, Jim Shofstahl, Yunping Zhu, Luana Licata, Federica Quaglia, Silvio C. E. Tosatto, Sandra E. Orchard. Proteomics Standards Initiative at Twenty Years: Current Activities and Future Work. Journal of Proteome Research 2023, 22 (2) , 287-301. https://doi.org/10.1021/acs.jproteome.2c00637
    4. Evan A. Martin, James M. Fulcher, Mowei Zhou, Matthew E. Monroe, Vladislav A. Petyuk. TopPICR: A Companion R Package for Top-Down Proteomics Data Analysis. Journal of Proteome Research 2023, 22 (2) , 399-409. https://doi.org/10.1021/acs.jproteome.2c00570
    5. Richard D. LeDuc, Eric W. Deutsch, Pierre-Alain Binz, Ryan T. Fellers, Anthony J. Cesnik, Joshua A. Klein, Tim Van Den Bossche, Ralf Gabriels, Arshika Yalavarthi, Yasset Perez-Riverol, Jeremy Carver, Wout Bittremieux, Shin Kawano, Benjamin Pullman, Nuno Bandeira, Neil L. Kelleher, Paul M. Thomas, Juan Antonio Vizcaíno. Proteomics Standards Initiative’s ProForma 2.0: Unifying the Encoding of Proteoforms and Peptidoforms. Journal of Proteome Research 2022, 21 (4) , 1189-1195. https://doi.org/10.1021/acs.jproteome.1c00771
    6. Zach Rolfs, Lloyd M. Smith. Internal Fragment Ions Disambiguate and Increase Identifications in Top-Down Proteomics. Journal of Proteome Research 2021, 20 (12) , 5412-5418. https://doi.org/10.1021/acs.jproteome.1c00599
    7. Tobias Schmidt, Patroklos Samaras, Viktoria Dorfer, Christian Panse, Tobias Kockmann, Leon Bichmann, Bart van Puyvelde, Yasset Perez-Riverol, Eric W. Deutsch, Bernhard Kuster, Mathias Wilhelm. Universal Spectrum Explorer: A Standalone (Web-)Application for Cross-Resource Spectrum Comparison. Journal of Proteome Research 2021, 20 (6) , 3388-3394. https://doi.org/10.1021/acs.jproteome.1c00096
    8. Mathieu Dupré, Magalie Duchateau, Christian Malosse, Diogo Borges-Lima, Valeria Calvaresi, Isabelle Podglajen, Dominique Clermont, Martial Rey, Julia Chamot-Rooke. Optimization of a Top-Down Proteomics Platform for Closely Related Pathogenic Bacterial Discrimination. Journal of Proteome Research 2021, 20 (1) , 202-211. https://doi.org/10.1021/acs.jproteome.0c00351
    9. Jonathan P. Williams, Lindsay J. Morrison, Jeffery M. Brown, Joseph S. Beckman, Valery G. Voinov, Frederik Lermyte. Top-Down Characterization of Denatured Proteins and Native Protein Complexes Using Electron Capture Dissociation Implemented within a Modified Ion Mobility-Mass Spectrometer. Analytical Chemistry 2020, 92 (5) , 3674-3681. https://doi.org/10.1021/acs.analchem.9b04763
    10. Luis A. Macias, Inês C. Santos, Jennifer S. Brodbelt. Ion Activation Methods for Peptides and Proteins. Analytical Chemistry 2020, 92 (1) , 227-251. https://doi.org/10.1021/acs.analchem.9b04859
    11. Frederik Lermyte, Yury O. Tsybin, Peter B. O’Connor, Joseph A. Loo. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. Journal of the American Society for Mass Spectrometry 2019, 30 (7) , 1149-1157. https://doi.org/10.1007/s13361-019-02201-x
    12. Pierre-Alain Binz, Jim Shofstahl, Juan Antonio Vizcaíno, Harald Barsnes, Robert J. Chalkley, Gerben Menschaert, Emanuele Alpi, Karl Clauser, Jimmy K. Eng, Lydie Lane, Sean L. Seymour, Luis Francisco Hernández Sánchez, Gerhard Mayer, Martin Eisenacher, Yasset Perez-Riverol, Eugene A. Kapp, Luis Mendoza, Peter R. Baker, Andrew Collins, Tim Van Den Bossche, Eric W. Deutsch. Proteomics Standards Initiative Extended FASTA Format. Journal of Proteome Research 2019, 18 (6) , 2686-2692. https://doi.org/10.1021/acs.jproteome.9b00064
    13. Young-Ki Paik, Lydie Lane, Takeshi Kawamura, Yu-Ju Chen, Je-Yoel Cho, Joshua LaBaer, Jong Shin Yoo, Gilberto Domont, Fernando Corrales, Gilbert S. Omenn, Alexander Archakov, Sergio Encarnación-Guevara, Siqi Lui, Ghasem Hosseini Salekdeh, Jin-Young Cho, Chae-Yeon Kim, Christopher M. Overall. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. Journal of Proteome Research 2018, 17 (12) , 4042-4050. https://doi.org/10.1021/acs.jproteome.8b00383
    14. Trisha Tucholski, Ying Ge. Fourier‐transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. Mass Spectrometry Reviews 2022, 41 (2) , 158-177. https://doi.org/10.1002/mas.21653
    15. Michael A R Hollas, Matthew T Robey, Ryan T Fellers, Richard D LeDuc, Paul M Thomas, Neil L Kelleher. The Human Proteoform Atlas: a FAIR community resource for experimentally derived proteoforms. Nucleic Acids Research 2022, 50 (D1) , D526-D533. https://doi.org/10.1093/nar/gkab1086
    16. Rui-Xiang Sun, Rui-Min Wang, Lan Luo, Chao Liu, Hao Chi, Wen-Feng Zeng, Si-Min He. Accurate Proteoform Identification and Quantitation Using pTop 2.0. 2022, 105-129. https://doi.org/10.1007/978-1-0716-2325-1_9
    17. Lloyd M. Smith, Jeffrey N. Agar, Julia Chamot-Rooke, Paul O. Danis, Ying Ge, Joseph A. Loo, Ljiljana Paša-Tolić, Yury O. Tsybin, Neil L. Kelleher, . The Human Proteoform Project: Defining the human proteome. Science Advances 2021, 7 (46) https://doi.org/10.1126/sciadv.abk0734
    18. Bethany C. Taylor, Nicolas L. Young. Combinations of histone post-translational modifications. Biochemical Journal 2021, 478 (3) , 511-532. https://doi.org/10.1042/BCJ20200170
    19. Paul F. Lang, Yassmine Chebaro, Xiaoyue Zheng, John A. P. Sekar, Bilal Shaikh, Darren A. Natale, Jonathan R. Karr. BpForms and BcForms: a toolkit for concretely describing non-canonical polymers and complexes to facilitate global biochemical networks. Genome Biology 2020, 21 (1) https://doi.org/10.1186/s13059-020-02025-z
    20. Stanislav Naryzhny, Nikolay Klopov, Natalia Ronzhina, Elena Zorina, Victor Zgoda, Olga Kleyst, Natalia Belyakova, Olga Legina. A database for inventory of proteoform profiles: “2DE‐pattern”. ELECTROPHORESIS 2020, 41 (12) , 1118-1124. https://doi.org/10.1002/elps.201900468
    21. R. Manzano-Román, M. Fuentes. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. Journal of Proteomics 2020, 220 , 103762. https://doi.org/10.1016/j.jprot.2020.103762
    22. Vincent, Binos, Rochfort, Spangenberg. Top-Down Proteomics of Medicinal Cannabis. Proteomes 2019, 7 (4) , 33. https://doi.org/10.3390/proteomes7040033
    23. Lloyd M. Smith, Paul M. Thomas, Michael R. Shortreed, Leah V. Schaffer, Ryan T. Fellers, Richard D. LeDuc, Trisha Tucholski, Ying Ge, Jeffrey N. Agar, Lissa C. Anderson, Julia Chamot-Rooke, Joseph Gault, Joseph A. Loo, Ljiljana Paša-Tolić, Carol V. Robinson, Hartmut Schlüter, Yury O. Tsybin, Marta Vilaseca, Juan Antonio Vizcaíno, Paul O. Danis, Neil L. Kelleher. A five-level classification system for proteoform identifications. Nature Methods 2019, 16 (10) , 939-940. https://doi.org/10.1038/s41592-019-0573-x
    24. Daniel P. Donnelly, Catherine M. Rawlins, Caroline J. DeHart, Luca Fornelli, Luis F. Schachner, Ziqing Lin, Jennifer L. Lippens, Krishna C. Aluri, Richa Sarin, Bifan Chen, Carter Lantz, Wonhyeuk Jung, Kendall R. Johnson, Antonius Koller, Jeremy J. Wolff, Iain D. G. Campuzano, Jared R. Auclair, Alexander R. Ivanov, Julian P. Whitelegge, Ljiljana Paša-Tolić, Julia Chamot-Rooke, Paul O. Danis, Lloyd M. Smith, Yury O. Tsybin, Joseph A. Loo, Ying Ge, Neil L. Kelleher, Jeffrey N. Agar. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nature Methods 2019, 16 (7) , 587-594. https://doi.org/10.1038/s41592-019-0457-0
    25. Leah V. Schaffer, Robert J. Millikin, Rachel M. Miller, Lissa C. Anderson, Ryan T. Fellers, Ying Ge, Neil L. Kelleher, Richard D. LeDuc, Xiaowen Liu, Samuel H. Payne, Liangliang Sun, Paul M. Thomas, Trisha Tucholski, Zhe Wang, Si Wu, Zhijie Wu, Dahang Yu, Michael R. Shortreed, Lloyd M. Smith. Identification and Quantification of Proteoforms by Mass Spectrometry. PROTEOMICS 2019, 19 (10) https://doi.org/10.1002/pmic.201800361
    26. Marwenie F. Petalcorin, Naeem Shafqat, Zen H. Lu, Mark I.R. Petalcorin. Clinical Proteomics. 2019, 911-925. https://doi.org/10.1016/B978-0-12-809633-8.20450-0
    27. Joelle Vinh. Proteomics and proteoforms: Bottom-up or top-down, how to use high-resolution mass spectrometry to reach the Grail. 2019, 529-567. https://doi.org/10.1016/B978-0-12-814013-0.00017-X
    28. Timothy K. Toby, Luca Fornelli, Kristina Srzentić, Caroline J. DeHart, Josh Levitsky, John Friedewald, Neil L. Kelleher. A comprehensive pipeline for translational top-down proteomics from a single blood draw. Nature Protocols 2019, 14 (1) , 119-152. https://doi.org/10.1038/s41596-018-0085-7
    29. Jean Lesne, Marie-Pierre Bousquet, Julien Marcoux, Marie Locard-Paulet. Top-Down and Intact Protein Mass Spectrometry Data Visualization for Proteoform Analysis Using VisioProt-MS. Bioinformatics and Biology Insights 2019, 13 , 117793221986822. https://doi.org/10.1177/1177932219868223

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect