ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

HYPERsol: High-Quality Data from Archival FFPE Tissue for Clinical Proteomics

  • Dylan M. Marchione
    Dylan M. Marchione
    Epigenetics Institute, Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
  • Ilyana Ilieva
    Ilyana Ilieva
    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
  • Kyle Devins
    Kyle Devins
    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    More by Kyle Devins
  • Danielle Sharpe
    Danielle Sharpe
    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
  • Darryl J. Pappin
    Darryl J. Pappin
    Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, United States
    ProtiFi, LLC, Huntington, New York 11743, United States
  • Benjamin A. Garcia
    Benjamin A. Garcia
    Epigenetics Institute, Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
  • John P. Wilson*
    John P. Wilson
    ProtiFi, LLC, Huntington, New York 11743, United States
    *Email: [email protected]
  • , and 
  • John B. Wojcik*
    John B. Wojcik
    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    *Email: [email protected]
Cite this: J. Proteome Res. 2020, 19, 2, 973–983
Publication Date (Web):January 14, 2020
https://doi.org/10.1021/acs.jproteome.9b00686
Copyright © 2020 American Chemical Society

    Article Views

    2280

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)
    Supporting Info (12)»

    Abstract

    Abstract Image

    Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing an invaluable resource for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present high-yield protein extraction and recovery by direct solubilization (HYPERsol), an optimized workflow using ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936). When applied to archival samples, HYPERsol resulted in high-quality data from FFPE specimens in storage for up to 17 years, and may enable the discovery of new immunohistochemical markers.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jproteome.9b00686.

    • Figure S1: Direct solubilization combined with ultrasonication efficiently solubilizes FFPE samples of various human tissue types; Figure S2: Peptides from FFPE samples contain missed cleavages and modifications (PDF)

    • Table S1: Experiment 1 Peptide Report (TXT)

    • Table S2: Experiment 1 Protein Report (TXT)

    • Table S3: Experiment 1 Unique Peptides and Protein Modifications (XLSX)

    • Table S4: Experiment 1 Gene Ontology Terms (XLSX)

    • Table S5: Experiment 2 Peptide Report (XLS)

    • Table S6: Experiment 2 Protein Report (XLS)

    • Table S7: Experiment 2 Protein Correlation Matrix (TXT)

    • Table S8: Experiment 2 Volcano Plots (XLSX)

    • Table S9: Archival FFPE Tumor Specimen Protein Report (XLSX)

    • Table S10: Archival FFPE Tumor Specimen Age and Number of Protein IDs (XLSX)

    • Table S11: Raw File Names and Conditions (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 26 publications.

    1. Chin-Wen Chen, Chia-Feng Tsai, Miao-Hsia Lin, Shu-Yu Lin, Chuan-Chih Hsu. Suspension Trapping-Based Sample Preparation Workflow for In-Depth Plant Phosphoproteomics. Analytical Chemistry 2023, 95 (33) , 12232-12239. https://doi.org/10.1021/acs.analchem.3c00786
    2. Georgina D. Barnabas, Verena Goebeler, Janice Tsui, Jonathan W. Bush, Philipp F. Lange. ASAP─Automated Sonication-Free Acid-Assisted Proteomes─from Cells and FFPE Tissues. Analytical Chemistry 2023, 95 (6) , 3291-3299. https://doi.org/10.1021/acs.analchem.2c04264
    3. Jie Pu, Chao Xue, Shihan Huo, Qingqing Shen, Yang Qu, Xinxin Yang, Bo An, Thomas E. Angel, Zhuo Chen, John T. Mehl, Huaping Tang, Eric Yang, Timothy W. Sikorski, Jun Qu. Highly Accurate and Robust Absolute Quantification of Target Proteins in Formalin-Fixed Paraffin-Embedded (FFPE) Tissues by LC–MS. Analytical Chemistry 2023, 95 (2) , 924-934. https://doi.org/10.1021/acs.analchem.2c03473
    4. Magdalena Kuras, Nicole Woldmar, Yonghyo Kim, Max Hefner, Johan Malm, Judit Moldvay, Balázs Döme, János Fillinger, Luciana Pizzatti, Jeovanis Gil, György Marko-Varga, Melinda Rezeli. Proteomic Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples from Formalin-Fixed Paraffin-Embedded Archives. Journal of Proteome Research 2021, 20 (1) , 1027-1039. https://doi.org/10.1021/acs.jproteome.0c00850
    5. Daniel Mar, Ilona M. Babenko, Ran Zhang, William Stafford Noble, Oleg Denisenko, Tomas Vaisar, Karol Bomsztyk. A High-Throughput PIXUL–Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. Laboratory Investigation 2024, 104 (1) , 100282. https://doi.org/10.1016/j.labinv.2023.100282
    6. Pavan S. Upadhyayula, Dominique M. Higgins, Angeliki Mela, Matei Banu, Athanassios Dovas, Fereshteh Zandkarimi, Purvi Patel, Aayushi Mahajan, Nelson Humala, Trang T. T. Nguyen, Kunal R. Chaudhary, Lillian Liao, Michael Argenziano, Tejaswi Sudhakar, Colin P. Sperring, Benjamin L. Shapiro, Eman R. Ahmed, Connor Kinslow, Ling F. Ye, Markus D. Siegelin, Simon Cheng, Rajesh Soni, Jeffrey N. Bruce, Brent R. Stockwell, Peter Canoll. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36630-w
    7. Ara Cho, Jinsung Ahn, Andrew Kim, Jeong Hyun Lee, Han Suk Ryu, Kristine M. Kim, Eugene C. Yi. Proteomics analysis of an individual formalin‐fixed paraffin‐embedded tissue section using isobaric‐tag amplification. Rapid Communications in Mass Spectrometry 2023, 37 (22) https://doi.org/10.1002/rcm.9616
    8. Johanna Tüshaus, Amirhossein Sakhteman, Severin Lechner, Matthew The, Eike Mucha, Christoph Krisp, Jürgen Schlegel, Claire Delbridge, Bernhard Kuster. A region‐resolved proteomic map of the human brain enabled by high‐throughput proteomics. The EMBO Journal 2023, https://doi.org/10.15252/embj.2023114665
    9. Nathan T. Wamsley, Emily M. Wilkerson, Li Guan, Kyle M. LaPak, Travis P. Schrank, Brittany J. Holmes, Robert W. Sprung, Petra Erdmann Gilmore, Sophie P. Gerndt, Ryan S. Jackson, Randal C. Paniello, Patrik Pipkorn, Sidharth V. Puram, Jason T. Rich, Reid R. Townsend, José P. Zevallos, Paul Zolkind, Quynh-Thu Le, Dennis Goldfarb, Michael B. Major. Targeted Proteomic Quantitation of NRF2 Signaling and Predictive Biomarkers in HNSCC. Molecular & Cellular Proteomics 2023, 22 (11) , 100647. https://doi.org/10.1016/j.mcpro.2023.100647
    10. William S. Phipps, Mark R. Kilgore, Jacob J. Kennedy, Jeffrey R. Whiteaker, Andrew N. Hoofnagle, Amanda G. Paulovich. Clinical Proteomics for Solid Organ Tissues. Molecular & Cellular Proteomics 2023, 22 (11) , 100648. https://doi.org/10.1016/j.mcpro.2023.100648
    11. C. Bruce Mousseau, Camille A. Pierre, Daniel D. Hu, Matthew M. Champion. Miniprep assisted proteomics (MAP) for rapid proteomics sample preparation. Analytical Methods 2023, 15 (7) , 916-924. https://doi.org/10.1039/D2AY01549H
    12. Torsten Müller, Mauro A. Cremonini, Georg Kliewer, Jeroen Krijgsveld. Automated Sample Preparation for Mass Spectrometry-Based Clinical Proteomics. 2023, 181-211. https://doi.org/10.1007/978-1-0716-3457-8_11
    13. Delphi Van Haver, Amélie Dendooven, Francis Impens. Proteomics-Based Analysis and Diagnosis of Formalin-Fixed Paraffin-Embedded Amyloidosis Samples. 2023, 213-233. https://doi.org/10.1007/978-1-0716-3457-8_12
    14. K.H. Brian Lam, Kevin Faust, Richard Yin, Clare Fiala, Phedias Diamandis. The Brain Protein Atlas: A conglomerate of proteomics datasets of human neural tissue. PROTEOMICS 2022, 22 (23-24) https://doi.org/10.1002/pmic.202200127
    15. Zhubing Lei, Xinpei Pang, Li Li, Fan Zhang, Wen-Fei Dong, Qian Mei. An automated system for nucleic acid extraction from formalin-fixed paraffin-embedded samples using high intensity focused ultrasound technology. Analytical and Bioanalytical Chemistry 2022, 414 (29-30) , 8201-8213. https://doi.org/10.1007/s00216-022-04360-5
    16. Van‐An Duong, Jong‐Moon Park, Hookeun Lee. A review of suspension trapping digestion method in bottom‐up proteomics. Journal of Separation Science 2022, 45 (16) , 3150-3168. https://doi.org/10.1002/jssc.202200297
    17. D. R. Mani, Karsten Krug, Bing Zhang, Shankha Satpathy, Karl R. Clauser, Li Ding, Matthew Ellis, Michael A. Gillette, Steven A. Carr. Cancer proteogenomics: current impact and future prospects. Nature Reviews Cancer 2022, 22 (5) , 298-313. https://doi.org/10.1038/s41568-022-00446-5
    18. Kenneth Weke, Sachin Kote, Jakub Faktor, Sofian Al Shboul, Naomi Uwugiaren, Paul M. Brennan, David R. Goodlett, Ted R. Hupp, Irena Dapic. DIA-MS proteome analysis of formalin-fixed paraffin-embedded glioblastoma tissues. Analytica Chimica Acta 2022, 1204 , 339695. https://doi.org/10.1016/j.aca.2022.339695
    19. Georgia Mitsa, Qianyu Guo, Christophe Goncalves, Samuel E. J. Preston, Vincent Lacasse, Adriana Aguilar-Mahecha, Naciba Benlimame, Mark Basik, Alan Spatz, Gerald Batist, Wilson H. Miller, Sonia V. del Rincon, René P. Zahedi, Christoph H. Borchers. A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. International Journal of Molecular Sciences 2022, 23 (8) , 4443. https://doi.org/10.3390/ijms23084443
    20. Vincent Yeung, Tancy C. Zhang, Ling Yuan, Mohit Parekh, John A. Cortinas, Eleni Delavogia, Audrey E. K. Hutcheon, Xiaoqing Guo, Joseph B. Ciolino. Extracellular Vesicles Secreted by Corneal Myofibroblasts Promote Corneal Epithelial Cell Migration. International Journal of Molecular Sciences 2022, 23 (6) , 3136. https://doi.org/10.3390/ijms23063136
    21. Frank Maixner, Mohamed S. Sarhan, Kun D. Huang, Adrian Tett, Alexander Schoenafinger, Stefania Zingale, Aitor Blanco-Míguez, Paolo Manghi, Jan Cemper-Kiesslich, Wilfried Rosendahl, Ulrike Kusebauch, Seamus R. Morrone, Michael R. Hoopmann, Omar Rota-Stabelli, Thomas Rattei, Robert L. Moritz, Klaus Oeggl, Nicola Segata, Albert Zink, Hans Reschreiter, Kerstin Kowarik. Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period. Current Biology 2021, 31 (23) , 5149-5162.e6. https://doi.org/10.1016/j.cub.2021.09.031
    22. Qi Xie, Dan Wang, Xiao Luo, Zhen Li, Aixia Hu, Hui Yang, Jinxing Tang, Peiyu Gao, Tingyi Sun, Lingfei Kong. Proteome profiling of formalin‑fixed, paraffin‑embedded lung adenocarcinoma tissues using a tandem mass tag‑based quantitative proteomics approach. Oncology Letters 2021, 22 (4) https://doi.org/10.3892/ol.2021.12967
    23. Yiheng Mao, Xi Wang, Peiwu Huang, Ruijun Tian. Spatial proteomics for understanding the tissue microenvironment. The Analyst 2021, 146 (12) , 3777-3798. https://doi.org/10.1039/D1AN00472G
    24. Morgan Mann, Allan R Brasier. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Review of Proteomics 2021, 18 (5) , 379-394. https://doi.org/10.1080/14789450.2021.1931130
    25. Chang Liu, Xiaoxia Si, Shumei Yan, Xinyuan Zhao, Xiaohong Qian, Wantao Ying, Lijiao Zhao. Development of the C12Im-Cl-assisted method for rapid sample preparation in proteomic application. Analytical Methods 2021, 13 (6) , 776-781. https://doi.org/10.1039/D0AY02079F
    26. Misol Do, Hyunsoo Kim, Injoon Yeo, Jihyeon Lee, In Ae Park, Han Suk Ryu, Youngsoo Kim. Clinical Application of Multiple Reaction Monitoring-Mass Spectrometry to Human Epidermal Growth Factor Receptor 2 Measurements as a Potential Diagnostic Tool for Breast Cancer Therapy. Clinical Chemistry 2020, 66 (10) , 1339-1348. https://doi.org/10.1093/clinchem/hvaa178

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect