Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Stopped-Flow Dynamics Study on the Escape Behavior of Polyelectrolyte Macromolecules from Microgels: The Influence of the Path Length and Size

  • Xiao-Xu Mao
    Xiao-Xu Mao
    Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
    More by Xiao-Xu Mao
  • Jie-Cheng Zha
    Jie-Cheng Zha
    Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
  • Shou-Kui Hu
    Shou-Kui Hu
    Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
    More by Shou-Kui Hu
  • Ke Shang
    Ke Shang
    Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
    More by Ke Shang
  • , and 
  • Jun Yin*
    Jun Yin
    Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
    *Email: [email protected]
    More by Jun Yin
Cite this: Langmuir 2020, 36, 21, 5919–5926
Publication Date (Web):May 12, 2020
https://doi.org/10.1021/acs.langmuir.0c00738
Copyright © 2020 American Chemical Society

    Article Views

    299

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We reported the fabrication of several monodispersed poly(2-vinyl pyridine)-poly(N-isopropylacrylamide) (P2VP-PNIPAM) microgels including the P2VP core (non-cross-linked) and PNIPAM (cross-linked) shell by mature emulsion polymerization. The fast escape behavior (diffusion process) of linear P2VP chains through a porous PNIPAM layer was investigated by a pH jump stopped-flow apparatus. The time-dependent dynamic traces (corresponding to the scattered light intensity) decreased at the initial timescale of several seconds and then reached an apparent equilibrium, confirming the efficient escape of P2VP chains from microgels. Compared with the previously reported literature, such an accelerated escape process resulted from the sharply increased internal charge repulsive force caused by the protonation of P2VP moieties under acidic conditions. The obtained characteristic relaxation times by single exponential fitting of these kinetic traces were dependent on the final pH values, equilibrium temperatures, shell thickness (path length), and cross-linking density (mesh size). We believe that this work can provide an efficient way to investigate hindered diffusion, especially the initial rapid diffusion stage. Not only that, the proposed model can also provide theoretical guidance to some practical applications, such as membrane separation and the exocytosis phenomenon of intracellular proteins or macromolecular substances.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00738.

    • Additional hydrodynamic radius distribution, SEM, intensity-average hydrodynamic radius, and other characterization data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.