logo
CONTENT TYPES

Fatty Acid Monolayers on Randomly Nanostructured Inorganic Surfaces: Interplay of Wettability, Chemistry, and Topography

  • Mathieu Beauvais
    Mathieu Beauvais
    Alcatel-Lucent Bell Laboratories France, 7 route de Villejust, 91620 Nozay, France
  • Irma Liascukiene
    Irma Liascukiene
    Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 place Jussieu, F-75005, Paris, France
  • Alain M. Jonas
    Alain M. Jonas
    Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348, Louvain-la-Neuve, Belgium
  • , and 
  • Jessem Landoulsi*
    Jessem Landoulsi
    Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 place Jussieu, F-75005, Paris, France
    *Email: [email protected]
Cite this: Langmuir 2020, 36, 40, 11845–11854
Publication Date (Web):September 22, 2020
https://doi.org/10.1021/acs.langmuir.0c01878
Copyright © 2020 American Chemical Society
Article Views
53
Altmetric
-
Citations
-
LEARN ABOUT THESE METRICS

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

Abstract Image

Understanding the wetting properties of chemically modified inorganic surfaces with random nanoscale topographies is of fundamental importance for diverse applications. This issue has hitherto continuously been the subject of considerable controversies. Herein, we report a thorough investigation of the wettability–topography–chemistry balance for a nanostructured surface with random topography, the main challenge being decoupling topography from surface chemistry. For this purpose, we use a superficially nanostructured aluminum substrate chemically modified by fatty acid monolayers. From atomic force microscopic data, we extract a variety of parameters describing the surface topography by means of variogram calculations, a method originally developed by geostatisticians to explore large surfaces. Moreover, by using log and power transforms, we establish a consistent relationship relating wettability, topography, and surface chemistry. Interestingly, we demonstrate that the water contact angle comprises a contribution due to the surface composition, originating from hydrophobization through alkyl chains, and a contribution due to the surface topography, particularly its stochastic feature. This model is valid in the Wenzel region; it provides guidelines for tuning the wetting properties of inorganic surfaces with random nanoscale topographies.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01878.

  • PSD and variogram calculations; variogram modeling and evaluation; variable transformation (PDF)

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    OOPS

    You have to login with your ACS ID befor you can login with your Mendeley account.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect

    This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

    CONTINUE