ACS Publications. Most Trusted. Most Cited. Most Read
Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing
My Activity
    Review

    Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing
    Click to copy article linkArticle link copied!

    Other Access Options

    Langmuir

    Cite this: Langmuir 2024, 40, 42, 21907–21930
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.langmuir.4c01907
    Published October 10, 2024
    Copyright © 2024 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.

    Copyright © 2024 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Langmuir

    Cite this: Langmuir 2024, 40, 42, 21907–21930
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.langmuir.4c01907
    Published October 10, 2024
    Copyright © 2024 American Chemical Society

    Article Views

    299

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.