ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVInterface Components...Interface Components: Nanoparticles, Colloids, Emulsions, Surfactants, Proteins, PolymersNEXT

Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents

View Author Information
Experimental Soft Matter Physics Group, Physics and Materials Science Research Unit and Theoretical Soft Matter Group, Physics and Materials Science Research Unit, University of Luxembourg, 162a, Avenue de la Faïncerie, L-1511 Luxembourg, Luxembourg
Cite this: Langmuir 2016, 32, 38, 9854–9862
Publication Date (Web):August 29, 2016
https://doi.org/10.1021/acs.langmuir.6b02647
Copyright © 2016 American Chemical Society

    Article Views

    2332

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.langmuir.6b02647.

    • Experimental details (verification of purity after solvent exchange; establishment of phase diagrams; pitch measurements; AFM characterization; and rheological investigations) and additional data on phase sequence and rheological response (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 44 publications.

    1. Bruno Frka-Petesic, Thomas G. Parton, Camila Honorato-Rios, Aurimas Narkevicius, Kevin Ballu, Qingchen Shen, Zihao Lu, Yu Ogawa, Johannes S. Haataja, Benjamin E. Droguet, Richard M. Parker, Silvia Vignolini. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chemical Reviews 2023, Article ASAP.
    2. Qianqian Wang, Wen Niu, Shixuan Feng, Jun Liu, Huan Liu, Qianqian Zhu. Accelerating Cellulose Nanocrystal Assembly into Chiral Nanostructures. ACS Nano 2023, 17 (15) , 14283-14308. https://doi.org/10.1021/acsnano.3c03797
    3. Po-Cheng Lai, Zhi-Fan Ren, Sheng-Sheng Yu. Thermally Induced Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents for 3D Printable and Self-Healable Ionogels. ACS Applied Polymer Materials 2022, 4 (12) , 9221-9230. https://doi.org/10.1021/acsapm.2c01508
    4. Daria Bukharina, Minkyu Kim, Moon Jong Han, Vladimir V. Tsukruk. Cellulose Nanocrystals’ Assembly under Ionic Strength Variation: From High Orientation Ordering to a Random Orientation. Langmuir 2022, 38 (20) , 6363-6375. https://doi.org/10.1021/acs.langmuir.2c00293
    5. Martin J. Pospisil, Matthew M. Noor, Sadat Kamal Amit, Caleb W. Neufeld, Partha Saha, Virginia A. Davis, Micah J. Green. Chiral Structure Formation during Casting of Cellulose Nanocrystalline Films. Langmuir 2020, 36 (18) , 4975-4984. https://doi.org/10.1021/acs.langmuir.0c00508
    6. Guang Chu, Gleb Vasilyev, Dan Qu, Shengwei Deng, Long Bai, Orlando J. Rojas, Eyal Zussman. Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. Langmuir 2020, 36 (4) , 979-985. https://doi.org/10.1021/acs.langmuir.9b03570
    7. Wonbin Song, Jong-Kwon Lee, Mi Sic Gong, Kwang Heo, Woo-Jae Chung, Byung Yang Lee. Cellulose Nanocrystal-Based Colored Thin Films for Colorimetric Detection of Aldehyde Gases. ACS Applied Materials & Interfaces 2018, 10 (12) , 10353-10361. https://doi.org/10.1021/acsami.7b19738
    8. Yingxin Liu, Daniela Stoeckel, Korneliya Gordeyeva, Michael Agthe, Christina Schütz, Andreas B. Fall, and Lennart Bergström . Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion. ACS Macro Letters 2018, 7 (2) , 172-177. https://doi.org/10.1021/acsmacrolett.7b00964
    9. Aref Abbasi Moud, Aliyeh Abbasi Moud. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. International Journal of Biological Macromolecules 2023, 232 , 123391. https://doi.org/10.1016/j.ijbiomac.2023.123391
    10. Neta Cohen, David Attia, Yael Levi‐Kalisman, Ronit Bitton, Rachel Yerushalmi‐Rozen. Emergent hybrid mesophases in ternary mixtures of cellulose nanocrystals ‐ Pluronic micelles‐water. Polymers for Advanced Technologies 2022, 33 (11) , 3800-3809. https://doi.org/10.1002/pat.5647
    11. Chaoxuan Wang, Chuanmei Tang, Yuefei Wang, Yuhe Shen, Wei Qi, Ting Zhang, Rongxin Su, Zhimin He. Chiral photonic materials self-assembled by cellulose nanocrystals. Current Opinion in Solid State and Materials Science 2022, 26 (5) , 101017. https://doi.org/10.1016/j.cossms.2022.101017
    12. Tianhui Wang, Xiangnan Meng, Shuyu Lu, Tao Ma, Xinna Hu, Yi Song. The preparation of cellulose nanocrystal/1, 3 ‐butylene glycol composite structural color films and humidity‐responsive. Journal of Applied Polymer Science 2022, 139 (29) https://doi.org/10.1002/app.52645
    13. Zhen Zhang, Gilles Sèbe, Yelin Hou, Juan Wang, Jin Huang, Guofu Zhou. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization. Journal of Applied Polymer Science 2021, 138 (48) https://doi.org/10.1002/app.51458
    14. Tommaso P. Fraccia, Giuliano Zanchetta. Liquid–liquid crystalline phase separation in biomolecular solutions. Current Opinion in Colloid & Interface Science 2021, 56 , 101500. https://doi.org/10.1016/j.cocis.2021.101500
    15. Ke Qiu, Rina Tannenbaum, Karl I. Jacob. Effect of processing techniques and residual solvent on the thermal/mechanical properties of epoxy‐cellulose nanocrystal nanocomposites. Polymer Engineering & Science 2021, 61 (4) , 1281-1294. https://doi.org/10.1002/pen.25685
    16. Kyongok Kang, Alexey Eremin. Solvent-dependent morphology and anisotropic microscopic dynamics of cellulose nanocrystals under electric fields. Physical Review E 2021, 103 (3) https://doi.org/10.1103/PhysRevE.103.032606
    17. Maoqi Lin, Vikram Singh Raghuwanshi, Christine Browne, George P. Simon, Gil Garnier. Modulating transparency and colour of cellulose nanocrystal composite films by varying polymer molecular weight. Journal of Colloid and Interface Science 2021, 584 , 216-224. https://doi.org/10.1016/j.jcis.2020.09.123
    18. Camila Honorato-Rios, Jan P. F. Lagerwall. Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions. Communications Materials 2020, 1 (1) https://doi.org/10.1038/s43246-020-00069-z
    19. M. I. Voronova, O. V. Surov, N. V. Rubleva, N. E. Kochkina, A. G. Zakharov. Dispersibility of Nanocrystalline Cellulose in Organic Solvents. Russian Journal of Bioorganic Chemistry 2020, 46 (7) , 1295-1303. https://doi.org/10.1134/S106816202007016X
    20. Amira Barhoumi Meddeb, Inseok Chae, Federico Scurti, Justin Schwartz, Seong H. Kim, Zoubeida Ounaies. From a cholesteric non-aqueous cellulose nanocrystal suspension to a highly ordered film. MRS Advances 2020, 5 (64) , 3547-3554. https://doi.org/10.1557/adv.2020.404
    21. David Attia, Neta Cohen, Guy Ochbaum, Yael Levi-Kalisman, Ronit Bitton, Rachel Yerushalmi-Rozen. Nano-to-meso structure of cellulose nanocrystal phases in ethylene–glycol–water mixtures. Soft Matter 2020, 16 (36) , 8444-8452. https://doi.org/10.1039/D0SM01025A
    22. Amira Barhoumi Meddeb, Inseok Chae, Aijie Han, Seong H. Kim, Zoubeida Ounaies. Magnetic field effects on cellulose nanocrystal ordering in a non-aqueous solvent. Cellulose 2020, 27 (14) , 7901-7910. https://doi.org/10.1007/s10570-020-03320-5
    23. Charles Bruel, Tom S. Davies, Pierre J. Carreau, Jason R. Tavares, Marie-Claude Heuzey. Self-assembly behaviors of colloidal cellulose nanocrystals: A tale of stabilization mechanisms. Journal of Colloid and Interface Science 2020, 574 , 399-409. https://doi.org/10.1016/j.jcis.2020.04.049
    24. Bruno Frka‐Petesic, Joel A. Kelly, Gianni Jacucci, Giulia Guidetti, Gen Kamita, Nathan P. Crossette, Wadood Y. Hamad, Mark J. MacLachlan, Silvia Vignolini. Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response. Advanced Materials 2020, 32 (19) https://doi.org/10.1002/adma.201906889
    25. Katja Steck, Sonja Dieterich, Cosima Stubenrauch, Frank Giesselmann. Surfactant-based lyotropic liquid crystal gels – the interplay between anisotropic order and gel formation. Journal of Materials Chemistry C 2020, 8 (16) , 5335-5348. https://doi.org/10.1039/D0TC00561D
    26. Christina Schütz, Johanna R. Bruckner, Camila Honorato-Rios, Zornitza Tosheva, Manos Anyfantakis, Jan P. F. Lagerwall. From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. Crystals 2020, 10 (3) , 199. https://doi.org/10.3390/cryst10030199
    27. Yuan Shen, Ingo Dierking. Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. Applied Sciences 2019, 9 (12) , 2512. https://doi.org/10.3390/app9122512
    28. Abhinav Rao, Thibaut Divoux, Gareth H. McKinley, A. John Hart. Shear melting and recovery of crosslinkable cellulose nanocrystal–polymer gels. Soft Matter 2019, 15 (21) , 4401-4412. https://doi.org/10.1039/C8SM02647E
    29. Shiyu Fu, Linxin Zhong. Potential Application Based on Colloidal Properties of Cellulose Nanocrystals. 2019, 315-347. https://doi.org/10.1002/9783527807437.ch10
    30. Марина (Marina) Игоревна (Igorevna) Воронова (Voronova), Олег (Oleg) Валентинович (Valentinovich) Суров (Surov), Наталья (Natal'ya) Викторовна (Viktorovna) Рублева (Rubleva), Наталья (Natal'ya) Евгеньевна (Evgenievna) Кочкина (Kochkina), Анатолий (Anatoliy) Георгиевич (Georgievich) Захаров (Zakharov). DISPERSIBILITY OF NANOCRYSTALLINE CELLULOSE IN ORGANIC SOLVENTS. chemistry of plant raw material 2019, (1) , 39-50. https://doi.org/10.14258/jcprm.2019014240
    31. Jintao He, Na Li, Kaiqiang Bian, Guangzhe Piao. Optically active polyaniline film based on cellulose nanocrystals. Carbohydrate Polymers 2019, 208 , 398-403. https://doi.org/10.1016/j.carbpol.2018.12.091
    32. Jamileh Shojaeiarani, Dilpreet S. Bajwa, Kerry Hartman. Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices. 2019, 437-449. https://doi.org/10.1007/978-3-030-05399-4_16
    33. Bruno Alonso, Emmanuel Belamie. From nano-to micro-particles of polysaccharide-silica composites through self-assembly and sol-gel processes. 2019, 87-104. https://doi.org/10.1016/B978-0-12-815875-3.00006-0
    34. Laurent Vachoud, Suelen Conceição De Carvalho, Aymeric Bayart, Noémie Armand, Laura Cardoso, Bruno Alonso, Emmanuel Belamie. Rheological behavior of hybrid suspensions of chitin nanorods and siloxane oligomers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 558 , 470-478. https://doi.org/10.1016/j.colsurfa.2018.09.021
    35. Weibing Wu, Ruyuan Song, Zhaoyang Xu, Yi Jing, Hongqi Dai, Guigan Fang. Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sensors and Actuators B: Chemical 2018, 275 , 490-498. https://doi.org/10.1016/j.snb.2018.07.085
    36. A. Kuhnhold, S. M. Giesen, T. Schilling. Compression of a suspension of helical Yukawa rods. Molecular Physics 2018, 116 (21-22) , 2806-2811. https://doi.org/10.1080/00268976.2018.1471232
    37. Andrea S. Terpstra, Loryn P. Arnett, Alan P. Manning, Carl A. Michal, Wadood Y. Hamad, Mark J. MacLachlan. Iridescent Chiral Nematic Mesoporous Organosilicas with Alkylene Spacers. Advanced Optical Materials 2018, 6 (13) https://doi.org/10.1002/adom.201800163
    38. Temeng Qian, Baokang Dang, Yipeng Chen, Qingfeng Sun, Chunde Jin. Significantly improved mechanical properties of the self-assembled layered lignocelluloses material via grinding and hot pressing. Materials Chemistry and Physics 2018, 213 , 502-507. https://doi.org/10.1016/j.matchemphys.2018.03.092
    39. Richard M. Parker, Giulia Guidetti, Cyan A. Williams, Tianheng Zhao, Aurimas Narkevicius, Silvia Vignolini, Bruno Frka‐Petesic. The Self‐Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. Advanced Materials 2018, 30 (19) https://doi.org/10.1002/adma.201704477
    40. Camila Honorato-Rios, Claudius Lehr, Christina Schütz, Roland Sanctuary, Mikhail A. Osipov, Jörg Baller, Jan P. F. Lagerwall. Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Materials 2018, 10 (5) , 455-465. https://doi.org/10.1038/s41427-018-0046-1
    41. Delphine Coursault, Ivan Dozov, Christophe Blanc, Maurizio Nobili, Laurent Dupont, Corinne Chanéac, Patrick Davidson. Dispersions of Goethite Nanorods in Aprotic Polar Solvents. Materials 2017, 10 (10) , 1191. https://doi.org/10.3390/ma10101191
    42. Bruno Frka‐Petesic, Giulia Guidetti, Gen Kamita, Silvia Vignolini. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. Advanced Materials 2017, 29 (32) https://doi.org/10.1002/adma.201701469
    43. A. Kuhnhold, T. Schilling. Isotropic-nematic transition and cholesteric phases of helical Yukawa rods. The Journal of Chemical Physics 2016, 145 (19) https://doi.org/10.1063/1.4967718
    44. Derek Gray. Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films. Nanomaterials 2016, 6 (11) , 213. https://doi.org/10.3390/nano6110213

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect