Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Gas Bubbles in Electrochemical Gas Evolution Reactions
My Activity
    Invited Feature Article

    Gas Bubbles in Electrochemical Gas Evolution Reactions
    Click to copy article linkArticle link copied!

    Other Access Options

    Langmuir

    Cite this: Langmuir 2019, 35, 16, 5392–5408
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.langmuir.9b00119
    Published March 19, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Electrochemical gas evolution reactions are of vital importance in numerous electrochemical processes including water splitting, chloralkaline process, and fuel cells. During gas evolution reactions, gas bubbles are vigorously and constantly forming and influencing these processes. In the past few decades, extensive studies have been performed to understand the evolution of gas bubbles, elucidate the mechanisms of how gas bubbles impact gas evolution reactions, and exploit new bubble-based strategies to improve the efficiency of gas evolution reactions. In this feature article, we summarize the classical theories as well as recent advancements in this field and provide an outlook on future research topics.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 234 publications.

    1. Çayan Demirkır, Jeffery A. Wood, Detlef Lohse, Dominik Krug. Life beyond Fritz: On the Detachment of Electrolytic Bubbles. Langmuir 2024, 40 (39) , 20474-20484. https://doi.org/10.1021/acs.langmuir.4c01963
    2. Lenan Zhang, Ryuichi Iwata, Zhengmao Lu, Xuanjie Wang, Carlos D. Díaz-Marín, Yang Zhong. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chemical Reviews 2024, 124 (17) , 10052-10111. https://doi.org/10.1021/acs.chemrev.4c00157
    3. Paul A. Kempler, Robert H. Coridan, Long Luo. Gas Evolution in Water Electrolysis. Chemical Reviews 2024, Article ASAP.
    4. Vanshika Gupta, AnhThu Pham, Jeffrey E. Dick. Planar Disk μ-Aptasensors by Monolayer Assembly in a Dissolving Microdroplet. Analytical Chemistry 2024, 96 (34) , 13777-13784. https://doi.org/10.1021/acs.analchem.4c01043
    5. Pengchao Zhang, Changsheng Chen, Muye Feng, Chao Sun, Xuefei Xu. Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water. Journal of the American Chemical Society 2024, 146 (28) , 19537-19546. https://doi.org/10.1021/jacs.4c06641
    6. Panpan Zhao, Shuai Gong, Chaoyang Zhang, Siliang Chen, Ping Cheng. Roles of Wettability and Wickability on Enhanced Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces 2024, 16 (21) , 27898-27907. https://doi.org/10.1021/acsami.4c02428
    7. Shu Yuan, Congfan Zhao, Liuxuan Luo, Cehuang Fu, Huiyuan Li, Lu An, Xiaojing Cheng, Shuiyun Shen, Jiewei Yin, Xiaohui Yan, Junliang Zhang. Revealing the Role of the Ionomer at the Triple-Phase Boundary in a Proton-Exchange Membrane Water Electrolyzer. The Journal of Physical Chemistry Letters 2024, 15 (19) , 5223-5230. https://doi.org/10.1021/acs.jpclett.4c00851
    8. Alex J. G. Rea, Alexi L. Pauls, Audrey K. Taylor, Byron D. Gates. Enhancing the Performance of Nickel Electrocatalysts for the Oxygen Evolution Reaction Using Arrays of Self-Cleaning Linear Ridges. ACS Applied Energy Materials 2024, 7 (8) , 3187-3200. https://doi.org/10.1021/acsaem.3c03187
    9. Aleksandr Bashkatov, Sunghak Park, Çayan Demirkır, Jeffery A. Wood, Marc T. M. Koper, Detlef Lohse, Dominik Krug. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics. Journal of the American Chemical Society 2024, 146 (14) , 10177-10186. https://doi.org/10.1021/jacs.4c02018
    10. Seulgi Jeong, Ungsoo Kim, Sangjin Lee, Yihan Zhang, Eunbin Son, Kyoung-Jin Choi, Young-Kyu Han, Jeong Min Baik, Hyesung Park. Superaerophobic/Superhydrophilic Multidimensional Electrode System for High-Current-Density Water Electrolysis. ACS Nano 2024, 18 (10) , 7558-7569. https://doi.org/10.1021/acsnano.3c12533
    11. Binbin Xu, Xiaohui Meng, Juan Huang, Yun Shan, Dong Qiu, Qianjin Chen. Revealing the Heterogeneous Bubble Nucleation at Individual Silica Nanoparticles. Analytical Chemistry 2024, 96 (7) , 2908-2913. https://doi.org/10.1021/acs.analchem.3c04411
    12. Julian Heinrich, Fabian Ränke, Karin Schwarzenberger, Xuegeng Yang, Robert Baumann, Mateusz Marzec, Andrés Fabián Lasagni, Kerstin Eckert. Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation. Langmuir 2024, 40 (6) , 2918-2929. https://doi.org/10.1021/acs.langmuir.3c02863
    13. Zhigao Zhao, Yunqiu Ma, Zhang Xie, Fengmin Wu, Jintu Fan, Jianlong Kou. Molecular Mechanisms of the Generation and Accumulation of Gas at the Interface. Langmuir 2024, 40 (6) , 2883-2892. https://doi.org/10.1021/acs.langmuir.3c02701
    14. Rui Wu, Zhihao Hu, Haojing Zhang, Jinqing Wang, Chaozhong Qin, Ye Zhou. Bubbles in Porous Electrodes for Alkaline Water Electrolysis. Langmuir 2024, 40 (1) , 721-733. https://doi.org/10.1021/acs.langmuir.3c02925
    15. Shusheng Wan, Huanlei Zhang, Ke Ye, Jieyang Li, Yucheng He, Xiaolin Ge, Tongwen Xu, Wen-Bin Cai, Meng Lin, Kun Jiang. Improving the Efficiencies of Water Splitting and CO2 Electrolysis by Anodic O2 Bubble Management. The Journal of Physical Chemistry Letters 2023, 14 (49) , 11217-11223. https://doi.org/10.1021/acs.jpclett.3c02902
    16. Jiangjiang Wang, Gangfeng Wu, Guanghui Feng, Guihua Li, Yiheng Wei, Shoujie Li, Jianing Mao, Xiaohu Liu, Aohui Chen, Yanfang Song, Xiao Dong, Wei Wei, Wei Chen. Electrochemical Epoxidation of Propylene to Propylene Oxide via Halogen-Mediated Systems. ACS Omega 2023, 8 (49) , 46569-46576. https://doi.org/10.1021/acsomega.3c05508
    17. Mengxuan Li, Pengpeng Xie, Linfeng Yu, Liang Luo, Xiaoming Sun. Bubble Engineering on Micro-/Nanostructured Electrodes for Water Splitting. ACS Nano 2023, 17 (23) , 23299-23316. https://doi.org/10.1021/acsnano.3c08831
    18. Xu Cheng, Zhong-de Du, Yu Ding, Fu-yu Li, Zhong-sheng Hua, Huan Liu. Bubble Management for Electrolytic Water Splitting by Surface Engineering: A Review. Langmuir 2023, 39 (48) , 16994-17008. https://doi.org/10.1021/acs.langmuir.3c02477
    19. Guobin Wen, Bohua Ren, Xinyu Yang, Yiming Chen, Lichao Tan, Xin Wang, Zhongwei Chen. Electrocatalytic Upgrade of Impure CO2 by In Situ-Reconstructed Cu Catalysts with Gas Exsolution Electrolyzers. Industrial & Engineering Chemistry Research 2023, 62 (46) , 19482-19492. https://doi.org/10.1021/acs.iecr.3c00817
    20. Nikola Petrović, Bhanwar K. Malviya, C. Oliver Kappe, David Cantillo. Scaling-up Electroorganic Synthesis Using a Spinning Electrode Electrochemical Reactor in Batch and Flow Mode. Organic Process Research & Development 2023, 27 (11) , 2072-2081. https://doi.org/10.1021/acs.oprd.3c00255
    21. Panpan Zhao, Chaoyang Zhang, Shuai Gong. Size Ranges of Effective Nucleation Cavities on Gas-Evolving Surfaces. Langmuir 2023, 39 (45) , 16101-16110. https://doi.org/10.1021/acs.langmuir.3c02235
    22. Milomir Suvira, Ananya Ahuja, Pascal Lovre, Mantak Singh, Gracious Wyatt Draher, Bo Zhang. Imaging Single H2 Nanobubbles Using Off-Axis Dark-Field Microscopy. Analytical Chemistry 2023, 95 (43) , 15893-15899. https://doi.org/10.1021/acs.analchem.3c02132
    23. Jeoffrey Tourneur, Loïc Joanny, Loïc Perrin, Stéphane Paul, Bruno Fabre. Efficient and Highly Stable 3D-Printed NiFe and NiCo Bifunctional Electrodes for Practical HER and OER. ACS Applied Engineering Materials 2023, 1 (10) , 2676-2684. https://doi.org/10.1021/acsaenm.3c00417
    24. Vahid Karimi, Raghunandan Sharma, Per Morgen, Shuang Ma Andersen. Multiple Bubble Removal Strategies to Promote Oxygen Evolution Reaction: Mechanistic Understandings from Orientation, Rotation, and Sonication Perspectives. ACS Applied Materials & Interfaces 2023, 15 (42) , 49233-49245. https://doi.org/10.1021/acsami.3c11290
    25. Kaige Shi, Zackary S. Parsons, Xiaofeng Feng. Sensitivity of Gas-Evolving Electrocatalysis to the Catalyst Microenvironment. ACS Energy Letters 2023, 8 (7) , 2919-2926. https://doi.org/10.1021/acsenergylett.3c00962
    26. Mattia Belotti, Mohsen M. T. El-Tahawy, Marco Garavelli, Michelle L. Coote, K. Swaminathan Iyer, Simone Ciampi. Separating Convective from Diffusive Mass Transport Mechanisms in Ionic Liquids by Redox Pro-fluorescence Microscopy. Analytical Chemistry 2023, 95 (26) , 9779-9786. https://doi.org/10.1021/acs.analchem.3c00168
    27. Weiran Zheng. iR Compensation for Electrocatalysis Studies: Considerations and Recommendations. ACS Energy Letters 2023, 8 (4) , 1952-1958. https://doi.org/10.1021/acsenergylett.3c00366
    28. Lukas Krause, Katarzyna Skibińska, Hannes Rox, Robert Baumann, Mateusz M. Marzec, Xuegeng Yang, Gerd Mutschke, Piotr Żabiński, Andrés Fabián Lasagni, Kerstin Eckert. Hydrogen Bubble Size Distribution on Nanostructured Ni Surfaces: Electrochemically Active Surface Area Versus Wettability. ACS Applied Materials & Interfaces 2023, 15 (14) , 18290-18299. https://doi.org/10.1021/acsami.2c22231
    29. Sanket Bhatt, Shubham Saraf, Achinta Bera. Perspectives of Foam Generation Techniques and Future Directions of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery. Energy & Fuels 2023, 37 (3) , 1472-1494. https://doi.org/10.1021/acs.energyfuels.2c02988
    30. Jane Edgington, Adrien Deberghes, Linsey C. Seitz. Glassy Carbon Substrate Oxidation Effects on Electrode Stability for Oxygen Evolution Reaction Catalysis Stability Benchmarking. ACS Applied Energy Materials 2022, 5 (10) , 12206-12218. https://doi.org/10.1021/acsaem.2c01690
    31. Raúl A. Márquez, Kenta Kawashima, Yoon Jun Son, Roger Rose, Lettie A. Smith, Nathaniel Miller, Omar Ali Carrasco Jaim, Hugo Celio, C. Buddie Mullins. Tailoring 3D-Printed Electrodes for Enhanced Water Splitting. ACS Applied Materials & Interfaces 2022, 14 (37) , 42153-42170. https://doi.org/10.1021/acsami.2c12579
    32. Raihan Choudhury, Ah-Hyun Kang, Donggeun Lee. Effect of Ionic Mass Transport on the Performance of a Novel Tubular Direct Carbon Fuel Cell for the Maximal Use of a Carbon-Filled Porous Anode. ACS Omega 2022, 7 (35) , 31003-31012. https://doi.org/10.1021/acsomega.2c03003
    33. Panpan Zhao, Zhiheng Hu, Ping Cheng, Rongzong Huang, Shuai Gong. Coalescence-Induced Bubble Departure: Effects of Dynamic Contact Angles. Langmuir 2022, 38 (34) , 10558-10567. https://doi.org/10.1021/acs.langmuir.2c01404
    34. Andrea E. Angulo, Daniel Frey, Miguel A. Modestino. Understanding Bubble-Induced Overpotential Losses in Multiphase Flow Electrochemical Reactors. Energy & Fuels 2022, 36 (14) , 7908-7914. https://doi.org/10.1021/acs.energyfuels.2c01543
    35. Qianjin Chen, Jiao Zhao, Xiaoli Deng, Yun Shan, Yu Peng. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. The Journal of Physical Chemistry Letters 2022, 13 (26) , 6153-6163. https://doi.org/10.1021/acs.jpclett.2c01388
    36. Kaiwei Yuan, Limin Zhou, Jing Wang, Zhanli Geng, Juncheng Qi, Xingya Wang, Lijuan Zhang, Jun Hu. Formation of Bulk Nanobubbles Induced by Accelerated Electrons Irradiation: Dependences on Dose Rates and Doses of Irradiation. Langmuir 2022, 38 (26) , 7938-7944. https://doi.org/10.1021/acs.langmuir.2c00515
    37. Nataša Diklić, Adam H. Clark, Juan Herranz, Justus S. Diercks, Dino Aegerter, Maarten Nachtegaal, Alexandra Beard, Thomas J. Schmidt. Potential Pitfalls in the Operando XAS Study of Oxygen Evolution Electrocatalysts. ACS Energy Letters 2022, 7 (5) , 1735-1740. https://doi.org/10.1021/acsenergylett.2c00727
    38. Ryuichi Iwata, Lenan Zhang, Zhengmao Lu, Shuai Gong, Jianyi Du, Evelyn N. Wang. How Coalescing Bubbles Depart from a Wall. Langmuir 2022, 38 (14) , 4371-4377. https://doi.org/10.1021/acs.langmuir.2c00118
    39. Ming Chen, Fang Zhao, Wenting Fan, Jian Li, Xuhong Guo. Proof-of-concept Study of a New Microflow Electrochemical Cell Design for Gas-Evolving Reactions. Industrial & Engineering Chemistry Research 2022, 61 (10) , 3781-3787. https://doi.org/10.1021/acs.iecr.1c04721
    40. Jack R. Lake, Álvaro Moreno Soto, Kripa K. Varanasi. Impact of Bubbles on Electrochemically Active Surface Area of Microtextured Gas-Evolving Electrodes. Langmuir 2022, 38 (10) , 3276-3283. https://doi.org/10.1021/acs.langmuir.2c00035
    41. Sriram Kumar, Sumit Bawari, Sreekanth Narayanaru, Tharangattu N. Narayanan, Ashis Kumar Satpati. Enhanced Electron Transfer Kinetics of Covalent Carbon Nanotube Junctions. The Journal of Physical Chemistry C 2022, 126 (1) , 239-245. https://doi.org/10.1021/acs.jpcc.1c08697
    42. Naohiko Kato, Yasuhiko Takeda, Yasuaki Kawai, Natsumi Nojiri, Masahito Shiozawa, Shintaro Mizuno, Ken-ichi Yamanaka, Takeshi Morikawa, Tsuyoshi Hamaguchi. Solar Fuel Production from CO2 Using a 1 m-Square-Sized Reactor with a Solar-to-Formate Conversion Efficiency of 10.5%. ACS Sustainable Chemistry & Engineering 2021, 9 (48) , 16031-16037. https://doi.org/10.1021/acssuschemeng.1c06390
    43. Alexi L. Pauls, Michael T. Y. Paul, Rana Faryad Ali, Byron D. Gates. Gel-like State of Nickel Hydroxide Created by Electrochemical Aging under Alkaline Conditions. ACS Applied Energy Materials 2021, 4 (10) , 10668-10681. https://doi.org/10.1021/acsaem.1c01679
    44. Kota Ando, Yoshiharu Uchimoto, Takashi Nakajima. Probing the Dissolved Gas Concentration on the Electrode through Laser-Assisted Bubbles. The Journal of Physical Chemistry C 2021, 125 (38) , 20952-20957. https://doi.org/10.1021/acs.jpcc.1c06816
    45. Long Li, Wenjun Jiang, Guang Zhang, Deqiang Feng, Ce Zhang, Wei Yao, Zhijie Wang. Efficient Mesh Interface Engineering: Insights from Bubble Dynamics in Electrocatalysis. ACS Applied Materials & Interfaces 2021, 13 (38) , 45346-45354. https://doi.org/10.1021/acsami.1c07637
    46. Xiao Ying Wong, Yuting Zhuo, Yansong Shen. Numerical Analysis of Hydrogen Bubble Behavior in a Zero-Gap Alkaline Water Electrolyzer Flow Channel. Industrial & Engineering Chemistry Research 2021, 60 (33) , 12429-12446. https://doi.org/10.1021/acs.iecr.1c02554
    47. Weiran Zheng, Lawrence Yoon Suk Lee. Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?. ACS Energy Letters 2021, 6 (8) , 2838-2843. https://doi.org/10.1021/acsenergylett.1c01350
    48. Guanzhi Wang, Jinfa Chang, Supriya Koul, Akihiro Kushima, Yang Yang. CO2 Bubble-Assisted Pt Exposure in PtFeNi Porous Film for High-Performance Zinc-Air Battery. Journal of the American Chemical Society 2021, 143 (30) , 11595-11601. https://doi.org/10.1021/jacs.1c04339
    49. Julia Linnemann, Kannasoot Kanokkanchana, Kristina Tschulik. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catalysis 2021, 11 (9) , 5318-5346. https://doi.org/10.1021/acscatal.0c04118
    50. Milomir Suvira, Bo Zhang. Effect of Surfactant on Electrochemically Generated Surface Nanobubbles. Analytical Chemistry 2021, 93 (12) , 5170-5176. https://doi.org/10.1021/acs.analchem.0c05067
    51. Yunqing Ma, Zhenjiang Guo, Qianjin Chen, Xianren Zhang. Dynamic Equilibrium Model for Surface Nanobubbles in Electrochemistry. Langmuir 2021, 37 (8) , 2771-2779. https://doi.org/10.1021/acs.langmuir.0c03537
    52. Tianyi Kou, Shanwen Wang, Yat Li. Perspective on High-Rate Alkaline Water Splitting. ACS Materials Letters 2021, 3 (2) , 224-234. https://doi.org/10.1021/acsmaterialslett.0c00536
    53. Audrey K. Taylor, Tiffany Mou, Ana Sonea, Jiayue Chen, Brenden B. Yee, Byron D. Gates. Arrays of Microscale Linear Ridges with Self-Cleaning Functionality for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (2) , 2399-2413. https://doi.org/10.1021/acsami.0c15240
    54. Mohammad Rahimi, Federico Zucchelli, Monica Puccini, T. Alan Hatton. Improved CO2 Capture Performance of Electrochemically Mediated Amine Regeneration Processes with Ionic Surfactant Additives. ACS Applied Energy Materials 2020, 3 (11) , 10823-10830. https://doi.org/10.1021/acsaem.0c01859
    55. Dongwon Kim, Xinyu Qin, Bingyi Yan, Hwichan Hong, Yuanzhe Piao. Nano/Microscale Integrated Mushroom-Shaped Hydrophilic CoP@Ni-CoP with Optimized Gas Bubble Release for High-Performance Water Splitting Catalysis. ACS Applied Energy Materials 2020, 3 (10) , 9769-9784. https://doi.org/10.1021/acsaem.0c01374
    56. Ananth Govind Rajan, John Mark P. Martirez, Emily A. Carter. Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catalysis 2020, 10 (19) , 11177-11234. https://doi.org/10.1021/acscatal.0c01862
    57. Yena Kim, Misun Hong, Hyunjeong Oh, Yousoo Kim, Hiroshi Suyama, Shinji Nakanishi, Hye Ryung Byon. Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite in a Water-in-Salt Electrolyte. The Journal of Physical Chemistry C 2020, 124 (37) , 20135-20142. https://doi.org/10.1021/acs.jpcc.0c05433
    58. Esteban D. Gadea, Yamila A. Perez Sirkin, Valeria Molinero, Damian A. Scherlis. Electrochemically Generated Nanobubbles: Invariance of the Current with Respect to Electrode Size and Potential. The Journal of Physical Chemistry Letters 2020, 11 (16) , 6573-6579. https://doi.org/10.1021/acs.jpclett.0c01404
    59. Keliang Wang, Cheng Liao, Wei Wang, Yu Xiao, Xiaotian Liu, Yayu Zuo. Removal of Gas Bubbles on an Electrode Using a Magnet. ACS Applied Energy Materials 2020, 3 (7) , 6752-6757. https://doi.org/10.1021/acsaem.0c00890
    60. Si-Min Lu, Yue-Yi Peng, Yi-Lun Ying, Yi-Tao Long. Electrochemical Sensing at a Confined Space. Analytical Chemistry 2020, 92 (8) , 5621-5644. https://doi.org/10.1021/acs.analchem.0c00931
    61. Rui Hao, Yunshan Fan, Todd J. Anderson, Bo Zhang. Imaging Single Nanobubbles of H2 and O2 During the Overall Water Electrolysis with Single-Molecule Fluorescence Microscopy. Analytical Chemistry 2020, 92 (5) , 3682-3688. https://doi.org/10.1021/acs.analchem.9b04793
    62. Qian Song, Zhenjie Xue, Cong Liu, Xuezhi Qiao, Lu Liu, Chuanhui Huang, Keyan Liu, Xiao Li, Zhili Lu, Tie Wang. General Strategy to Optimize Gas Evolution Reaction via Assembled Striped-Pattern Superlattices. Journal of the American Chemical Society 2020, 142 (4) , 1857-1863. https://doi.org/10.1021/jacs.9b10388
    63. Yufei Wang, Emma Gordon, Hang Ren. Mapping the Nucleation of H2 Bubbles on Polycrystalline Pt via Scanning Electrochemical Cell Microscopy. The Journal of Physical Chemistry Letters 2019, 10 (14) , 3887-3892. https://doi.org/10.1021/acs.jpclett.9b01414
    64. Yamila A. Perez Sirkin, Esteban D. Gadea, Damian A. Scherlis, Valeria Molinero. Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles. Journal of the American Chemical Society 2019, 141 (27) , 10801-10811. https://doi.org/10.1021/jacs.9b04479
    65. Shiyi Zeng, Gaigai Duan, Ruizhi Yu, Qin Qin, Shuijian He, Shaohua Jiang, Haoqi Yang, Xiaoshuai Han, Jingquan Han, Bao Yu Xia. Microstructure and bionic engineering of triphase reaction interface for zinc-air batteries. Progress in Materials Science 2025, 147 , 101356. https://doi.org/10.1016/j.pmatsci.2024.101356
    66. Weibo Zhang, Yicui Wei, Jingde Li, He Xiao. Harvesting energy from marine: Seawater electrolysis for hydrogen production. Fuel 2024, 377 , 132782. https://doi.org/10.1016/j.fuel.2024.132782
    67. Aline Bornet, Simon Pitscheider, Annabelle Maletzko, Nedjeljko Seselj, Erlend Bertheussen, Christoffer M. Pedersen, Gustav K.H. Wiberg, Julia Melke, Christian Kallesøe, Matthias Arenz. Beyond RDE characterisation – Unveiling IrRu/ATO OER catalyst stability with a GDE setup. Electrochimica Acta 2024, 501 , 144773. https://doi.org/10.1016/j.electacta.2024.144773
    68. Trang Minh Pham, Michaela Plevova, Stephan Bartling, Nils Rockstroh, Armin Springer, Adam Slabon, Jaromir Hnat, Annette-Enrica Surkus, Robert Francke. Oxygen-deficient annealing boosts performance of CoNiFe oxide electrocatalyst in oxygen evolution reaction. Journal of Catalysis 2024, 438 , 115675. https://doi.org/10.1016/j.jcat.2024.115675
    69. Lei Zhao, Zili Yin, Xianghui Zeng, Wei Fang, Xuan He, Xing Du, Weixin Li, Daheng Wang, Hui Chen. Bubble desorption enhanced superareophilic cooperative electrode for hydrogen evolution reaction. Chemical Engineering Journal 2024, 497 , 154222. https://doi.org/10.1016/j.cej.2024.154222
    70. Wenyu Song, Chenfeng Xia, Shahid Zaman, Shenghua Chen, Chunhui Xiao. Advances in Stability of NiFe‐Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. Small 2024, 135 https://doi.org/10.1002/smll.202406075
    71. Hao Zhang, Lei Chen, Feng Dong, Zhiwen Lu, Enmin Lv, Xinglong Dong, Huanxin Li, Zhongyong Yuan, Xinwen Peng, Shihe Yang, Jieshan Qiu, Zhengxiao Guo, Zhenhai Wen. Dynamic transformation of active sites in energy and environmental catalysis. Energy & Environmental Science 2024, 17 (18) , 6435-6481. https://doi.org/10.1039/D4EE02365J
    72. Hongmin An, Wonchul Park, Heejong Shin, Dong Young Chung. Recommended practice for measurement and evaluation of oxygen evolution reaction electrocatalysis. EcoMat 2024, https://doi.org/10.1002/eom2.12486
    73. Shenghao Zeng, Wenqing Ruan, Zhe Chen, Shuai Ren, Jihan Jiang, Jiaqing Lin, Heting Zhang, Zhenxuan Zhang, Jianan Fu, Qing Chen, Xiong Liang, Jiang Ma. Dissolution Manufacturing Strategy for the Facile Synthesis of Nanoporous Metallic Glass Multifunctional Catalyst. Small Methods 2024, 13 https://doi.org/10.1002/smtd.202401109
    74. Rankin Shum, Marah Cragun, Tyler Williams, Devin Rappleye. Electrochemical Investigation of Moisture Byproducts in Molten Calcium Chloride. Journal of The Electrochemical Society 2024, 171 (9) , 093508. https://doi.org/10.1149/1945-7111/ad76de
    75. Mojtaba Mohseni, Waralee Dilokekunakul, Matthias Wessling, Robert G. Keller. Advancing hydrogen peroxide electro-generation: Selective production at high rates in a flow-through module. Electrochimica Acta 2024, 497 , 144533. https://doi.org/10.1016/j.electacta.2024.144533
    76. Harol Moreno Fernández, Julia Gallenberger, Crizaldo Mempin, Isobel Khalek, Marie Neumann, Soroush Lotfi, Sun Myung Kim, Mohan Li, Chuanmu Tian, Jan P. Hofmann. Phase transitions in NiO during the oxygen evolution reaction assessed via electrochromic phenomena through operando UV–Vis spectroscopy. Electrochimica Acta 2024, 498 , 144626. https://doi.org/10.1016/j.electacta.2024.144626
    77. Yuqi Zhang, Wenzhi Cui, Longjian Li, Chongbo Wang, Chen Zhan, Zhanpeng Wang, Xiaojun Quan. Bubble transport characteristic on hydrogen evolution reaction of aligned porous electrode. Journal of Power Sources 2024, 614 , 235029. https://doi.org/10.1016/j.jpowsour.2024.235029
    78. Weihua Cai, Fuxing Shen, Nimeti Doner, Zhongnong Zhang, Zhaoxi Wang, Qian Li. Transport characteristics of gas in an alkaline water electrolyser with the addition of baffles: Analysis of mechanism and performance. International Journal of Hydrogen Energy 2024, 84 , 1004-1020. https://doi.org/10.1016/j.ijhydene.2024.08.104
    79. Nian Xu, Bingbing Qiu, Zucun Rui, Tianxiang Ji, Zilong Liu, Huaqiang Chu. Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production. Nano Research 2024, 438 https://doi.org/10.1007/s12274-024-6922-9
    80. Wenqian Liu, Qianwei Chen, Yuxin Shang, Fan Liu, Ruilin He, Jieyu Zhang, Qiulin Li, Hui Chai, Yangyang Tan, Shu‐Juan Bao. Fluorine‐Mediated Electronic Modulation Optimizes Ru─H Bond Desorption Enabling Stable Hydrogen Evolution at Industrial‐Level Current Densities. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202410325
    81. Huihang Qiu, Keisuke Obata, Kensei Tsuburaya, Takeshi Nishimoto, Keisuke Nagato, Kazuhiro Takanabe. Impact of gas bubble slug on high-frequency resistance and cell voltage in water electrolysis device. Journal of Power Sources 2024, 611 , 234765. https://doi.org/10.1016/j.jpowsour.2024.234765
    82. Liu‐Liu Shen, Xiangzun Dong, Wei Wang, Hui Yu, Peiran Wu, Jiansong Wang, Yipu Xu, Xuanxuan Cui, Xinkun Li, Gui‐Rong Zhang, Donghai Mei. Amidoximated‐Wood Derived Carbons as Advanced Self‐Standing Electrodes for Supercapacitor and Water Splitting. Advanced Functional Materials 2024, 34 (34) https://doi.org/10.1002/adfm.202400964
    83. Zhaolong Wang, Xiaolong Wang, Jinsong Xiong, Mingzhu Xie, Yong Shuai. Bionic Janus microfluidic hydrogen production with high gas–liquid separation efficiency. Chemical Engineering Journal 2024, 15 , 155261. https://doi.org/10.1016/j.cej.2024.155261
    84. Jonas Görtz, Jakob Seiler, Andreas Jupke. Bubble up: Tracking down the vertical velocity of oxygen bubbles in parallel plate electrolyzers using CNN. International Journal of Multiphase Flow 2024, 177 , 104849. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104849
    85. Xinlong Lu, Devendra Yadav, Jiale Wang, Li Jing, Yizhou Zhu, Lijing Ma, Dengwei Jing. Hydrogen bubble evolution and gas transport mechanism on a microelectrode determined by cathodic potential and temperature. Physics of Fluids 2024, 36 (7) https://doi.org/10.1063/5.0213398
    86. Erwan Tardy, Yann Bultel, Florence Druart, Antoine Bonnefont, Melaine Guillou, Benoit Latour. Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach. Energies 2024, 17 (13) , 3238. https://doi.org/10.3390/en17133238
    87. Chenyu Guo, Xinlong Lu, Yizhou Zhu, Lijing Ma, Dengwei Jing. Insight into the electrolyte concentration impact on single hydrogen bubble evolution dynamics at a microelectrode during electrochemical water splitting. Physics of Fluids 2024, 36 (7) https://doi.org/10.1063/5.0213646
    88. Haoran Zhou, Ben Chen, Kai Meng, Wenshang Chen, Guangfu Li, Zhengkai Tu. Experimental investigation of degradation mechanism in proton exchange membrane water electrolyzer under prolonged and severe bubble accumulation condition. Chemical Engineering Journal 2024, 491 , 152202. https://doi.org/10.1016/j.cej.2024.152202
    89. Feng Liang, Roel van de Krol, Fatwa F. Abdi. The influence of dissolved gas supersaturation on bubble detachment from planar (photo)electrodes. Cell Reports Physical Science 2024, 5 (7) , 102069. https://doi.org/10.1016/j.xcrp.2024.102069
    90. Yansong Jia, Yang Li, Qiong Zhang, Sohail Yasin, Xinyu Zheng, Kai Ma, Zhengli Hua, Jianfeng Shi, Chaohua Gu, Yuhai Dou, Shixue Dou. Deactivation mechanism for water splitting: Recent advances. Carbon Energy 2024, 6 (7) https://doi.org/10.1002/cey2.528
    91. Zeyuan Duan, Qiang Xu, Yonglu She, Tengfei Nie, Xinyi Luo, Mengsha Wang. In Situ Observation and Electrical Signal Analysis of Different Bubble Detachment Modes on Microelectrode Surface. Journal of The Electrochemical Society 2024, https://doi.org/10.1149/1945-7111/ad5b8d
    92. Ekaterina Skolotneva, Andrey Kislyi, Anastasiia Klevtsova, Davide Clematis, Semyon Mareev, Marco Panizza. Mathematical modeling of the anodic oxidation of organic pollutants: a review. Environmental Chemistry Letters 2024, 22 (3) , 1521-1561. https://doi.org/10.1007/s10311-023-01693-0
    93. Junjie Chu, Zongxu Wang, Lu Bai, Yawei Liu, Haifeng Dong, Jiaqi Feng, Xiangping Zhang. Advances in multi-scale nano-micro bubble evolution of electrocatalysis reaction electrode interfaces. SCIENTIA SINICA Chimica 2024, 54 (6) , 892-902. https://doi.org/10.1360/SSC-2024-0020
    94. Zhaoyang Chen, Lingtong Li, Youqun Chu, Fengming Zhao, Yinghong Zhu, Shaoping Tong, Huajun Zheng. Bio‐Inspired Superhydrophilic Self‐Assembled Coronavirus‐Like Pt‐WC/CNT for Hydrogen Evolution Reaction. Small 2024, 20 (26) https://doi.org/10.1002/smll.202309675
    95. Songsong Ma, Linjun Li, Ryuta Kohama, Hironori Nakajima, Kohei Ito. Effects of temperature and pressure on the limiting current density of PEM electrolysis cells based on a theoretical prediction model and experiments. International Journal of Hydrogen Energy 2024, 71 , 1428-1441. https://doi.org/10.1016/j.ijhydene.2024.05.345
    96. Yixin Zhang, Xiaojue Zhu, Jeffery A. Wood, Detlef Lohse. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Proceedings of the National Academy of Sciences 2024, 121 (21) https://doi.org/10.1073/pnas.2321958121
    97. Sunghak Park, Detlef Lohse, Dominik Krug, Marc T.M. Koper. Electrolyte design for the manipulation of gas bubble detachment during hydrogen evolution reaction. Electrochimica Acta 2024, 485 , 144084. https://doi.org/10.1016/j.electacta.2024.144084
    98. Lingxi Ouyang, Qingyun Zeng, Nam-Trung Nguyen, Beng Hau Tan, Hongjie An. Destabilizing surface bubbles with excessive bulk oversaturation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 689 , 133665. https://doi.org/10.1016/j.colsurfa.2024.133665
    99. Pavel Raschman, Maryna Kyslytsyna, Ľuboš Popovič, Gabriel Sučik. What Controls the Leaching of Magnesite with Concentrated Solutions of Hydrochloric or Nitric Acid?. Mineral Processing and Extractive Metallurgy Review 2024, 13 , 1-8. https://doi.org/10.1080/08827508.2024.2349127
    100. Kaige Shi, Zhuanghe Ren, Zhen Meng, Xiaofeng Feng. Hydrophilic or Hydrophobic? Optimizing the Catalyst Microenvironment for Gas‐Involving Electrocatalysis. ChemCatChem 2024, 16 (8) https://doi.org/10.1002/cctc.202301308
    Load more citations

    Langmuir

    Cite this: Langmuir 2019, 35, 16, 5392–5408
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.langmuir.9b00119
    Published March 19, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    8641

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.