ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Bromide and Hydroxide Conductivity–Morphology Relationships in Polymerized Ionic Liquid Block Copolymers

View Author Information
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
§ Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
*E-mail: [email protected] (Y.A.E.).
*E-mail: [email protected] (K.I.W.).
Cite this: Macromolecules 2015, 48, 14, 4850–4862
Publication Date (Web):July 14, 2015
https://doi.org/10.1021/acs.macromol.5b00926
Copyright © 2015 American Chemical Society

    Article Views

    1848

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A polymerized ionic liquid (PIL) diblock copolymer, poly(MMA-b-MEBIm-Br), was synthesized at various compositions from an ionic liquid monomer, (1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium bromide) (MEBIm-Br), and a nonionic monomer, methyl methacrylate (MMA), via the reverse addition–fragmentation chain transfer (RAFT) polymerization technique. A hydroxide-conducting PIL diblock copolymer, poly(MMA-b-MEBIm-OH), was also prepared via anion exchange metathesis of the bromide-conducting block copolymer. In a former study, the conductivity and morphology of the bromide- and hydroxide-conducting PIL diblock copolymer were examined at one fixed PIL composition: 17.3 mol %. In this study, additional PIL compositions of (6.6, 11.9, and 26.5 mol %) were explored to fully understand the previous unusual conductivity results. Both bromide and hydroxide conductivities were higher in the PIL block copolymer at PIL compositions of 11.9, 17.3, and 26.5 mol % compared to the PIL homopolymer under the same experimental conditions, even though the homopolymer possessed a higher water and ionic content compared to the block copolymers. These unusual results suggest that the confinement of the PIL microdomain within the block copolymer morphology enhances ion transport compared to its predicted value. Morphology factors (or normalized ionic conductivity, f) were as high as >3 at some conditions, which is much higher than the maximum theoretical limit for randomly oriented lamellar domains (f = 2/3). Application of percolation theory revealed a 3–4-fold enhancement of conductivity when comparing the inherent conductivity to the measured PIL homopolymer conductivity. Both morphology factor analysis and percolation theory corroborate with the absolute conductivity results and the hypothesis that PIL domain confinement in PIL block copolymers enhances conductivity over its bulk properties.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figures S1–S11 and Table S1. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.5b00926.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. Ze Ye, Ze-Kun Zhang, Shi-Peng Ding, Ding-Li Xia, Jun-Ting Xu. Salt Distribution, Phase Structure, and Conductivity of Poly(ethylene oxide)-block-Poly(n-butyl acrylate) Block Copolymer Electrolytes with Double Conductive Phases. ACS Applied Polymer Materials 2023, 5 (1) , 120-129. https://doi.org/10.1021/acsapm.2c01323
    2. Tzu-Ling Chen, Patrick M. Lathrop, Rui Sun, Yossef A. Elabd. Lithium-Ion Transport in Poly(ionic liquid) Diblock Copolymer Electrolytes: Impact of Salt Concentration and Cation and Anion Chemistry. Macromolecules 2021, 54 (18) , 8780-8797. https://doi.org/10.1021/acs.macromol.1c00694
    3. Kathryn E. O’Harra, George M. Timmermann, Jason E. Bara, Kevin M. Miller. Designing Ionic Liquid-Derived Polymer Composites from Poly(Ionic Liquid)–Ionene Semi-interpenetrating Networks. ACS Applied Polymer Materials 2021, 3 (4) , 1995-2004. https://doi.org/10.1021/acsapm.1c00080
    4. Rose J. Miller, Vanessa M. Smith, Stacy A. Love, Sarah M. Byron, David Salas-de la Cruz, Kevin M. Miller. Synthesis and Evaluation of Cellulose-Based, 1,2,3-Triazolium-Functionalized Polymerized Ionic Liquids: Thermal Transitions, Ionic Conductivities, and Morphological Properties. ACS Applied Polymer Materials 2021, 3 (2) , 1097-1106. https://doi.org/10.1021/acsapm.0c01327
    5. Mrinmay Mandal, Garrett Huang, Paul A. Kohl. Highly Conductive Anion-Exchange Membranes Based on Cross-Linked Poly(norbornene): Vinyl Addition Polymerization. ACS Applied Energy Materials 2019, 2 (4) , 2447-2457. https://doi.org/10.1021/acsaem.8b02051
    6. Kenneth P. Mineart, Justin J. Ryan, Marie-Sousai Appavou, Byeongdu Lee, Michael Gradzielski, Richard J. Spontak. Self-Assembly of a Midblock-Sulfonated Pentablock Copolymer in Mixed Organic Solvents: A Combined SAXS and SANS Analysis. Langmuir 2019, 35 (4) , 1032-1039. https://doi.org/10.1021/acs.langmuir.8b03825
    7. Phuc V. Truong, Rephayah L. Black, Jonathan P. Coote, Byeongdu Lee, Haleh Ardebili, Gila E. Stein. Systematic Approaches To Tailor the Morphologies and Transport Properties of Solution-Cast Sulfonated Pentablock Copolymers. ACS Applied Polymer Materials 2019, 1 (1) , 8-17. https://doi.org/10.1021/acsapm.8b00002
    8. Yazhi Liu, Jiahui Zhou, Jianqiu Hou, Zhengjin Yang, Tongwen Xu. Hyperbranched Polystyrene Copolymer Makes Superior Anion Exchange Membrane. ACS Applied Polymer Materials 2019, 1 (1) , 76-82. https://doi.org/10.1021/acsapm.8b00058
    9. Clayton A. Tracy, Abagail M. Adler, Anh Nguyen, R. Daniel Johnson, Kevin M. Miller. Covalently Crosslinked 1,2,3-Triazolium-Containing Polyester Networks: Thermal, Mechanical, and Conductive Properties. ACS Omega 2018, 3 (10) , 13442-13453. https://doi.org/10.1021/acsomega.8b01949
    10. Rui-Yang Wang, Jie Huang, Xiao-Shuai Guo, Xiao-Han Cao, Shu-Fen Zou, Zai-Zai Tong, Jun-Ting Xu, Bin-Yang Du, Zhi-Qiang Fan. Closed-Loop Phase Behavior of Block Copolymers in the Presence of Competitive Hydrogen-Bonding and Coulombic Interaction. Macromolecules 2018, 51 (12) , 4727-4734. https://doi.org/10.1021/acs.macromol.8b00627
    11. Rui-Yang Wang, Xiao-Shuai Guo, Bin Fan, Shu-Fen Zou, Xiao-Han Cao, Zai-Zai Tong, Jun-Ting Xu, Bin-Yang Du, Zhi-Qiang Fan. Design and Regulation of Lower Disorder-to-Order Transition Behavior in the Strongly Interacting Block Copolymers. Macromolecules 2018, 51 (6) , 2302-2311. https://doi.org/10.1021/acs.macromol.8b00227
    12. Jipeng Guan, Yanyuan Wang, Chenyang Xing, Lijun Ye, Yongjin Li, and Jingye Li . Semicrystalline Polymer Binary-Phase Structure Templated Quasi-Block Graft Copolymers. The Journal of Physical Chemistry B 2017, 121 (31) , 7508-7518. https://doi.org/10.1021/acs.jpcb.7b05069
    13. Fei Fan, Weiyu Wang, Adam P. Holt, Hongbo Feng, David Uhrig, Xinyi Lu, Tao Hong, Yangyang Wang, Nam-Goo Kang, Jimmy Mays, and Alexei P. Sokolov . Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids. Macromolecules 2016, 49 (12) , 4557-4570. https://doi.org/10.1021/acs.macromol.6b00714
    14. Kelly M. Meek, Jacob R. Nykaza, and Yossef A. Elabd . Alkaline Chemical Stability and Ion Transport in Polymerized Ionic Liquids with Various Backbones and Cations. Macromolecules 2016, 49 (9) , 3382-3394. https://doi.org/10.1021/acs.macromol.6b00434
    15. Sharon Sharick, Jason Koski, Robert A. Riggleman, and Karen I. Winey . Isolating the Effect of Molecular Weight on Ion Transport of Non-Ionic Diblock Copolymer/Ionic Liquid Mixtures. Macromolecules 2016, 49 (6) , 2245-2256. https://doi.org/10.1021/acs.macromol.5b02445
    16. C. Tyler Womble, Geoffrey W. Coates, Krzysztof Matyjaszewski, and Kevin J. T. Noonan . Tetrakis(dialkylamino)phosphonium Polyelectrolytes Prepared by Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters 2016, 5 (2) , 253-257. https://doi.org/10.1021/acsmacrolett.5b00910
    17. Yu Seung Kim. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. Advanced Science 2023, 24 https://doi.org/10.1002/advs.202303914
    18. Penghan Li, Peng Zhou, Jian Wang, Guowei Wang. Synthesis, characterization, and property of ionized nano‐objects with defined phase separation. Journal of Polymer Science 2023, 61 (7) , 613-621. https://doi.org/10.1002/pol.20220647
    19. E. I. Lozinskaya, D. O. Ponkratov, A. S. Shaplov, I. A. Malyshkina, D. R. Streltsov, A. V. Bakirov. Methacrylate Single-Ion Conducting Block Copolymers: Effect of the Chemical Structure on Conductivity and Morphological Organization. Polymer Science, Series A 2023, 65 (1) , 36-52. https://doi.org/10.1134/S0965545X2370075X
    20. Rahul Singh, Hee-Woo Rhee. Controlled polymerization for lithium-ion batteries. Energy Storage Materials 2022, 52 , 598-636. https://doi.org/10.1016/j.ensm.2022.08.029
    21. Bradley J. Grim, Matthew D. Green. Thermodynamics and Structure–Property Relationships of Charged Block Polymers. Macromolecular Chemistry and Physics 2022, 223 (14) https://doi.org/10.1002/macp.202200036
    22. Tingting Wang, Jianhao Dong, Na Yu, Weiqin Tang, Yaping Jin, Yixin Xu, Jingshuai Yang. Synthesis and properties of a new ether-free poly(bis-alkylpiperidinium) polymer for the anion exchange membrane. European Polymer Journal 2022, 173 , 111271. https://doi.org/10.1016/j.eurpolymj.2022.111271
    23. Graeme Moad. Dithioesters in RAFT Polymerization. 2021, 223-358. https://doi.org/10.1002/9783527821358.ch8
    24. Tong Gao, Jester Itliong, Sai Prashanth Kumar, Zackerie Hjorth, Issei Nakamura. Polarization of ionic liquid and polymer and its implications for polymerized ionic liquids: An overview towards a new theory and simulation. Journal of Polymer Science 2021, 59 (21) , 2434-2457. https://doi.org/10.1002/pol.20210330
    25. Nicholas C. Bontrager, Samantha Radomski, Samantha P. Daymon, R. Daniel Johnson, Kevin M. Miller. Influence of counteranion and humidity on the thermal, mechanical and conductive properties of covalently crosslinked ionenes. Polymer 2021, 222 , 123641. https://doi.org/10.1016/j.polymer.2021.123641
    26. Shinian Cheng, Zaneta Wojnarowska, Małgorzata Musiał, Slawomir Kolodziej, Eric Drockenmuller, Marian Paluch. Studies on ion dynamics of polymerized ionic liquids through the free volume theory. Polymer 2021, 212 , 123286. https://doi.org/10.1016/j.polymer.2020.123286
    27. Chinomso Nwosu, Tara P. Pandey, Andrew M. Herring, Soenke Seifert, E. Bryan Coughlin. Optimization of anionic conductivity through the coexistence of ionomer cluster and backbone‐backbone morphologies in anion exchange membranes. Journal of Polymer Science 2020, 58 (24) , 3446-3455. https://doi.org/10.1002/pol.20200629
    28. Majeda Khraisheh, Khadija M. Zadeh, Abedalkhader I. Alkhouzaam, Dorra Turki, Mohammad K. Hassan, Fares Al Momani, Syed M. J. Zaidi. Characterization of polysulfone/diisopropylamine 1‐alkyl‐3‐methylimidazolium ionic liquid membranes: high pressure gas separation applications. Greenhouse Gases: Science and Technology 2020, 10 (4) , 795-808. https://doi.org/10.1002/ghg.2006
    29. Haomiao Yuan, Ye Liu, Tsung-Han Tsai, Xiaohui Liu, Sang Bum Kim, Rohit Gupta, Wenxu Zhang, S. Piril Ertem, Soenke Seifert, Andrew M. Herring, E. Bryan Coughlin. Ring-opening metathesis polymerization of cobaltocenium derivative to prepare anion exchange membrane with high ionic conductivity. Polyhedron 2020, 181 , 114462. https://doi.org/10.1016/j.poly.2020.114462
    30. Yunxia Ni, Mingjie Yin, Shengyi Dong, Feihe Huang, Qiang Zhao. A poly(ionic liquid)-pillar[5]arene honeycombed isoporous membrane for high performance Cu2+ sensors. Applied Surface Science 2020, 500 , 144056. https://doi.org/10.1016/j.apsusc.2019.144056
    31. Mrinmay Mandal, Garrett Huang, Noor Ul Hassan, Xiong Peng, Taoli Gu, Ahmon H. Brooks-Starks, Bamdad Bahar, William E. Mustain, Paul A. Kohl. The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells. Journal of The Electrochemical Society 2020, 167 (5) , 054501. https://doi.org/10.1149/2.0022005JES
    32. Yossef A. Elabd. Ion transport in hydroxide conducting block copolymers. Molecular Systems Design & Engineering 2019, 4 (3) , 519-530. https://doi.org/10.1039/C9ME00022D
    33. Moon Jeong Park. Confinement-entitled morphology and ion transport in ion-containing polymers. Molecular Systems Design & Engineering 2019, 4 (2) , 239-251. https://doi.org/10.1039/C8ME00117K
    34. Qi Lu, Jifang Fu, Liya Chen, Dapeng Shang, Mengmeng Li, Yufeng Xu, Rongrong Jia, Shuai Yuan, Liyi Shi. Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. Journal of Power Sources 2019, 414 , 31-40. https://doi.org/10.1016/j.jpowsour.2018.12.085
    35. Weiyi Zhang, Qiang Zhao, Jiayin Yuan. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angewandte Chemie 2018, 130 (23) , 6868-6889. https://doi.org/10.1002/ange.201710272
    36. Weiyi Zhang, Qiang Zhao, Jiayin Yuan. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angewandte Chemie International Edition 2018, 57 (23) , 6754-6773. https://doi.org/10.1002/anie.201710272
    37. Kelly M. Meek, Rui Sun, Carl Willis, Yossef A. Elabd. Hydroxide conducting polymerized ionic liquid pentablock terpolymer anion exchange membranes with methylpyrrolidinium cations. Polymer 2018, 134 , 221-226. https://doi.org/10.1016/j.polymer.2017.11.050
    38. Shigetaka Hayano, Keisuke Ota, Hoang The Ban. Syntheses, characterizations and functions of cationic polyethers with imidazolium-based ionic liquid moieties. Polymer Chemistry 2018, 9 (8) , 948-960. https://doi.org/10.1039/C7PY01985H
    39. Shigetaka Hayano, Keisuke Ohta, Hoang The Ban. Highly Deliquescent Cationic Polyether with Imidazolium Halide Group. Chemistry Letters 2017, 46 (7) , 1033-1035. https://doi.org/10.1246/cl.170304
    40. Pepa Cotanda, Nikos Petzetakis, Xi Jiang, Greg Stone, Nitash P. Balsara. Hydroxide-ion transport and stability of diblock copolymers with a polydiallyldimethyl ammonium hydroxide block. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (13) , 2243-2248. https://doi.org/10.1002/pola.28611
    41. S. Piril Ertem, Benjamin R. Caire, Tsung‐Han Tsai, Di Zeng, Melissa A. Vandiver, Ahmet Kusoglu, Soenke Seifert, Ryan C. Hayward, Adam Z. Weber, Andrew M. Herring, E. Bryan Coughlin, Matthew W. Liberatore. Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock. Journal of Polymer Science Part B: Polymer Physics 2017, 55 (7) , 612-622. https://doi.org/10.1002/polb.24310
    42. Mahati Chintapalli, Kenneth Higa, X. Chelsea Chen, Venkat Srinivasan, Nitash P. Balsara. Simulation of local ion transport in lamellar block copolymer electrolytes based on electron micrographs. Journal of Polymer Science Part B: Polymer Physics 2017, 55 (3) , 266-274. https://doi.org/10.1002/polb.24268
    43. Wenjing Qian, John Texter, Feng Yan. Frontiers in poly(ionic liquid)s: syntheses and applications. Chemical Society Reviews 2017, 46 (4) , 1124-1159. https://doi.org/10.1039/C6CS00620E
    44. Jiangju Si, Haining Wang, Shanfu Lu, Xin Xu, Sikan Peng, Yan Xiang. In situ construction of interconnected ion transfer channels in anion-exchange membranes for fuel cell application. Journal of Materials Chemistry A 2017, 5 (8) , 4003-4010. https://doi.org/10.1039/C6TA09277B
    45. Jacob R. Nykaza, Yawei Li, Yossef A. Elabd, Joshua Snyder. Effect of alkaline exchange polymerized ionic liquid block copolymer ionomers on the kinetics of fuel cell half reactions. Journal of Electroanalytical Chemistry 2016, 783 , 182-187. https://doi.org/10.1016/j.jelechem.2016.11.024
    46. Jacob R. Nykaza, Rishon Benjamin, Kelly M. Meek, Yossef A. Elabd. Polymerized ionic liquid diblock copolymer as an ionomer and anion exchange membrane for alkaline fuel cells. Chemical Engineering Science 2016, 154 , 119-127. https://doi.org/10.1016/j.ces.2016.05.041
    47. Chengxiang Xiang, Adam Z. Weber, Shane Ardo, Alan Berger, YiKai Chen, Robert Coridan, Katherine T. Fountaine, Sophia Haussener, Shu Hu, Rui Liu, Nathan S. Lewis, Miguel A. Modestino, Matthew M. Shaner, Meenesh R. Singh, John C. Stevens, Ke Sun, Karl Walczak. Modellierung, Simulation und Implementierung von Zellen für die solargetriebene Wasserspaltung. Angewandte Chemie 2016, 128 (42) , 13168-13183. https://doi.org/10.1002/ange.201510463
    48. Chengxiang Xiang, Adam Z. Weber, Shane Ardo, Alan Berger, YiKai Chen, Robert Coridan, Katherine T. Fountaine, Sophia Haussener, Shu Hu, Rui Liu, Nathan S. Lewis, Miguel A. Modestino, Matthew M. Shaner, Meenesh R. Singh, John C. Stevens, Ke Sun, Karl Walczak. Modeling, Simulation, and Implementation of Solar‐Driven Water‐Splitting Devices. Angewandte Chemie International Edition 2016, 55 (42) , 12974-12988. https://doi.org/10.1002/anie.201510463
    49. Taylor C. Rhoades, James C. Wistrom, R. Daniel Johnson, Kevin M. Miller. Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. Polymer 2016, 100 , 1-9. https://doi.org/10.1016/j.polymer.2016.08.010
    50. Jacob R. Nykaza, Alice M. Savage, Qiwei Pan, Shijun Wang, Frederick L. Beyer, Maureen H. Tang, Christopher Y. Li, Yossef A. Elabd. Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery. Polymer 2016, 101 , 311-318. https://doi.org/10.1016/j.polymer.2016.08.100
    51. Kelly M. Meek, Yossef A. Elabd. Sulfonated Polymerized Ionic Liquid Block Copolymers. Macromolecular Rapid Communications 2016, 37 (14) , 1200-1206. https://doi.org/10.1002/marc.201600089
    52. Yong Hu, Da Wei Gu, Fan Li, Xiang Chun Qi, Kai Hua Yang, Xun Dao Liu, Hong Li, Yong Ming Zhang. Synthesis of fluorinated block copolymer electrolyte containing quaternary ammonium base. Journal of Materials Science 2016, 51 (12) , 5834-5842. https://doi.org/10.1007/s10853-016-9884-9
    53. Yue Zhao, Kimio Yoshimura, Hideyuki Shishitani, Susumu Yamaguchi, Hirohisa Tanaka, Satoshi Koizumi, Noemi Szekely, Aurel Radulescu, Dieter Richter, Yasunari Maekawa. Imidazolium-based anion exchange membranes for alkaline anion fuel cells: elucidation of the morphology and the interplay between the morphology and properties. Soft Matter 2016, 12 (5) , 1567-1578. https://doi.org/10.1039/C5SM02724A
    54. Kelly M. Meek, Yossef A. Elabd. Polymerized ionic liquid block copolymers for electrochemical energy. Journal of Materials Chemistry A 2015, 3 (48) , 24187-24194. https://doi.org/10.1039/C5TA07170D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect