Closed-Loop Polymer Upcycling by Installing Property-Enhancing Comonomer Sequences and RecyclabilityClick to copy article linkArticle link copied!
- Xia LiuXia LiuState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. ChinaMore by Xia Liu
- Miao Hong*Miao Hong*E-mail: [email protected] (M.H.).State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. ChinaMore by Miao Hong
- Laura Falivene*Laura Falivene*E-mail: [email protected] (L.F.).Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaMore by Laura Falivene
- Luigi CavalloLuigi CavalloPhysical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaMore by Luigi Cavallo
- Eugene Y.-X. Chen*Eugene Y.-X. Chen*E-mail: [email protected] (E.Y.-X.C.).Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United StatesMore by Eugene Y.-X. Chen
Abstract

The concept of upcycling postconsumer plastics into higher-value products is attractive, but the challenges remain to develop a cost-effective upcycling scheme, discover property-enhancing structures, and, most importantly, install recyclability into upcycled plastics to enable a circular lifecycle. Reported herein is a convenient and effective strategy to upcycle polyester, exemplified by poly(glycolic acid) (PGA), via transesterification (TEster) in bioderived, commercially available γ-butyrolactone (BL) that serves as both the solvent and comonomer, which generates sequence-defined copolymer poly(GA-co-BL). Owing to the isolated glycolic sequence present in the copolymer created uniquely by TEster, it exhibits much-enhanced thermal stability (≥44 °C) over both homopolymers or copolymers without such sequences. This upconverted copolymer is chemically recyclable, enabling a complete recovery of pure glycolic acid and BL feedstocks.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 49 publications.
- Zhen Zhang, Ravikumar R. Gowda, Eugene Y.-X. Chen. Chemosynthetic P4HB: A Ten-Year Journey from a “Non-Polymerizable” Monomer to a High-Performance Biomaterial. Accounts of Materials Research 2024, 5
(11)
, 1340-1352. https://doi.org/10.1021/accountsmr.4c00182
- Jie Zheng, Hongzhi Feng, Xinglong Zhang, Jianwei Zheng, Jeffrey Kang Wai Ng, Sheng Wang, Nikos Hadjichristidis, Zibiao Li. Advancing Recyclable Thermosets through C═C/C═N Dynamic Covalent Metathesis Chemistry. Journal of the American Chemical Society 2024, 146
(31)
, 21612-21622. https://doi.org/10.1021/jacs.4c05346
- Changxia Shi, Ethan C. Quinn, Wilfred T. Diment, Eugene Y.-X. Chen. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chemical Reviews 2024, 124
(7)
, 4393-4478. https://doi.org/10.1021/acs.chemrev.3c00848
- Robbie A. Clark, Michael P. Shaver. Depolymerization within a Circular Plastics System. Chemical Reviews 2024, 124
(5)
, 2617-2650. https://doi.org/10.1021/acs.chemrev.3c00739
- Yixuan Chen, Nicholas Mielke, Nathan S. Purwanto, Boran Chen, Christos D. Malliakas, John M. Torkelson. Non-isocyanate Polythiourethane Network from Biowaste: Achieving Circularity via Multidimensional Chemical Recycling with Valuable Small-Molecule Recovery and Reprocessability by Understanding the Dynamic Chemistry. Macromolecules 2024, 57
(2)
, 490-502. https://doi.org/10.1021/acs.macromol.3c01941
- Bette Beament, Daniel Britton, Thomas Malcomson, Geoffrey R. Akien, Nathan R. Halcovitch, Michael P. Coogan, Rachel H. Platel. Selective Transesterification to Control Copolymer Microstructure in the Ring-Opening Copolymerization of Lactide and ε-Caprolactone by Lanthanum Complexes. Inorganic Chemistry 2024, 63
(1)
, 280-293. https://doi.org/10.1021/acs.inorgchem.3c03120
- Bingzhe Dong, Guangqiang Xu, Rulin Yang, Xuanhua Guo, Qinggang Wang. Preparation of Block Copolymers by a Sequential Transesterification Strategy: A Feasible Route for Upcycling End-of-Life Polyester Plastics to Elastomers. Macromolecules 2023, 56
(24)
, 10143-10152. https://doi.org/10.1021/acs.macromol.3c01773
- Shijia Yang, Wenxing Liu, Jing Guo, Zhusheng Yang, Zhi Qiao, Chenguang Zhang, Jikun Li, Jian Xu, Ning Zhao. Direct and Catalyst-Free Ester Metathesis Reaction for Covalent Adaptable Networks. Journal of the American Chemical Society 2023, 145
(38)
, 20927-20935. https://doi.org/10.1021/jacs.3c06262
- Zheng Li, Yong Shen, Zhibo Li. Chemical Upcycling of Poly(3-hydroxybutyrate) into Bicyclic Ether–Ester Monomers toward Value-Added, Degradable, and Recyclable Poly(ether ester). ACS Sustainable Chemistry & Engineering 2022, 10
(25)
, 8228-8238. https://doi.org/10.1021/acssuschemeng.2c02124
- Hee Joong Kim, Marc A. Hillmyer, Christopher J. Ellison. Enhanced Polyester Degradation through Transesterification with Salicylates. Journal of the American Chemical Society 2021, 143
(38)
, 15784-15790. https://doi.org/10.1021/jacs.1c07229
- Arron C. Deacy, Georgina L. Gregory, Gregory S. Sulley, Thomas T. D. Chen, Charlotte K. Williams. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. Journal of the American Chemical Society 2021, 143
(27)
, 10021-10040. https://doi.org/10.1021/jacs.1c03250
- Yihuan Liu, Jiaqi Wu, Xin Hu, Ning Zhu, Kai Guo. Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Letters 2021, 10
(2)
, 284-296. https://doi.org/10.1021/acsmacrolett.0c00813
- Benjamin R. Elling, William R. Dichtel. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. ACS Central Science 2020, 6
(9)
, 1488-1496. https://doi.org/10.1021/acscentsci.0c00567
- Xiufang Hua, Xinli Liu, Dongmei Cui. Degradation Behavior of Poly(lactide-co-carbonate)s Controlled by Chain Sequences. Macromolecules 2020, 53
(13)
, 5289-5296. https://doi.org/10.1021/acs.macromol.0c00938
- Qinwen Wang, Tingting Gao, Guowei Zhou. Immortal depolymerization of chemical recycling of CO2-Sourced poly (cyclohexene carbonate) to monomers: An overlooked effect of molecular weight. Polymer 2025, 323 , 128204. https://doi.org/10.1016/j.polymer.2025.128204
- Chaoqun Weng, Xiao Li, Xiaoyan Tang. Solvent‐Dependent Sequence‐Controlled Copolymerization of Lactones: Tailoring Material Properties from Robust Plastics to Tough Elastomers. Angewandte Chemie 2025, 137
(3)
https://doi.org/10.1002/ange.202415388
- Chaoqun Weng, Xiao Li, Xiaoyan Tang. Solvent‐Dependent Sequence‐Controlled Copolymerization of Lactones: Tailoring Material Properties from Robust Plastics to Tough Elastomers. Angewandte Chemie International Edition 2025, 64
(3)
https://doi.org/10.1002/anie.202415388
- Abhay Nanda Srivastva, Nisha Saxena. Chemical Innovations in Polymer Upcycling: Beyond Traditional Recycling. 2025, 171-183. https://doi.org/10.1007/978-981-97-8253-6_9
- Yun‐Yun Xia, Xing Yang, Wei Zhang, Yang Fu, Zhongzheng Cai, Peng Cao, Jian‐Bo Zhu. A Facile Approach to Construct Novel Polyesters as Soft Midblock for Thermoplastic Elastomers. Chemistry – A European Journal 2024, 53 https://doi.org/10.1002/chem.202401727
- Tong Zhou, Yu-Ting Guo, Chun Yang, Xian-Bin Meng, Fu-Sheng Du, Zi-Chen Li. High-
T
g
PLA copolymers
via
base-catalyzed transesterification of PLA with 2,5,7-trioxabicyclo[2.2.2]octan-6-one. Polymer Chemistry 2024, 15
(3)
, 156-165. https://doi.org/10.1039/D3PY01250F
- Jeung Gon Kim, Gue Seon Lee, Anna Lee. Triazabicyclodecene: A versatile catalyst for polymer synthesis. Journal of Polymer Science 2024, 62
(1)
, 42-91. https://doi.org/10.1002/pol.20230643
- Wei Xiong, Jiang Dai, Zhongzheng Cai, Jian-Bo Zhu. Advancing the material performance of chemically recyclable polythioesters via copolymerization. Polymer 2024, 290 , 126515. https://doi.org/10.1016/j.polymer.2023.126515
- Ying Wang, Guofei Feng, Wenqi Guo, Chengjian Zhang, Xinghong Zhang. Chemical recycling of CO
2
-based polycarbonates to sulfur-containing polymers. Polymer Chemistry 2023, 14
(48)
, 5253-5259. https://doi.org/10.1039/D3PY00802A
- Han Zhang, Yu Jia, Zepeng Mao, Guangxin Li, Zhen Zhang, Noureddine Abidi, Lucian A. Lucia, Jun Zhang. One-pot upcycling strategy achieved in Bi-continuous thermal conductive polymer composites. Journal of Cleaner Production 2023, 423 , 138780. https://doi.org/10.1016/j.jclepro.2023.138780
- Mengmeng Du, Yu Zhang, Sailei Kang, Chao Xu, Yingxin Ma, Lejuan Cai, Ye Zhu, Yang Chai, Bocheng Qiu. Electrochemical Production of Glycolate Fuelled By Polyethylene Terephthalate Plastics with Improved Techno‐Economics. Small 2023, 19
(39)
https://doi.org/10.1002/smll.202303693
- Ion Olazabal, Elena Gabirondo, Coralie Jehanno, Kazuki Fukushima, Haritz Sardon. Upcycling of Polyesters. 2023, 343-363. https://doi.org/10.1002/9781119535775.ch9
- Daixuan Zhang, Foad Vashahi, Erfan Dashtimoghadam, Xiaobo Hu, Claire J. Wang, Jessica Garcia, Aleksandra V. Bystrova, Mohammad Vatankhah‐Varnoosfaderani, Frank A. Leibfarth, Sergei S. Sheiko. Circular Upcycling of Bottlebrush Thermosets. Angewandte Chemie 2023, 135
(8)
https://doi.org/10.1002/ange.202217941
- Daixuan Zhang, Foad Vashahi, Erfan Dashtimoghadam, Xiaobo Hu, Claire J. Wang, Jessica Garcia, Aleksandra V. Bystrova, Mohammad Vatankhah‐Varnoosfaderani, Frank A. Leibfarth, Sergei S. Sheiko. Circular Upcycling of Bottlebrush Thermosets. Angewandte Chemie International Edition 2023, 62
(8)
https://doi.org/10.1002/anie.202217941
- Ryan Yappert, Baron Peters. Population balance models for polymer upcycling: signatures of the mechanism in the molecular weight evolution. Journal of Materials Chemistry A 2022, 10
(45)
, 24084-24095. https://doi.org/10.1039/D2TA04628H
- Yu-Ting Guo, Wei Xiong, Changxia Shi, Fu-Sheng Du, Zi-Chen Li. Facile synthesis of eight-membered cyclic(ester-amide)s and their organocatalytic ring-opening polymerizations. Polymer Chemistry 2022, 13
(31)
, 4490-4501. https://doi.org/10.1039/D2PY00683A
- Qi‐Yuan Wang, Meng‐Xue Cao, Xiao‐Wei Kan, An Lv, Fu‐Sheng Du, Zi‐Chen Li. Ring‐opening polymerization of 1,4‐oxathian‐2‐one and its copolymerization with δ‐valerolactone. Journal of Polymer Science 2022, 60
(13)
, 1976-1987. https://doi.org/10.1002/pol.20220054
- Matthew J. Webber, Mark W. Tibbitt. Dynamic and reconfigurable materials from reversible network interactions. Nature Reviews Materials 2022, 7
(7)
, 541-556. https://doi.org/10.1038/s41578-021-00412-x
- Xin Zhao, Bhanupriya Boruah, Kek Foo Chin, Miloš Đokić, Jayant M. Modak, Han Sen Soo. Upcycling to Sustainably Reuse Plastics. Advanced Materials 2022, 34
(25)
https://doi.org/10.1002/adma.202100843
- Yi-Huan Liu, Xin Yuan, Jia-Qi Wu, Ming-Xuan Luo, Xin Hu, Ning Zhu, Kai Guo. Fully Chemical Recyclable Poly(γ-butyrolactone)-based Copolymers with Tunable Structures and Properties. Chinese Journal of Polymer Science 2022, 40
(5)
, 456-461. https://doi.org/10.1007/s10118-022-2685-5
- Yi-Teng Yan, Gang Wu, Si-Chong Chen, Yu-Zhong Wang. Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Science China Chemistry 2022, 65
(5)
, 943-953. https://doi.org/10.1007/s11426-021-1196-7
- Coralie Jehanno, Jill W. Alty, Martijn Roosen, Steven De Meester, Andrew P. Dove, Eugene Y.-X. Chen, Frank A. Leibfarth, Haritz Sardon. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603
(7903)
, 803-814. https://doi.org/10.1038/s41586-021-04350-0
- Yihuan Liu, Xin Yuan, Jiaqi Wu, Xin Hu, Ning Zhu, Kai Guo. Access to high-molecular-weight poly(γ-butyrolactone) by using simple commercial catalysts. Polymer Chemistry 2022, 13
(3)
, 439-445. https://doi.org/10.1039/D1PY01340H
- Bernhard M. Stadler, Johannes G. de Vries. Chemical upcycling of polymers. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 379
(2209)
https://doi.org/10.1098/rsta.2020.0341
- Yihuan Liu, Jiaqi Wu, Huan Liang, Zhao Jin, Lianzhu Sheng, Xin Hu, Ning Zhu, Kai Guo. Recyclable polymer functionalization via end-group modification and block/random copolymerization. Green Energy & Environment 2021, 6
(4)
, 578-584. https://doi.org/10.1016/j.gee.2020.06.003
- Qidong Hou, Meinan Zhen, Hengli Qian, Yifan Nie, Xinyu Bai, Tianliang Xia, Mian Laiq Ur Rehman, Qiushi Li, Meiting Ju. Upcycling and catalytic degradation of plastic wastes. Cell Reports Physical Science 2021, 2
(8)
, 100514. https://doi.org/10.1016/j.xcrp.2021.100514
- Takayoshi Katoh, Yukiko Ogawa, Yoshihiro Ohta, Tsutomu Yokozawa. Synthesis of polyester by means of polycondensation of diol ester and dicarboxylic acid ester through ester–ester exchange reaction. Journal of Polymer Science 2021, 59
(9)
, 787-797. https://doi.org/10.1002/pol.20210032
- Qilei Song, Chloé Pascouau, Junpeng Zhao, Guangzhao Zhang, Frédéric Peruch, Stéphane Carlotti. Ring-opening polymerization of γ-lactones and copolymerization with other cyclic monomers. Progress in Polymer Science 2020, 110 , 101309. https://doi.org/10.1016/j.progpolymsci.2020.101309
- Qaiser Mahmood, Guangqiang Xu, Li Zhou, Xuanhua Guo, Qinggang Wang. Chiral 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-Catalyzed Stereoselective Ring-Opening Polymerization of rac-Lactide: High Reactivity for Isotactic Enriched Polylactides (PLAs). Polymers 2020, 12
(10)
, 2365. https://doi.org/10.3390/polym12102365
- Linnea Cederholm, Peter Olsén, Minna Hakkarainen, Karin Odelius. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polymer Chemistry 2020, 11
(30)
, 4883-4894. https://doi.org/10.1039/D0PY00270D
- Paresh Kumar Samantaray, Alastair Little, David M. Haddleton, Tony McNally, Bowen Tan, Zhaoyang Sun, Weijie Huang, Yang Ji, Chaoying Wan. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry 2020, 22
(13)
, 4055-4081. https://doi.org/10.1039/D0GC01394C
- Yihuan Liu, Jiaqi Wu, Huan Liang, Zhao Jin, Lianzhu Sheng, Xin Hu, Ning Zhu, Kai Guo. Organomagnesium towards efficient synthesis of recyclable polymers. European Polymer Journal 2020, 130 , 109659. https://doi.org/10.1016/j.eurpolymj.2020.109659
- Lan-Fang Hu, Dan-Jing Chen, Jia-Liang Yang, Xing-Hong Zhang. An Investigation of the Organoborane/Lewis Base Pairs on the Copolymerization of Propylene Oxide with Succinic Anhydride. Molecules 2020, 25
(2)
, 253. https://doi.org/10.3390/molecules25020253
- Xia Liu, Miao Hong. Transesterification by air/moisture-tolerant bifunctional organocatalyst to produce ‘nonstrained’ γ-butyrolactone-based aliphatic copolyesters: Turning a bane into a boon. European Polymer Journal 2019, 121 , 109277. https://doi.org/10.1016/j.eurpolymj.2019.109277
- Chaoli Fang, Haiyan Ma. Ring-opening polymerization of rac-lactide, copolymerization of rac-lactide and ε-caprolactone by zinc complexes bearing pyridyl-based tridentate amino-phenolate ligands. European Polymer Journal 2019, 119 , 289-297. https://doi.org/10.1016/j.eurpolymj.2019.07.046
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.