ACS Publications. Most Trusted. Most Cited. Most Read
Tuning the Thiolen: Al(III) and Fe(III) Thiolen Complexes for the Isoselective ROP of rac-Lactide
My Activity

Figure 1Loading Img
    Article

    Tuning the Thiolen: Al(III) and Fe(III) Thiolen Complexes for the Isoselective ROP of rac-Lactide
    Click to copy article linkArticle link copied!

    • Jack A. Stewart
      Jack A. Stewart
      Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
    • Paul McKeown
      Paul McKeown
      Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
      More by Paul McKeown
    • Oliver J. Driscoll
      Oliver J. Driscoll
      Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
    • Mary F. Mahon
      Mary F. Mahon
      Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
    • Benjamin D. Ward
      Benjamin D. Ward
      Department of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
    • Matthew D. Jones*
      Matthew D. Jones
      Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
      *E-mail: [email protected]. Tel.: +44 (0) 122 538 4908. Fax: +44 (0) 122 538 6231.
    Other Access OptionsSupporting Information (2)

    Macromolecules

    Cite this: Macromolecules 2019, 52, 15, 5977–5984
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.macromol.9b01205
    Published July 31, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of five iron and aluminum complexes bearing {ONSO} imine thiobis(phenolate) ligands have been prepared and applied to the ring-opening polymerization (ROP) of rac-lactide. Fe(1)Cl produced polylactide with a very strong isotactic bias (Pm = 0.79–0.89) and well-defined melting temperatures (Tm = 154–181 °C). The polymers have been characterized by a combination of 1H{1H} NMR, 13C{1H} NMR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and powder X-ray diffraction. Fe(1)Cl has also been shown to activate CO2, at atmospheric pressure and concentrations, to form a carbonato-bridged dimer. Fe(25)Cl and Al(15)Me were also active for lactide ROP demonstrating good-molecular-weight control (Đ = 1.04–1.12) and moderate isotactic preference (Pm = 0.56–0.72), with polymerization outcome correlating with ligand substituents.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.9b01205.

    • Crystallographic data (CIF)

    • Full experimental details and methods, ligand and NMR spectra, polymer characterization, and X-ray details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 32 publications.

    1. Yu Pan, Mingyang Hao, Xia Li, Yi Meng, Xiaohui Kang, Gangqiang Zhang, Xingrun Sun, Xue-Zhi Song, Lin Zhang, Yat-Ming So. Anilido-Oxazoline-Ligated Iron Alkoxide Complexes for Living Ring-Opening Polymerization of Cyclic Esters with Controllability. Inorganic Chemistry 2025, 64 (1) , 530-544. https://doi.org/10.1021/acs.inorgchem.4c04028
    2. Yun Wang, Xing Wang, Wenjuan Zhang, Wen-Hua Sun. Progress of Ring-Opening Polymerization of Cyclic Esters Catalyzed by Iron Compounds. Organometallics 2023, 42 (14) , 1680-1692. https://doi.org/10.1021/acs.organomet.3c00028
    3. Xiaohong Lan, Wenjian Li, Chongnan Ye, Laura Boetje, Théophile Pelras, Fitrilia Silvianti, Qi Chen, Yutao Pei, Katja Loos. Scalable and Degradable Dextrin-Based Elastomers for Wearable Touch Sensing. ACS Applied Materials & Interfaces 2023, 15 (3) , 4398-4407. https://doi.org/10.1021/acsami.2c15634
    4. Gayathri Athavan, Theo F. N. Tanner, Adrian C. Whitwood, Ian J. S. Fairlamb, Robin N. Perutz. Direct Evidence for Competitive C–H Activation by a Well-Defined Silver XPhos Complex in Palladium-Catalyzed C–H Functionalization. Organometallics 2022, 41 (22) , 3175-3184. https://doi.org/10.1021/acs.organomet.2c00063
    5. Oliver J. Driscoll, Jack A. Stewart, Paul McKeown, Matthew D. Jones. Ring-Opening Copolymerization Using Simple Fe(III) Complexes and Metal- and Halide-Free Organic Catalysts. Macromolecules 2021, 54 (18) , 8443-8452. https://doi.org/10.1021/acs.macromol.1c01211
    6. Anna Maria Dąbrowska, Aleksander Hurko, Krzysztof Durka, Maciej Dranka, Paweł Horeglad. The Effect of Symmetric and Asymmetric NHCs on the Structure and Catalytic Properties of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide—Linking the Structure, Activity, and Stereoselectivity. Organometallics 2021, 40 (9) , 1221-1234. https://doi.org/10.1021/acs.organomet.1c00012
    7. Hui Liu, Xiaochao Shi. Phosphasalalen Rare-Earth Complexes for the Polymerization of rac-Lactide and rac-β-Butyrolactone. Inorganic Chemistry 2021, 60 (2) , 705-717. https://doi.org/10.1021/acs.inorgchem.0c02741
    8. Chuanzhi Wei, Binghao Han, Dejuan Zheng, Quande Zheng, Shaofeng Liu, Zhibo Li. Aluminum Complexes Bearing Bidentate Amido–Phosphine Ligands for Ring-Opening Polymerization of ε-Caprolactone: Steric Effect on Coordination Chemistry and Reactivity. Organometallics 2019, 38 (19) , 3816-3823. https://doi.org/10.1021/acs.organomet.9b00502
    9. Jack A. Stewart, Louis T. W. Powell, Matthew J. Cullen, Gabrielle Kociok‐Köhn, Matthew G. Davidson, Matthew D. Jones. Imino‐Pyrrole Zn(II) Complexes for the Rapid and Selective Chemical Recycling of Commodity Polymers. Angewandte Chemie International Edition 2025, 284 https://doi.org/10.1002/anie.202502845
    10. Jack A. Stewart, Louis T. W. Powell, Matthew J. Cullen, Gabrielle Kociok‐Köhn, Matthew G. Davidson, Matthew D. Jones. Imino‐Pyrrole Zn(II) Complexes for the Rapid and Selective Chemical Recycling of Commodity Polymers. Angewandte Chemie 2025, 284 https://doi.org/10.1002/ange.202502845
    11. Jack A. Stewart, Joseph I. Pearce, Matthew J. Cullen, Gabrielle Kociok-Köhn, Benjamin D. Ward, Matthew G. Davidson, Matthew D. Jones. Zinc {ONO} complexes for the chemical recycling of PET and PLA. Catalysis Today 2025, 445 , 115037. https://doi.org/10.1016/j.cattod.2024.115037
    12. Mnqobi Zikode, Martin Fuchs, Tim Langletz, Lisa Burkart, Sonja Herres‐Pawlis, Stephen O. Ojwach. Mononuclear and Multinuclear O^N^O‐donor Zn(II) Complexes as Robust Catalysts for the Production and Depolymerization of Poly(Lactide). ChemCatChem 2025, 17 (1) https://doi.org/10.1002/cctc.202400771
    13. Salvatore Impemba, Stefano Milione. Group IV complexes with nitrogen based ligands in the ring opening polymerization of cyclic esters. Inorganica Chimica Acta 2024, 568 , 122067. https://doi.org/10.1016/j.ica.2024.122067
    14. Tim Langletz, Philipp M. Grande, Jörn Viell, Daniel Wolters, Josia Tonn, Holger Klose, Sascha G. Schriever, Alexander Hoffmann, Andreas Jupke, Thomas Gries, Sonja Herres-Pawlis. Toward a Greener Bioeconomy: Synthesis and Characterization of Lignin–Polylactide Copolymers. Advanced Energy and Sustainability Research 2024, 5 (2) https://doi.org/10.1002/aesr.202300187
    15. Jingyan Wang, Haiyan Ma. Syntheses of Sodium and Potassium Complexes Based on Pyridine-2,6-diyl-bis(methylene)-bridged Bis(aminophenolate) Ligands and Catalytic Ring-opening Polymerization of rac -Lactide. Acta Chimica Sinica 2024, 82 (10) , 1058. https://doi.org/10.6023/A24080237
    16. Rose Mary Michell, Viko Ladelta, Edgar Da Silva, Alejandro J Müller, Nikos Hadjichristidis. Poly(lactic acid) stereocomplexes based molecular architectures: Synthesis and crystallization. Progress in Polymer Science 2023, 146 , 101742. https://doi.org/10.1016/j.progpolymsci.2023.101742
    17. Christian Conrads, Lisa Burkart, Sven Soerensen, Sandra Noichl, Yasemin Kara, Joshua Heck, Alexander Hoffmann, Sonja Herres-Pawlis. Understanding structure–activity relationships: iron( ii ) complexes of “Legacy Guanidines” as catalysts for the synthesis of polylactide. Catalysis Science & Technology 2023, 13 (20) , 6006-6021. https://doi.org/10.1039/D3CY01117H
    18. Mengting Zang, Wenyao Cao, Xingwang Zhang, Shaofeng Liu, Zhibo Li. Fast and living ring-opening polymerization of ε‑caprolactone by aluminum complexes bearing amino-quinoline ligands. European Polymer Journal 2023, 193 , 112103. https://doi.org/10.1016/j.eurpolymj.2023.112103
    19. Sarah Kirchhecker, Ngoc Nguyen, Stefan Reichert, Karola Lützow, Paul S. Eselem Bungu, Axel Jacobi von Wangelin, Sebastian Sandl, Axel T. Neffe. Iron( ii ) carboxylates and simple carboxamides: an inexpensive and modular catalyst system for the synthesis of PLLA and PLLA-PCL block copolymers. RSC Advances 2023, 13 (25) , 17102-17113. https://doi.org/10.1039/D3RA03112H
    20. Ruyi Chen, Haiyan Ma. Magnesium Complexes Supported by 6,6’‐Dimethylbiphenyl‐Bridged Salen Ligands: Synthesis, Characterization and Catalysis for rac ‐Lactide Polymerization. European Journal of Inorganic Chemistry 2023, 26 (14) https://doi.org/10.1002/ejic.202200775
    21. Mingqian Wang, Zhiqiang Ding, Bin Wang, Yuesheng Li. (Bipyridine bisphenolate)-aluminum/onium salt pair: a highly active binary catalyst for ring-opening polymerization of lactide with improved thermostability and protic tolerance. Polymer Chemistry 2022, 14 (1) , 45-54. https://doi.org/10.1039/D2PY01273A
    22. Xi Liao, Ya Su, Xiaoyan Tang. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Science China Chemistry 2022, 65 (11) , 2096-2121. https://doi.org/10.1007/s11426-022-1377-5
    23. Alina Hermann, Tabea Becker, Martin A. Schäfer, Alexander Hoffmann, Sonja Herres‐Pawlis. Effective Ligand Design: Zinc Complexes with Guanidine Hydroquinoline Ligands for Fast Lactide Polymerization and Chemical Recycling. ChemSusChem 2022, 15 (18) https://doi.org/10.1002/cssc.202201075
    24. Yu-Lai Duan, Qian Guo, Gui-Yang Liu, Zhong-Zhou Yi, Shao-Ping Feng, Yong Huang. Highly heteroselective ring-opening polymerization of rac -lactide initiated by rare-earth alkoxides bearing chiral [NNOO]-type amine-bis(phenolate) ligands. Polymer Chemistry 2022, 13 (29) , 4249-4259. https://doi.org/10.1039/D2PY00455K
    25. Martin Fuchs, Marcel Walbeck, Eveline Jagla, Alexander Hoffmann, Sonja Herres‐Pawlis. Guanidine Carboxy Zinc Complexes for the Chemical Recycling of Renewable Polyesters. ChemPlusChem 2022, 87 (5) https://doi.org/10.1002/cplu.202200029
    26. Pamela V. S. Nylund, Baptiste Monney, Christoph Weder, Martin Albrecht. N-Heterocyclic carbene iron complexes catalyze the ring-opening polymerization of lactide. Catalysis Science & Technology 2022, 12 (3) , 996-1004. https://doi.org/10.1039/D1CY02143E
    27. Jack Stewart, Martin Fuchs, Jack Payne, Oliver Driscoll, Gabrielle Kociok-Köhn, Benjamin D. Ward, Sonja Herres-Pawlis, Matthew D. Jones. Simple Zn( ii ) complexes for the production and degradation of polyesters. RSC Advances 2022, 12 (3) , 1416-1424. https://doi.org/10.1039/D1RA09087A
    28. Swarup Ghosh, Eduard Glöckler, Christoph Wölper, Alexander Tjaberings, André H. Gröschel, Stephan Schulz. Synthesis and Catalytic Activity of Gallium Schiff‐base Complexes in the Ring‐Opening Homo‐ and Copolymerization of Cyclic Esters. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (15) , 1594-1601. https://doi.org/10.1002/zaac.202100183
    29. Guangqiang Xu, Qaiser Mahmood, Chengdong Lv, Rulin Yang, Li Zhou, Qinggang Wang. Asymmetric kinetic resolution polymerization. Coordination Chemistry Reviews 2020, 414 , 213296. https://doi.org/10.1016/j.ccr.2020.213296
    30. Oliver J. Driscoll, Jack A. Stewart, Paul McKeown, Matthew D. Jones. Salalen vs. thiolen: in the ring(-opening of epoxide and cyclic carbonate formation). New Journal of Chemistry 2020, 44 (15) , 6063-6067. https://doi.org/10.1039/D0NJ00725K
    31. Paul McKeown, Luis A. Román‐Ramírez, Samuel Bates, Joseph Wood, Matthew D. Jones. Zinc Complexes for PLA Formation and Chemical Recycling: Towards a Circular Economy. ChemSusChem 2019, 12 (24) , 5233-5238. https://doi.org/10.1002/cssc.201902755
    32. Oliver J. Driscoll, Claudia H. Hafford-Tear, Paul McKeown, Jack A. Stewart, Gabriele Kociok-Köhn, Mary F. Mahon, Matthew D. Jones. The synthesis, characterisation and application of iron( iii )–acetate complexes for cyclic carbonate formation and the polymerisation of lactide. Dalton Transactions 2019, 48 (40) , 15049-15058. https://doi.org/10.1039/C9DT03327K

    Macromolecules

    Cite this: Macromolecules 2019, 52, 15, 5977–5984
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.macromol.9b01205
    Published July 31, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    1650

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.