ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Sulfur- and Nitrogen-Containing Porous Donor–Acceptor Polymers as Real-Time Optical and Chemical Sensors

  • Yaroslav S. Kochergin
    Yaroslav S. Kochergin
    Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
  • Yu Noda
    Yu Noda
    Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
    More by Yu Noda
  • Ranjit Kulkarni
    Ranjit Kulkarni
    Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
  • Klára Škodáková
    Klára Škodáková
    Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
  • Ján Tarábek
    Ján Tarábek
    Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
  • Johannes Schmidt
    Johannes Schmidt
    Institute of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany
  • , and 
  • Michael J. Bojdys*
    Michael J. Bojdys
    Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
    *E-mail: [email protected]
Cite this: Macromolecules 2019, 52, 20, 7696–7703
Publication Date (Web):October 4, 2019
https://doi.org/10.1021/acs.macromol.9b01643
Copyright © 2019 American Chemical Society

    Article Views

    2314

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Fully aromatic, organic polymers have the advantage of being composed from light, abundant elements, and are hailed as candidates in electronic and optical devices “beyond silicon”, yet, applications that make use of their π-conjugated backbone and optical bandgap are lacking outside of heterogeneous catalysis. Herein, we use a series of sulfur- and nitrogen-containing porous polymers (SNPs) as real-time optical and electronic sensors reversibly triggered and reset by acid and ammonia vapors. Our SNPs incorporate donor–acceptor and donor–donor motifs in extended networks and enable us to study the changes in bulk conductivity, optical bandgap, and fluorescence lifetimes as a function of π-electron de/localization in the pristine and protonated states. Interestingly, we find that protonated donor–acceptor polymers show a decrease of the optical bandgap by 0.42 to 0.76 eV and longer fluorescence lifetimes. In contrast, protonation of a donor–donor polymer does not affect its bandgap; however, it leads to an increase of electrical conductivity by up to 25-fold and shorter fluorescence lifetimes. The design strategies highlighted in this study open new avenues toward useful chemical switches and sensors based on modular purely organic materials.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.9b01643.

    • SNPs showing a rapid color change and marked red-shift of the absorption edge in solid-state UV–vis spectra (MP4)

    • Materials; characterization; synthetic protocols and procedures; overview of prepared materials; nitrogen gas adsorption/desorption analysis; thermogravimetric analysis (TGA); powder X-ray diffraction (PXRD); scanning electron microscopy (SEM); transmission electron microscopy (TEM); elemental analysis (EA); energy-dispersive X-ray (EDX) spectroscopy; X-ray photoelectron spectroscopy (XPS); solid-state UV–vis study and optical bandgap calculations; HCl vapor concentration study and polymer stability test; screening of different acids; Fourier-transform infrared spectroscopy (FTIR) study; complimentary stability study for SNPs (in addition to SNP-NDT1 cycling tests); solid state photoluminescence (PL); time-correlated single-photon counting (TCSPC) measurement; electronic conductivity measurements; electron paramagnetic resonance (EPR) study; additional temperature-dependent EPR study for SNP-NDT1 and SP-BTT networks; and additional references (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Yong Wu, Dongdong Sun, Xie Han, Zhiyong Zhao, Feng Liang, Simin Liu. Synthesis of Naphthalimide Derivatives and Their Luminescence upon Complexation with Cucurbit[n]uril Hosts. The Journal of Organic Chemistry 2023, 88 (17) , 12376-12384. https://doi.org/10.1021/acs.joc.3c01111
    2. Xiao-Mei Cao, Lu-Yao Liu, Yan-Xin Peng, An-Jian Wang, Ai-Ying Zhang, San-Yuan Ding, Hui Lin, Yong Zhang. Natural Ellagic Acid-Derived Nanoporous Organic Polymers for CO2 and Organic Dye Adsorption. ACS Applied Nano Materials 2023, 6 (13) , 12330-12337. https://doi.org/10.1021/acsanm.3c02016
    3. Vinh Van Tran, Ganghoon Jeong, Eunsol Wi, Daeho Lee, Mincheol Chang. Design and Fabrication of Ultrathin Nanoporous Donor–Acceptor Copolymer-Based Organic Field-Effect Transistors for Enhanced VOC Sensing Performance. ACS Applied Materials & Interfaces 2023, 15 (17) , 21270-21283. https://doi.org/10.1021/acsami.3c00105
    4. Bowei Cai, Lin Cao, Roujia Zhang, Naizhang Xu, Jie Tang, Kaiqiang Wang, Qi Li, Bolian Xu, Yubing Liu, Yining Fan. Construction of Benzodithiophene-Based Donor–Acceptor-Type Covalent Triazine Frameworks with Tunable Structure for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials 2023, 6 (2) , 930-938. https://doi.org/10.1021/acsaem.2c03322
    5. Zhikai Zhang, Qing Wang, Haiming Liu, Tao Li, Yi Ren. Ultramicroporous Organophosphorus Polymers via Self-Accelerating P–C Coupling Reactions: Kinetic Effects on Crosslinking Environments and Porous Structures. Journal of the American Chemical Society 2022, 144 (26) , 11748-11756. https://doi.org/10.1021/jacs.2c03759
    6. Cece Xue, Min Peng, Zhikai Zhang, Xue Han, Qing Wang, Conger Li, Haiming Liu, Tao Li, Na Yu, Yi Ren. Conjugated Boron Porous Polymers Having Strong p−π* Conjugation for Amine Sensing and Absorption. Macromolecules 2022, 55 (10) , 3850-3859. https://doi.org/10.1021/acs.macromol.2c00029
    7. Yaroslav S. Kochergin, Katherine Villa, Alžběta Nemeškalová, Martin Kuchař, Martin Pumera. Hybrid Inorganic–Organic Visible-Light-Driven Microrobots Based on Donor–Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances. ACS Nano 2021, 15 (11) , 18458-18468. https://doi.org/10.1021/acsnano.1c08136
    8. Floriana Moruzzi, Weimin Zhang, Balaji Purushothaman, Soranyel Gonzalez-Carrero, Catherine M. Aitchison, Benjamin Willner, Fabien Ceugniet, Yuanbao Lin, Jan Kosco, Hu Chen, Junfu Tian, Maryam Alsufyani, Joshua S. Gibson, Ed Rattner, Yasmine Baghdadi, Salvador Eslava, Marios Neophytou, James R. Durrant, Ludmilla Steier, Iain McCulloch. Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39161-6
    9. Timur Ashirov, Patrick W. Fritz, Yanic Lauber, Claudia E. Avalos, Ali Coskun. Fully Conjugated Benzyne‐Derived Three‐Dimensional Porous Organic Polymers. Chemistry – A European Journal 2023, 29 (42) https://doi.org/10.1002/chem.202301053
    10. Yorck Mohr, Alisa Ranscht, Marcelo Alves‐Favaro, Elsje Alessandra Quadrelli, Florian M. Wisser, Jérôme Canivet. Nickel‐Catalyzed Direct Arylation Polymerization for the Synthesis of Thiophene‐Based Cross‐linked Polymers. Chemistry – A European Journal 2023, 29 (2) https://doi.org/10.1002/chem.202202667
    11. Pengfei She, Yanyan Qin, Xiang Wang, Qichun Zhang. Recent Progress in External‐Stimulus‐Responsive 2D Covalent Organic Frameworks. Advanced Materials 2022, 34 (22) https://doi.org/10.1002/adma.202101175
    12. Yutao Jia, Yanting Shen, Yanyan Zhu, Jing Wang. Covalent organic framework-based fluorescent nanoprobe for intracellular pH sensing and imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 272 , 121002. https://doi.org/10.1016/j.saa.2022.121002
    13. Patrick W. Fritz, Tianyang Chen, Timur Ashirov, Anh‐Dao Nguyen, Mircea Dincă, Ali Coskun. Fully Conjugated Tetraoxa[8]circulene‐Based Porous Semiconducting Polymers. Angewandte Chemie 2022, 134 (17) https://doi.org/10.1002/ange.202116527
    14. Patrick W. Fritz, Tianyang Chen, Timur Ashirov, Anh‐Dao Nguyen, Mircea Dincă, Ali Coskun. Fully Conjugated Tetraoxa[8]circulene‐Based Porous Semiconducting Polymers. Angewandte Chemie International Edition 2022, 61 (17) https://doi.org/10.1002/anie.202116527
    15. Chao Zhang, Guanjun Pan, Yi He. Conjugated microporous organic polymer as fluorescent chemosensor for detection of Fe3+ and Fe2+ ions with high selectivity and sensitivity. Talanta 2022, 236 , 122872. https://doi.org/10.1016/j.talanta.2021.122872
    16. Ranjit Kulkarni, Jieyang Huang, Matthias Trunk, David Burmeister, Patrick Amsalem, Johannes Müller, Andréa Martin, Norbert Koch, Dustin Kass, Michael J. Bojdys. Direct growth of crystalline triazine-based graphdiyne using surface-assisted deprotection–polymerisation. Chemical Science 2021, 12 (38) , 12661-12666. https://doi.org/10.1039/D1SC03390E
    17. Kouichi Matsumoto, Kazuhiro Yamashita, Yuuki Sakoda, Hinata Ezoe, Yuki Tanaka, Tatsuya Okazaki, Misaki Ohkita, Senku Tanaka, Yuki Aoki, Daisuke Kiriya, Shigenori Kashimura, Masahiko Maekawa, Takayoshi Kuroda‐Sowa, Takashi Okubo. Organic Thin‐film Solar Cells Using Benzotrithiophene Derivatives Bearing Acceptor Units as Non‐Fullerene Acceptors. European Journal of Organic Chemistry 2021, 2021 (33) , 4620-4629. https://doi.org/10.1002/ejoc.202100178
    18. P. Pacholak, J. Krajewska, P. Wińska, J. Dunikowska, U. Gogowska, J. Mierzejewska, K. Durka, K. Woźniak, A. E. Laudy, S. Luliński. Development of structurally extended benzosiloxaboroles – synthesis and in vitro biological evaluation. RSC Advances 2021, 11 (41) , 25104-25121. https://doi.org/10.1039/D1RA04127D
    19. Patrick W. Fritz, Ali Coskun. The Prospect of Dimensionality in Porous Semiconductors. Chemistry – A European Journal 2021, 27 (27) , 7489-7501. https://doi.org/10.1002/chem.202005167
    20. Yaroslav S. Kochergin, Seyyed Mohsen Beladi-Mousavi, Bahareh Khezri, Pengbo Lyu, Michael J. Bojdys, Martin Pumera. Organic photoelectrode engineering: accelerating photocurrent generation via donor–acceptor interactions and surface-assisted synthetic approach. Journal of Materials Chemistry A 2021, 9 (11) , 7162-7171. https://doi.org/10.1039/D0TA11820F
    21. Dong Yan, Zhifang Wang, Peng Cheng, Yao Chen, Zhenjie Zhang. Rational Fabrication of Crystalline Smart Materials for Rapid Detection and Efficient Removal of Ozone. Angewandte Chemie 2021, 133 (11) , 6120-6125. https://doi.org/10.1002/ange.202015629
    22. Dong Yan, Zhifang Wang, Peng Cheng, Yao Chen, Zhenjie Zhang. Rational Fabrication of Crystalline Smart Materials for Rapid Detection and Efficient Removal of Ozone. Angewandte Chemie International Edition 2021, 60 (11) , 6055-6060. https://doi.org/10.1002/anie.202015629
    23. Songjie Han, Ziping Li, Si Ma, Yongfeng Zhi, Hong Xia, Xiong Chen, Xiaoming Liu. Bandgap engineering in benzotrithiophene-based conjugated microporous polymers: a strategy for screening metal-free heterogeneous photocatalysts. Journal of Materials Chemistry A 2021, 9 (6) , 3333-3340. https://doi.org/10.1039/D0TA10232F
    24. Dongmei Li, Chaofan Weng, Yi Ruan, Kan Li, Guoan Cai, Chenyao Song, Qiang Lin. An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis. Sensors 2021, 21 (3) , 1003. https://doi.org/10.3390/s21031003
    25. Chinna Bathula, Opoku Henry, Ashok Kumar K, Subalakshmi K, Atanu Jana, Iqra Rabani, Jong-Hyeok Choi, Ji-Hoon Jeon, Hyun-Seok Kim. Facile synthesis of an indacenodithiophene-based conjugated polymer for acid vapor sensing. Dyes and Pigments 2021, 184 , 108847. https://doi.org/10.1016/j.dyepig.2020.108847
    26. Hanlin Deng, Xiansheng Luo, Zhihua Li, Jiangying Zhao, Muhua Huang. Synthesis of Novel Porous Organic Materials Based on Phloroglucinol and Its Derivatives. Chinese Journal of Organic Chemistry 2021, 41 (2) , 624. https://doi.org/10.6023/cjoc202005070
    27. I. Jessop, J. Albornoz, O. Ramírez, B. Durán, L. Molero, S. Bonardd, G. Kortaberria, D. Diaz Diaz, A. Leiva, C. Saldías. Optical, morphological and photocatalytic properties of biobased tractable films of chitosan/donor-acceptor polymer blends. Carbohydrate Polymers 2020, 249 , 116822. https://doi.org/10.1016/j.carbpol.2020.116822
    28. Yaroslav S. Kochergin, Katherine Villa, Filip Novotný, Jan Plutnar, Michael J. Bojdys, Martin Pumera. Multifunctional Visible‐Light Powered Micromotors Based on Semiconducting Sulfur‐ and Nitrogen‐Containing Donor–Acceptor Polymer. Advanced Functional Materials 2020, 30 (38) https://doi.org/10.1002/adfm.202002701
    29. Chenguang Li, Yongshuai Wang, Ye Zou, Xiaotao Zhang, Huanli Dong, Wenping Hu. Two‐Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angewandte Chemie 2020, 132 (24) , 9489-9493. https://doi.org/10.1002/ange.202002644
    30. Chenguang Li, Yongshuai Wang, Ye Zou, Xiaotao Zhang, Huanli Dong, Wenping Hu. Two‐Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angewandte Chemie International Edition 2020, 59 (24) , 9403-9407. https://doi.org/10.1002/anie.202002644

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect