ACS Publications. Most Trusted. Most Cited. Most Read
From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design
My Activity

Figure 1Loading Img
    Article

    From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design
    Click to copy article linkArticle link copied!

    • Miha Skalic
      Miha Skalic
      Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, Spain
      More by Miha Skalic
    • Davide Sabbadin
      Davide Sabbadin
      Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, Spain
    • Boris Sattarov
      Boris Sattarov
      Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, Spain
    • Simone Sciabola
      Simone Sciabola
      Biogen Chemistry and Molecular Therapeutics, 115 Broadway Street, Cambridge, Massachusetts 02142, United States
    • Gianni De Fabritiis*
      Gianni De Fabritiis
      Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, Spain
      Acellera, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain
      Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    Molecular Pharmaceutics

    Cite this: Mol. Pharmaceutics 2019, 16, 10, 4282–4291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.molpharmaceut.9b00634
    Published August 22, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Chemical space is impractically large, and conventional structure-based virtual screening techniques cannot be used to simply search through the entire space to discover effective bioactive molecules. To address this shortcoming, we propose a generative adversarial network to generate, rather than search, diverse three-dimensional ligand shapes complementary to the pocket. Furthermore, we show that the generated molecule shapes can be decoded using a shape-captioning network into a sequence of SMILES enabling directly the structure-based de novo drug design. We evaluate the quality of the method by both structure- (docking) and ligand-based [quantitative structure–activity relationship (QSAR)] virtual screening methods. For both evaluation approaches, we observed enrichment compared to random sampling from initial chemical space of ZINC drug-like compounds.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.molpharmaceut.9b00634.

    • Neural networks implementation (code) (ZIP)

    • Details of used methods and results for both docking and QSAR evaluation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 82 publications.

    1. Shreyas Supekar, Dillon W. P. Tay, Wan Lin Yeo, Kwok Wai Eric Tam, Ying Sin Koo, Jie Yang See, Jhoann M. T. Miyajima, Sebastian Maurer-Stroh, Ee Lui Ang, Yee Hwee Lim, Hao Fan. A Machine Learning-Guided Approach to Navigate the Substrate Activity Scope of Galactose Oxidase: Application in the Conversion of Pharmaceutically Relevant Bulky Secondary Alcohols. ACS Catalysis 2024, 14 (23) , 17233-17243. https://doi.org/10.1021/acscatal.4c04660
    2. Haoyang Liu, Yifei Qin, Zhangming Niu, Mingyuan Xu, Jiaqiang Wu, Xianglu Xiao, Jinping Lei, Ting Ran, Hongming Chen. How Good are Current Pocket-Based 3D Generative Models?: The Benchmark Set and Evaluation of Protein Pocket-Based 3D Molecular Generative Models. Journal of Chemical Information and Modeling 2024, Article ASAP.
    3. Yidan Tang, Rocco Moretti, Jens Meiler. Recent Advances in Automated Structure-Based De Novo Drug Design. Journal of Chemical Information and Modeling 2024, 64 (6) , 1794-1805. https://doi.org/10.1021/acs.jcim.4c00247
    4. Mingyang Wang, Zhengjian Wu, Jike Wang, Gaoqi Weng, Yu Kang, Peichen Pan, Dan Li, Yafeng Deng, Xiaojun Yao, Zhitong Bing, Chang-Yu Hsieh, Tingjun Hou. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space. Journal of Chemical Information and Modeling 2024, 64 (4) , 1213-1228. https://doi.org/10.1021/acs.jcim.3c01964
    5. Gregory W. Kyro, Anton Morgunov, Rafael I. Brent, Victor S. Batista. ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation. Journal of Chemical Information and Modeling 2024, 64 (3) , 653-665. https://doi.org/10.1021/acs.jcim.3c01456
    6. Minfei Ma, Xinben Zhang, Liping Zhou, Zijian Han, Yulong Shi, Jintian Li, Leyun Wu, Zhijian Xu, Weiliang Zhu. D3Rings: A Fast and Accurate Method for Ring System Identification and Deep Generation of Drug-Like Cyclic Compounds. Journal of Chemical Information and Modeling 2024, 64 (3) , 724-736. https://doi.org/10.1021/acs.jcim.3c01657
    7. Sowmya Ramaswamy Krishnan, Navneet Bung, Sarveswara Rao Vangala, Rajgopal Srinivasan, Gopalakrishnan Bulusu, Arijit Roy. De Novo Structure-Based Drug Design Using Deep Learning. Journal of Chemical Information and Modeling 2022, 62 (21) , 5100-5109. https://doi.org/10.1021/acs.jcim.1c01319
    8. Mingyang Wang, Chang-Yu Hsieh, Jike Wang, Dong Wang, Gaoqi Weng, Chao Shen, Xiaojun Yao, Zhitong Bing, Honglin Li, Dongsheng Cao, Tingjun Hou. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. Journal of Medicinal Chemistry 2022, 65 (13) , 9478-9492. https://doi.org/10.1021/acs.jmedchem.2c00732
    9. Thomas E. Hadfield, Fergus Imrie, Andy Merritt, Kristian Birchall, Charlotte M. Deane. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration. Journal of Chemical Information and Modeling 2022, 62 (10) , 2280-2292. https://doi.org/10.1021/acs.jcim.1c01311
    10. Weixin Xie, Fanhao Wang, Yibo Li, Luhua Lai, Jianfeng Pei. Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models. Journal of Chemical Information and Modeling 2022, 62 (10) , 2269-2279. https://doi.org/10.1021/acs.jcim.2c00042
    11. Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang Xu, Hualiang Jiang, Nan Qiao, Mingyue Zheng. Generative Models for De Novo Drug Design. Journal of Medicinal Chemistry 2021, 64 (19) , 14011-14027. https://doi.org/10.1021/acs.jmedchem.1c00927
    12. Mingyuan Xu, Ting Ran, Hongming Chen. De Novo Molecule Design Through the Molecular Generative Model Conditioned by 3D Information of Protein Binding Sites. Journal of Chemical Information and Modeling 2021, 61 (7) , 3240-3254. https://doi.org/10.1021/acs.jcim.0c01494
    13. Jacques Boitreaud, Vincent Mallet, Carlos Oliver, Jérôme Waldispühl. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery. Journal of Chemical Information and Modeling 2020, 60 (12) , 5658-5666. https://doi.org/10.1021/acs.jcim.0c00833
    14. Marina Macchiagodena, Marco Pagliai, Maurice Karrenbrock, Guido Guarnieri, Francesco Iannone, Piero Procacci. Virtual Double-System Single-Box: A Nonequilibrium Alchemical Technique for Absolute Binding Free Energy Calculations: Application to Ligands of the SARS-CoV-2 Main Protease. Journal of Chemical Theory and Computation 2020, 16 (11) , 7160-7172. https://doi.org/10.1021/acs.jctc.0c00634
    15. Lei Huang, Tingyang Xu, Yang Yu, Peilin Zhao, Xingjian Chen, Jing Han, Zhi Xie, Hailong Li, Wenge Zhong, Ka-Chun Wong, Hengtong Zhang. A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46569-1
    16. Yaodong Yang, Guangyong Chen, Jinpeng Li, Junyou Li, Odin Zhang, Xujun Zhang, Lanqing Li, Jianye Hao, Ercheng Wang, Pheng-Ann Heng. Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS. Communications Biology 2024, 7 (1) https://doi.org/10.1038/s42003-024-06746-w
    17. Bing Li, Kan Tan, Angelyn R. Lao, Haiying Wang, Huiru Zheng, Le Zhang. A comprehensive review of artificial intelligence for pharmacology research. Frontiers in Genetics 2024, 15 https://doi.org/10.3389/fgene.2024.1450529
    18. Zygimantas Jocys, Joanna Grundy, Katayoun Farrahi. DrugPose: benchmarking 3D generative methods for early stage drug discovery. Digital Discovery 2024, 3 (7) , 1308-1318. https://doi.org/10.1039/D4DD00076E
    19. Sowmya Ramaswamy Krishnan, Navneet Bung, Rajgopal Srinivasan, Arijit Roy. Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process. Journal of Molecular Graphics and Modelling 2024, 129 , 108734. https://doi.org/10.1016/j.jmgm.2024.108734
    20. Zamara Mariam, Sarfaraz K. Niazi, Matthias Magoola. Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond. BioMedInformatics 2024, 4 (2) , 1441-1456. https://doi.org/10.3390/biomedinformatics4020079
    21. Solene Bechelli, Jerome Delhommelle. AI's role in pharmaceuticals: Assisting drug design from protein interactions to drug development. Artificial Intelligence Chemistry 2024, 2 (1) , 100038. https://doi.org/10.1016/j.aichem.2023.100038
    22. Yunguang Qiu, Feixiong Cheng. Artificial intelligence for drug discovery and development in Alzheimer's disease. Current Opinion in Structural Biology 2024, 85 , 102776. https://doi.org/10.1016/j.sbi.2024.102776
    23. Amit Gangwal, Azim Ansari, Iqrar Ahmad, Abul Kalam Azad, Vinoth Kumarasamy, Vetriselvan Subramaniyan, Ling Shing Wong. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Frontiers in Pharmacology 2024, 15 https://doi.org/10.3389/fphar.2024.1331062
    24. Wei-Ven Tee, Igor N. Berezovsky. Allosteric drugs: New principles and design approaches. Current Opinion in Structural Biology 2024, 84 , 102758. https://doi.org/10.1016/j.sbi.2023.102758
    25. Yangkun Zheng, Fengqing Lu, Jiajun Zou, Haoyu Hua, Xiaoli Lu, Xiaoping Min. De Novo Design of Target-Specific Ligands Using BERT-Pretrained Transformer. 2024, 311-322. https://doi.org/10.1007/978-981-99-8549-4_26
    26. Wei Feng, Lvwei Wang, Zaiyun Lin, Yanhao Zhu, Han Wang, Jianqiang Dong, Rong Bai, Huting Wang, Jielong Zhou, Wei Peng, Bo Huang, Wenbiao Zhou. Generation of 3D molecules in pockets via a language model. Nature Machine Intelligence 2024, 6 (1) , 62-73. https://doi.org/10.1038/s42256-023-00775-6
    27. Virgilio Romanelli, Carmen Cerchia, Antonio Lavecchia. Unlocking the Potential of Generative Artificial Intelligence in Drug Discovery. 2024, 37-63. https://doi.org/10.1007/978-3-031-46238-2_3
    28. Chunli Sha, Fei Zhu. Goal-directed molecule generation with fine-tuning by policy gradient. Expert Systems with Applications 2024, 62 , 123127. https://doi.org/10.1016/j.eswa.2023.123127
    29. Syed Aslah Ahmad Faizi, Nripendra Kumar Singh, Ashraf Kamal, Khalid Raza. Generative adversarial networks in protein and ligand structure generation: a case study. 2024, 231-248. https://doi.org/10.1016/B978-0-443-22299-3.00014-1
    30. Abin V. Geevarghese. Explainable Artificial Intelligence in Drug Discovery. 2024, 113-134. https://doi.org/10.1007/978-981-97-3705-5_6
    31. Ravipas Aphikulvanich, Natapol Pornputtapong, Duangdao Wichadakul. Mol-Zero-GAN: zero-shot adaptation of molecular generative adversarial network for specific protein targets. RSC Advances 2023, 13 (51) , 36048-36059. https://doi.org/10.1039/D3RA03954D
    32. Yangyang Chen, Zixu Wang, Lei Wang, Jianmin Wang, Pengyong Li, Dongsheng Cao, Xiangxiang Zeng, Xiucai Ye, Tetsuya Sakurai. Deep generative model for drug design from protein target sequence. Journal of Cheminformatics 2023, 15 (1) https://doi.org/10.1186/s13321-023-00702-2
    33. Abu Mohiuddin, Sumanta Mondal. Advancement of Computational Design Drug Delivery System in COVID- 19: Current Updates and Future Crosstalk- A Critical Update. Infectious Disorders - Drug Targets 2023, 23 (8) https://doi.org/10.2174/1871526523666230816151614
    34. Thomas E. Hadfield, Jack Scantlebury, Charlotte M. Deane. Exploring the ability of machine learning-based virtual screening models to identify the functional groups responsible for binding. Journal of Cheminformatics 2023, 15 (1) https://doi.org/10.1186/s13321-023-00755-3
    35. Hongyan Du, Dejun Jiang, Odin Zhang, Zhenxing Wu, Junbo Gao, Xujun Zhang, Xiaorui Wang, Yafeng Deng, Yu Kang, Dan Li, Peichen Pan, Chang-Yu Hsieh, Tingjun Hou. A flexible data-free framework for structure-based de novo drug design with reinforcement learning. Chemical Science 2023, 14 (43) , 12166-12181. https://doi.org/10.1039/D3SC04091G
    36. Rajkumar Chakraborty, Yasha Hasija. Utilizing deep learning to explore chemical space for drug lead optimization. Expert Systems with Applications 2023, 229 , 120592. https://doi.org/10.1016/j.eswa.2023.120592
    37. Shikhar Shasya, Shubham Sharma, Prabhakar Bhimalapuram. Generative schemes for drug design with shape captioning. Journal of Chemical Sciences 2023, 135 (3) https://doi.org/10.1007/s12039-023-02196-9
    38. Mayar Tarek Ibrahim, Jiyong Lee, Peng Tao. Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening. Molecular Diversity 2023, 27 (4) , 1661-1674. https://doi.org/10.1007/s11030-022-10519-0
    39. R. Özçelik, D. van Tilborg, J. Jiménez‐Luna, F. Grisoni. Structure‐Based Drug Discovery with Deep Learning**. ChemBioChem 2023, 24 (13) https://doi.org/10.1002/cbic.202200776
    40. Jia-Ning Li, Guang Yang, Peng-Cheng Zhao, Xue-Xin Wei, Jian-Yu Shi. CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties. Bioinformatics 2023, 39 (Supplement_1) , i326-i336. https://doi.org/10.1093/bioinformatics/btad222
    41. Ana L. Chávez-Hernández, Edgar López-López, José L. Medina-Franco. Yin-yang in drug discovery: rethinking de novo design and development of predictive models. Frontiers in Drug Discovery 2023, 3 https://doi.org/10.3389/fddsv.2023.1222655
    42. Atsushi Yoshimori, Jürgen Bajorath. Motif2Mol: Prediction of New Active Compounds Based on Sequence Motifs of Ligand Binding Sites in Proteins Using a Biochemical Language Model. Biomolecules 2023, 13 (5) , 833. https://doi.org/10.3390/biom13050833
    43. Francesca Grisoni. Chemical language models for de novo drug design: Challenges and opportunities. Current Opinion in Structural Biology 2023, 79 , 102527. https://doi.org/10.1016/j.sbi.2023.102527
    44. Morgan Thomas, Andreas Bender, Chris de Graaf. Integrating structure-based approaches in generative molecular design. Current Opinion in Structural Biology 2023, 79 , 102559. https://doi.org/10.1016/j.sbi.2023.102559
    45. Manan Goel, Rishal Aggarwal, Bhuvanesh Sridharan, Pradeep Kumar Pal, U. Deva Priyakumar. Efficient and enhanced sampling of drug‐like chemical space for virtual screening and molecular design using modern machine learning methods. WIREs Computational Molecular Science 2023, 13 (2) https://doi.org/10.1002/wcms.1637
    46. Tomasz Danel, Jan Łęski, Sabina Podlewska, Igor T. Podolak. Docking-based generative approaches in the search for new drug candidates. Drug Discovery Today 2023, 28 (2) , 103439. https://doi.org/10.1016/j.drudis.2022.103439
    47. Michael A. Hough, Filippo Prischi, Jonathan A. R. Worrall. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1113762
    48. Mingyang Wang, Dan Li, Tingjun Hou, Yu Kang. Deep learning approaches for de novo drug design: an overview. SCIENTIA SINICA Chimica 2023, 53 (1) , 95-106. https://doi.org/10.1360/SSC-2022-0135
    49. Mingyu Li, Xiaobin Lan, Xun Lu, Jian Zhang. A Structure-Based Allosteric Modulator Design Paradigm. Health Data Science 2023, 3 https://doi.org/10.34133/hds.0094
    50. Feng Xiong, Honggui Xu, Mingao Yu, Xingyu Chen, Zhenmin Zhong, Yuhan Guo, Meihong Chen, Huanfang Ou, Jiaqi Wu, Anhua Xie, Jiaqi Xiong, Linlin Xu, Lanmei Zhang, Qijian Zhong, Liye Huang, Zhenwei Li, Tianyuan Zhang, Feng Jin, Xun He. 3CLpro inhibitors: DEL-based molecular generation. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1085665
    51. Lvwei Wang, Rong Bai, Xiaoxuan Shi, Wei Zhang, Yinuo Cui, Xiaoman Wang, Cheng Wang, Haoyu Chang, Yingsheng Zhang, Jielong Zhou, Wei Peng, Wenbiao Zhou, Bo Huang. A pocket-based 3D molecule generative model fueled by experimental electron density. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-19363-6
    52. Lucian Chan, Rajendra Kumar, Marcel Verdonk, Carl Poelking. A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design. Nature Machine Intelligence 2022, 4 (12) , 1130-1142. https://doi.org/10.1038/s42256-022-00564-7
    53. Mingyang Wang, Jike Wang, Gaoqi Weng, Yu Kang, Peichen Pan, Dan Li, Yafeng Deng, Honglin Li, Chang-Yu Hsieh, Tingjun Hou. ReMODE: a deep learning-based web server for target-specific drug design. Journal of Cheminformatics 2022, 14 (1) https://doi.org/10.1186/s13321-022-00665-w
    54. Susanne Sauer, Hans Matter, Gerhard Hessler, Christoph Grebner. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.1012507
    55. Huihui Yan, Yuanyuan Xie, Yao Liu, Leer Yuan, Rong Sheng. ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery. Briefings in Bioinformatics 2022, 23 (5) https://doi.org/10.1093/bib/bbac350
    56. Gökçe Uludoğan, Elif Ozkirimli, Kutlu O Ulgen, Nilgün Karalı, Arzucan Özgür. Exploiting pretrained biochemical language models for targeted drug design. Bioinformatics 2022, 38 (Supplement_2) , ii155-ii161. https://doi.org/10.1093/bioinformatics/btac482
    57. Hao Qian, Cheng Lin, Dengwei Zhao, Shikui Tu, Lei Xu, . AlphaDrug: protein target specific de novo molecular generation. PNAS Nexus 2022, 1 (4) https://doi.org/10.1093/pnasnexus/pgac227
    58. Kailasam N. Vennila, Kuppanagounder P. Elango. Multimodal generative neural networks and molecular dynamics based identification of PDK1 PIF-pocket modulators. Molecular Systems Design & Engineering 2022, 7 (9) , 1085-1092. https://doi.org/10.1039/D2ME00051B
    59. Qichang Zhao, Mengyun Yang, Zhongjian Cheng, Yaohang Li, Jianxin Wang. Biomedical Data and Deep Learning Computational Models for Predicting Compound-Protein Relations. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2022, 19 (4) , 2092-2110. https://doi.org/10.1109/TCBB.2021.3069040
    60. Qifeng Bai, Shuo Liu, Yanan Tian, Tingyang Xu, Antonio Jesús Banegas‐Luna, Horacio Pérez‐Sánchez, Junzhou Huang, Huanxiang Liu, Xiaojun Yao. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. WIREs Computational Molecular Science 2022, 12 (3) https://doi.org/10.1002/wcms.1581
    61. Thomas E. Hadfield, Charlotte M. Deane. AI in 3D compound design. Current Opinion in Structural Biology 2022, 73 , 102326. https://doi.org/10.1016/j.sbi.2021.102326
    62. Matthew Ragoza, Tomohide Masuda, David Ryan Koes. Generating 3D molecules conditional on receptor binding sites with deep generative models. Chemical Science 2022, 13 (9) , 2701-2713. https://doi.org/10.1039/D1SC05976A
    63. Alejandro Varela‐Rial, Maciej Majewski, Gianni De Fabritiis. Structure based virtual screening: Fast and slow. WIREs Computational Molecular Science 2022, 12 (2) https://doi.org/10.1002/wcms.1544
    64. Jaroslaw Polanski. Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. International Journal of Molecular Sciences 2022, 23 (5) , 2797. https://doi.org/10.3390/ijms23052797
    65. Pengfei Jia, Junping Pei, Guan Wang, Xiaoli Pan, Yumeng Zhu, Yong Wu, Liang Ouyang. The roles of computer-aided drug synthesis in drug development. Green Synthesis and Catalysis 2022, 3 (1) , 11-24. https://doi.org/10.1016/j.gresc.2021.11.007
    66. Mingyang Wang, Zhe Wang, Huiyong Sun, Jike Wang, Chao Shen, Gaoqi Weng, Xin Chai, Honglin Li, Dongsheng Cao, Tingjun Hou. Deep learning approaches for de novo drug design: An overview. Current Opinion in Structural Biology 2022, 72 , 135-144. https://doi.org/10.1016/j.sbi.2021.10.001
    67. Jinxian Wang, Ying Zhang, Wenjuan Nie, Yi Luo, Lei Deng. Computational anti-COVID-19 drug design: progress and challenges. Briefings in Bioinformatics 2022, 23 (1) https://doi.org/10.1093/bib/bbab484
    68. Ying Zhou, Yintao Zhang, Xichen Lian, Fengcheng Li, Chaoxin Wang, Feng Zhu, Yunqing Qiu, Yuzong Chen. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Research 2022, 50 (D1) , D1398-D1407. https://doi.org/10.1093/nar/gkab953
    69. Juan I. Di Filippo, Claudio N. Cavasotto. Guided structure-based ligand identification and design via artificial intelligence modeling. Expert Opinion on Drug Discovery 2022, 17 (1) , 71-78. https://doi.org/10.1080/17460441.2021.1979514
    70. Morgan Thomas, Andrew Boardman, Miguel Garcia-Ortegon, Hongbin Yang, Chris de Graaf, Andreas Bender. Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges. 2022, 1-59. https://doi.org/10.1007/978-1-0716-1787-8_1
    71. Ferruccio Palazzesi, Alfonso Pozzan. Deep Learning Applied to Ligand-Based De Novo Drug Design. 2022, 273-299. https://doi.org/10.1007/978-1-0716-1787-8_12
    72. , Syeda Rehana Zia. Identification of Potential Ligands of the Main Protease of Coronavirus SARS-CoV-2 (2019-nCoV) Using Multimodal Generative Neural-Networks. French-Ukrainian Journal of Chemistry 2022, 10 (1) , 30-47. https://doi.org/10.17721/fujcV10I1P30-47
    73. Fergus Imrie, Thomas E. Hadfield, Anthony R. Bradley, Charlotte M. Deane. Deep generative design with 3D pharmacophoric constraints. Chemical Science 2021, 12 (43) , 14577-14589. https://doi.org/10.1039/D1SC02436A
    74. José Jiménez-Luna, Francesca Grisoni, Nils Weskamp, Gisbert Schneider. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery 2021, 16 (9) , 949-959. https://doi.org/10.1080/17460441.2021.1909567
    75. Harrison Green, David R. Koes, Jacob D. Durrant. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chemical Science 2021, 12 (23) , 8036-8047. https://doi.org/10.1039/D1SC00163A
    76. Jannis Born, Matteo Manica, Joris Cadow, Greta Markert, Nil Adell Mill, Modestas Filipavicius, Nikita Janakarajan, Antonio Cardinale, Teodoro Laino, María Rodríguez Martínez. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Machine Learning: Science and Technology 2021, 2 (2) , 025024. https://doi.org/10.1088/2632-2153/abe808
    77. Jannis Born, Matteo Manica, Ali Oskooei, Joris Cadow, Greta Markert, María Rodríguez Martínez. PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning. iScience 2021, 24 (4) , 102269. https://doi.org/10.1016/j.isci.2021.102269
    78. Riddhidev Banerjee, Lalith Perera, L.M. Viranga Tillekeratne. Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today 2021, 26 (3) , 804-816. https://doi.org/10.1016/j.drudis.2020.12.005
    79. Junde Li, Rasit O. Topaloglu, Swaroop Ghosh. Quantum Generative Models for Small Molecule Drug Discovery. IEEE Transactions on Quantum Engineering 2021, 2 , 1-8. https://doi.org/10.1109/TQE.2021.3104804
    80. Stephen J. Barigye, José M. García de la Vega, Yunierkis Perez‐Castillo. Generative Adversarial Networks (GANs) Based Synthetic Sampling for Predictive Modeling. Molecular Informatics 2020, 39 (10) https://doi.org/10.1002/minf.202000086
    81. Marina Macchiagodena, Marco Pagliai, Piero Procacci. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chemical Physics Letters 2020, 750 , 137489. https://doi.org/10.1016/j.cplett.2020.137489
    82. Xiaoqing Gu, Cong Zhang, Tongguang Ni. Feature Selection and Rule Generation Integrated Learning for Takagi-Sugeno-Kang Fuzzy System and its Application in Medical Data Classification. IEEE Access 2019, 7 , 169029-169037. https://doi.org/10.1109/ACCESS.2019.2954707

    Molecular Pharmaceutics

    Cite this: Mol. Pharmaceutics 2019, 16, 10, 4282–4291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.molpharmaceut.9b00634
    Published August 22, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    4475

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.