From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand DesignClick to copy article linkArticle link copied!
- Miha SkalicMiha SkalicComputational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, SpainMore by Miha Skalic
- Davide SabbadinDavide SabbadinComputational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, SpainMore by Davide Sabbadin
- Boris SattarovBoris SattarovComputational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, SpainMore by Boris Sattarov
- Simone SciabolaSimone SciabolaBiogen Chemistry and Molecular Therapeutics, 115 Broadway Street, Cambridge, Massachusetts 02142, United StatesMore by Simone Sciabola
- Gianni De Fabritiis*Gianni De Fabritiis*E-mail: [email protected]Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, 08003 Barcelona, SpainAcellera, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, SpainInstitució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, SpainMore by Gianni De Fabritiis
Abstract
Chemical space is impractically large, and conventional structure-based virtual screening techniques cannot be used to simply search through the entire space to discover effective bioactive molecules. To address this shortcoming, we propose a generative adversarial network to generate, rather than search, diverse three-dimensional ligand shapes complementary to the pocket. Furthermore, we show that the generated molecule shapes can be decoded using a shape-captioning network into a sequence of SMILES enabling directly the structure-based de novo drug design. We evaluate the quality of the method by both structure- (docking) and ligand-based [quantitative structure–activity relationship (QSAR)] virtual screening methods. For both evaluation approaches, we observed enrichment compared to random sampling from initial chemical space of ZINC drug-like compounds.
Cited By
This article is cited by 82 publications.
- Shreyas Supekar, Dillon W. P. Tay, Wan Lin Yeo, Kwok Wai Eric Tam, Ying Sin Koo, Jie Yang See, Jhoann M. T. Miyajima, Sebastian Maurer-Stroh, Ee Lui Ang, Yee Hwee Lim, Hao Fan. A Machine Learning-Guided Approach to Navigate the Substrate Activity Scope of Galactose Oxidase: Application in the Conversion of Pharmaceutically Relevant Bulky Secondary Alcohols. ACS Catalysis 2024, 14
(23)
, 17233-17243. https://doi.org/10.1021/acscatal.4c04660
- Haoyang Liu, Yifei Qin, Zhangming Niu, Mingyuan Xu, Jiaqiang Wu, Xianglu Xiao, Jinping Lei, Ting Ran, Hongming Chen. How Good are Current Pocket-Based 3D Generative Models?: The Benchmark Set and Evaluation of Protein Pocket-Based 3D Molecular Generative Models. Journal of Chemical Information and Modeling 2024, Article ASAP.
- Yidan Tang, Rocco Moretti, Jens Meiler. Recent Advances in Automated Structure-Based De Novo Drug Design. Journal of Chemical Information and Modeling 2024, 64
(6)
, 1794-1805. https://doi.org/10.1021/acs.jcim.4c00247
- Mingyang Wang, Zhengjian Wu, Jike Wang, Gaoqi Weng, Yu Kang, Peichen Pan, Dan Li, Yafeng Deng, Xiaojun Yao, Zhitong Bing, Chang-Yu Hsieh, Tingjun Hou. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space. Journal of Chemical Information and Modeling 2024, 64
(4)
, 1213-1228. https://doi.org/10.1021/acs.jcim.3c01964
- Gregory W. Kyro, Anton Morgunov, Rafael I. Brent, Victor S. Batista. ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation. Journal of Chemical Information and Modeling 2024, 64
(3)
, 653-665. https://doi.org/10.1021/acs.jcim.3c01456
- Minfei Ma, Xinben Zhang, Liping Zhou, Zijian Han, Yulong Shi, Jintian Li, Leyun Wu, Zhijian Xu, Weiliang Zhu. D3Rings: A Fast and Accurate Method for Ring System Identification and Deep Generation of Drug-Like Cyclic Compounds. Journal of Chemical Information and Modeling 2024, 64
(3)
, 724-736. https://doi.org/10.1021/acs.jcim.3c01657
- Sowmya Ramaswamy Krishnan, Navneet Bung, Sarveswara Rao Vangala, Rajgopal Srinivasan, Gopalakrishnan Bulusu, Arijit Roy. De Novo Structure-Based Drug Design Using Deep Learning. Journal of Chemical Information and Modeling 2022, 62
(21)
, 5100-5109. https://doi.org/10.1021/acs.jcim.1c01319
- Mingyang Wang, Chang-Yu Hsieh, Jike Wang, Dong Wang, Gaoqi Weng, Chao Shen, Xiaojun Yao, Zhitong Bing, Honglin Li, Dongsheng Cao, Tingjun Hou. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. Journal of Medicinal Chemistry 2022, 65
(13)
, 9478-9492. https://doi.org/10.1021/acs.jmedchem.2c00732
- Thomas E. Hadfield, Fergus Imrie, Andy Merritt, Kristian Birchall, Charlotte M. Deane. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration. Journal of Chemical Information and Modeling 2022, 62
(10)
, 2280-2292. https://doi.org/10.1021/acs.jcim.1c01311
- Weixin Xie, Fanhao Wang, Yibo Li, Luhua Lai, Jianfeng Pei. Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models. Journal of Chemical Information and Modeling 2022, 62
(10)
, 2269-2279. https://doi.org/10.1021/acs.jcim.2c00042
- Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang Xu, Hualiang Jiang, Nan Qiao, Mingyue Zheng. Generative Models for De Novo Drug Design. Journal of Medicinal Chemistry 2021, 64
(19)
, 14011-14027. https://doi.org/10.1021/acs.jmedchem.1c00927
- Mingyuan Xu, Ting Ran, Hongming Chen. De Novo Molecule Design Through the Molecular Generative Model Conditioned by 3D Information of Protein Binding Sites. Journal of Chemical Information and Modeling 2021, 61
(7)
, 3240-3254. https://doi.org/10.1021/acs.jcim.0c01494
- Jacques Boitreaud, Vincent Mallet, Carlos Oliver, Jérôme Waldispühl. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery. Journal of Chemical Information and Modeling 2020, 60
(12)
, 5658-5666. https://doi.org/10.1021/acs.jcim.0c00833
- Marina Macchiagodena, Marco Pagliai, Maurice Karrenbrock, Guido Guarnieri, Francesco Iannone, Piero Procacci. Virtual Double-System Single-Box: A Nonequilibrium Alchemical Technique for Absolute Binding Free Energy Calculations: Application to Ligands of the SARS-CoV-2 Main Protease. Journal of Chemical Theory and Computation 2020, 16
(11)
, 7160-7172. https://doi.org/10.1021/acs.jctc.0c00634
- Lei Huang, Tingyang Xu, Yang Yu, Peilin Zhao, Xingjian Chen, Jing Han, Zhi Xie, Hailong Li, Wenge Zhong, Ka-Chun Wong, Hengtong Zhang. A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-46569-1
- Yaodong Yang, Guangyong Chen, Jinpeng Li, Junyou Li, Odin Zhang, Xujun Zhang, Lanqing Li, Jianye Hao, Ercheng Wang, Pheng-Ann Heng. Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS. Communications Biology 2024, 7
(1)
https://doi.org/10.1038/s42003-024-06746-w
- Bing Li, Kan Tan, Angelyn R. Lao, Haiying Wang, Huiru Zheng, Le Zhang. A comprehensive review of artificial intelligence for pharmacology research. Frontiers in Genetics 2024, 15 https://doi.org/10.3389/fgene.2024.1450529
- Zygimantas Jocys, Joanna Grundy, Katayoun Farrahi. DrugPose: benchmarking 3D generative methods for early stage drug discovery. Digital Discovery 2024, 3
(7)
, 1308-1318. https://doi.org/10.1039/D4DD00076E
- Sowmya Ramaswamy Krishnan, Navneet Bung, Rajgopal Srinivasan, Arijit Roy. Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process. Journal of Molecular Graphics and Modelling 2024, 129 , 108734. https://doi.org/10.1016/j.jmgm.2024.108734
- Zamara Mariam, Sarfaraz K. Niazi, Matthias Magoola. Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond. BioMedInformatics 2024, 4
(2)
, 1441-1456. https://doi.org/10.3390/biomedinformatics4020079
- Solene Bechelli, Jerome Delhommelle. AI's role in pharmaceuticals: Assisting drug design from protein interactions to drug development. Artificial Intelligence Chemistry 2024, 2
(1)
, 100038. https://doi.org/10.1016/j.aichem.2023.100038
- Yunguang Qiu, Feixiong Cheng. Artificial intelligence for drug discovery and development in Alzheimer's disease. Current Opinion in Structural Biology 2024, 85 , 102776. https://doi.org/10.1016/j.sbi.2024.102776
- Amit Gangwal, Azim Ansari, Iqrar Ahmad, Abul Kalam Azad, Vinoth Kumarasamy, Vetriselvan Subramaniyan, Ling Shing Wong. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Frontiers in Pharmacology 2024, 15 https://doi.org/10.3389/fphar.2024.1331062
- Wei-Ven Tee, Igor N. Berezovsky. Allosteric drugs: New principles and design approaches. Current Opinion in Structural Biology 2024, 84 , 102758. https://doi.org/10.1016/j.sbi.2023.102758
- Yangkun Zheng, Fengqing Lu, Jiajun Zou, Haoyu Hua, Xiaoli Lu, Xiaoping Min. De Novo Design of Target-Specific Ligands Using BERT-Pretrained Transformer. 2024, 311-322. https://doi.org/10.1007/978-981-99-8549-4_26
- Wei Feng, Lvwei Wang, Zaiyun Lin, Yanhao Zhu, Han Wang, Jianqiang Dong, Rong Bai, Huting Wang, Jielong Zhou, Wei Peng, Bo Huang, Wenbiao Zhou. Generation of 3D molecules in pockets via a language model. Nature Machine Intelligence 2024, 6
(1)
, 62-73. https://doi.org/10.1038/s42256-023-00775-6
- Virgilio Romanelli, Carmen Cerchia, Antonio Lavecchia. Unlocking the Potential of Generative Artificial Intelligence in Drug Discovery. 2024, 37-63. https://doi.org/10.1007/978-3-031-46238-2_3
- Chunli Sha, Fei Zhu. Goal-directed molecule generation with fine-tuning by policy gradient. Expert Systems with Applications 2024, 62 , 123127. https://doi.org/10.1016/j.eswa.2023.123127
- Syed Aslah Ahmad Faizi, Nripendra Kumar Singh, Ashraf Kamal, Khalid Raza. Generative adversarial networks in protein and ligand structure generation: a case study. 2024, 231-248. https://doi.org/10.1016/B978-0-443-22299-3.00014-1
- Abin V. Geevarghese. Explainable Artificial Intelligence in Drug Discovery. 2024, 113-134. https://doi.org/10.1007/978-981-97-3705-5_6
- Ravipas Aphikulvanich, Natapol Pornputtapong, Duangdao Wichadakul. Mol-Zero-GAN: zero-shot adaptation of molecular generative adversarial network for specific protein targets. RSC Advances 2023, 13
(51)
, 36048-36059. https://doi.org/10.1039/D3RA03954D
- Yangyang Chen, Zixu Wang, Lei Wang, Jianmin Wang, Pengyong Li, Dongsheng Cao, Xiangxiang Zeng, Xiucai Ye, Tetsuya Sakurai. Deep generative model for drug design from protein target sequence. Journal of Cheminformatics 2023, 15
(1)
https://doi.org/10.1186/s13321-023-00702-2
- Abu Mohiuddin, Sumanta Mondal. Advancement of Computational Design Drug Delivery System in COVID-
19: Current Updates and Future Crosstalk- A Critical Update. Infectious Disorders - Drug Targets 2023, 23
(8)
https://doi.org/10.2174/1871526523666230816151614
- Thomas E. Hadfield, Jack Scantlebury, Charlotte M. Deane. Exploring the ability of machine learning-based virtual screening models to identify the functional groups responsible for binding. Journal of Cheminformatics 2023, 15
(1)
https://doi.org/10.1186/s13321-023-00755-3
- Hongyan Du, Dejun Jiang, Odin Zhang, Zhenxing Wu, Junbo Gao, Xujun Zhang, Xiaorui Wang, Yafeng Deng, Yu Kang, Dan Li, Peichen Pan, Chang-Yu Hsieh, Tingjun Hou. A flexible data-free framework for structure-based
de novo
drug design with reinforcement learning. Chemical Science 2023, 14
(43)
, 12166-12181. https://doi.org/10.1039/D3SC04091G
- Rajkumar Chakraborty, Yasha Hasija. Utilizing deep learning to explore chemical space for drug lead optimization. Expert Systems with Applications 2023, 229 , 120592. https://doi.org/10.1016/j.eswa.2023.120592
- Shikhar Shasya, Shubham Sharma, Prabhakar Bhimalapuram. Generative schemes for drug design with shape captioning. Journal of Chemical Sciences 2023, 135
(3)
https://doi.org/10.1007/s12039-023-02196-9
- Mayar Tarek Ibrahim, Jiyong Lee, Peng Tao. Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening. Molecular Diversity 2023, 27
(4)
, 1661-1674. https://doi.org/10.1007/s11030-022-10519-0
- R. Özçelik, D. van Tilborg, J. Jiménez‐Luna, F. Grisoni. Structure‐Based Drug Discovery with Deep Learning**. ChemBioChem 2023, 24
(13)
https://doi.org/10.1002/cbic.202200776
- Jia-Ning Li, Guang Yang, Peng-Cheng Zhao, Xue-Xin Wei, Jian-Yu Shi. CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties. Bioinformatics 2023, 39
(Supplement_1)
, i326-i336. https://doi.org/10.1093/bioinformatics/btad222
- Ana L. Chávez-Hernández, Edgar López-López, José L. Medina-Franco. Yin-yang in drug discovery: rethinking de novo design and development of predictive models. Frontiers in Drug Discovery 2023, 3 https://doi.org/10.3389/fddsv.2023.1222655
- Atsushi Yoshimori, Jürgen Bajorath. Motif2Mol: Prediction of New Active Compounds Based on Sequence Motifs of Ligand Binding Sites in Proteins Using a Biochemical Language Model. Biomolecules 2023, 13
(5)
, 833. https://doi.org/10.3390/biom13050833
- Francesca Grisoni. Chemical language models for de novo drug design: Challenges and opportunities. Current Opinion in Structural Biology 2023, 79 , 102527. https://doi.org/10.1016/j.sbi.2023.102527
- Morgan Thomas, Andreas Bender, Chris de Graaf. Integrating structure-based approaches in generative molecular design. Current Opinion in Structural Biology 2023, 79 , 102559. https://doi.org/10.1016/j.sbi.2023.102559
- Manan Goel, Rishal Aggarwal, Bhuvanesh Sridharan, Pradeep Kumar Pal, U. Deva Priyakumar. Efficient and enhanced sampling of drug‐like chemical space for virtual screening and molecular design using modern machine learning methods. WIREs Computational Molecular Science 2023, 13
(2)
https://doi.org/10.1002/wcms.1637
- Tomasz Danel, Jan Łęski, Sabina Podlewska, Igor T. Podolak. Docking-based generative approaches in the search for new drug candidates. Drug Discovery Today 2023, 28
(2)
, 103439. https://doi.org/10.1016/j.drudis.2022.103439
- Michael A. Hough, Filippo Prischi, Jonathan A. R. Worrall. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1113762
- Mingyang Wang, Dan Li, Tingjun Hou, Yu Kang. Deep learning approaches for de novo drug design: an overview. SCIENTIA SINICA Chimica 2023, 53
(1)
, 95-106. https://doi.org/10.1360/SSC-2022-0135
- Mingyu Li, Xiaobin Lan, Xun Lu, Jian Zhang. A Structure-Based Allosteric Modulator Design Paradigm. Health Data Science 2023, 3 https://doi.org/10.34133/hds.0094
- Feng Xiong, Honggui Xu, Mingao Yu, Xingyu Chen, Zhenmin Zhong, Yuhan Guo, Meihong Chen, Huanfang Ou, Jiaqi Wu, Anhua Xie, Jiaqi Xiong, Linlin Xu, Lanmei Zhang, Qijian Zhong, Liye Huang, Zhenwei Li, Tianyuan Zhang, Feng Jin, Xun He. 3CLpro inhibitors: DEL-based molecular generation. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1085665
- Lvwei Wang, Rong Bai, Xiaoxuan Shi, Wei Zhang, Yinuo Cui, Xiaoman Wang, Cheng Wang, Haoyu Chang, Yingsheng Zhang, Jielong Zhou, Wei Peng, Wenbiao Zhou, Bo Huang. A pocket-based 3D molecule generative model fueled by experimental electron density. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-19363-6
- Lucian Chan, Rajendra Kumar, Marcel Verdonk, Carl Poelking. A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design. Nature Machine Intelligence 2022, 4
(12)
, 1130-1142. https://doi.org/10.1038/s42256-022-00564-7
- Mingyang Wang, Jike Wang, Gaoqi Weng, Yu Kang, Peichen Pan, Dan Li, Yafeng Deng, Honglin Li, Chang-Yu Hsieh, Tingjun Hou. ReMODE: a deep learning-based web server for target-specific drug design. Journal of Cheminformatics 2022, 14
(1)
https://doi.org/10.1186/s13321-022-00665-w
- Susanne Sauer, Hans Matter, Gerhard Hessler, Christoph Grebner. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.1012507
- Huihui Yan, Yuanyuan Xie, Yao Liu, Leer Yuan, Rong Sheng. ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery. Briefings in Bioinformatics 2022, 23
(5)
https://doi.org/10.1093/bib/bbac350
- Gökçe Uludoğan, Elif Ozkirimli, Kutlu O Ulgen, Nilgün Karalı, Arzucan Özgür. Exploiting pretrained biochemical language models for targeted drug design. Bioinformatics 2022, 38
(Supplement_2)
, ii155-ii161. https://doi.org/10.1093/bioinformatics/btac482
- Hao Qian, Cheng Lin, Dengwei Zhao, Shikui Tu, Lei Xu, . AlphaDrug: protein target specific de novo molecular generation. PNAS Nexus 2022, 1
(4)
https://doi.org/10.1093/pnasnexus/pgac227
- Kailasam N. Vennila, Kuppanagounder P. Elango. Multimodal generative neural networks and molecular dynamics based identification of PDK1 PIF-pocket modulators. Molecular Systems Design & Engineering 2022, 7
(9)
, 1085-1092. https://doi.org/10.1039/D2ME00051B
- Qichang Zhao, Mengyun Yang, Zhongjian Cheng, Yaohang Li, Jianxin Wang. Biomedical Data and Deep Learning Computational Models for Predicting Compound-Protein Relations. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2022, 19
(4)
, 2092-2110. https://doi.org/10.1109/TCBB.2021.3069040
- Qifeng Bai, Shuo Liu, Yanan Tian, Tingyang Xu, Antonio Jesús Banegas‐Luna, Horacio Pérez‐Sánchez, Junzhou Huang, Huanxiang Liu, Xiaojun Yao. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. WIREs Computational Molecular Science 2022, 12
(3)
https://doi.org/10.1002/wcms.1581
- Thomas E. Hadfield, Charlotte M. Deane. AI in 3D compound design. Current Opinion in Structural Biology 2022, 73 , 102326. https://doi.org/10.1016/j.sbi.2021.102326
- Matthew Ragoza, Tomohide Masuda, David Ryan Koes. Generating 3D molecules conditional on receptor binding sites with deep generative models. Chemical Science 2022, 13
(9)
, 2701-2713. https://doi.org/10.1039/D1SC05976A
- Alejandro Varela‐Rial, Maciej Majewski, Gianni De Fabritiis. Structure based virtual screening: Fast and slow. WIREs Computational Molecular Science 2022, 12
(2)
https://doi.org/10.1002/wcms.1544
- Jaroslaw Polanski. Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. International Journal of Molecular Sciences 2022, 23
(5)
, 2797. https://doi.org/10.3390/ijms23052797
- Pengfei Jia, Junping Pei, Guan Wang, Xiaoli Pan, Yumeng Zhu, Yong Wu, Liang Ouyang. The roles of computer-aided drug synthesis in drug development. Green Synthesis and Catalysis 2022, 3
(1)
, 11-24. https://doi.org/10.1016/j.gresc.2021.11.007
- Mingyang Wang, Zhe Wang, Huiyong Sun, Jike Wang, Chao Shen, Gaoqi Weng, Xin Chai, Honglin Li, Dongsheng Cao, Tingjun Hou. Deep learning approaches for de novo drug design: An overview. Current Opinion in Structural Biology 2022, 72 , 135-144. https://doi.org/10.1016/j.sbi.2021.10.001
- Jinxian Wang, Ying Zhang, Wenjuan Nie, Yi Luo, Lei Deng. Computational anti-COVID-19 drug design: progress and challenges. Briefings in Bioinformatics 2022, 23
(1)
https://doi.org/10.1093/bib/bbab484
- Ying Zhou, Yintao Zhang, Xichen Lian, Fengcheng Li, Chaoxin Wang, Feng Zhu, Yunqing Qiu, Yuzong Chen. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Research 2022, 50
(D1)
, D1398-D1407. https://doi.org/10.1093/nar/gkab953
- Juan I. Di Filippo, Claudio N. Cavasotto. Guided structure-based ligand identification and design via artificial intelligence modeling. Expert Opinion on Drug Discovery 2022, 17
(1)
, 71-78. https://doi.org/10.1080/17460441.2021.1979514
- Morgan Thomas, Andrew Boardman, Miguel Garcia-Ortegon, Hongbin Yang, Chris de Graaf, Andreas Bender. Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges. 2022, 1-59. https://doi.org/10.1007/978-1-0716-1787-8_1
- Ferruccio Palazzesi, Alfonso Pozzan. Deep Learning Applied to Ligand-Based De Novo Drug Design. 2022, 273-299. https://doi.org/10.1007/978-1-0716-1787-8_12
- , Syeda Rehana Zia. Identification of Potential Ligands of the Main Protease of Coronavirus SARS-CoV-2 (2019-nCoV) Using Multimodal Generative Neural-Networks. French-Ukrainian Journal of Chemistry 2022, 10
(1)
, 30-47. https://doi.org/10.17721/fujcV10I1P30-47
- Fergus Imrie, Thomas E. Hadfield, Anthony R. Bradley, Charlotte M. Deane. Deep generative design with 3D pharmacophoric constraints. Chemical Science 2021, 12
(43)
, 14577-14589. https://doi.org/10.1039/D1SC02436A
- José Jiménez-Luna, Francesca Grisoni, Nils Weskamp, Gisbert Schneider. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery 2021, 16
(9)
, 949-959. https://doi.org/10.1080/17460441.2021.1909567
- Harrison Green, David R. Koes, Jacob D. Durrant. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chemical Science 2021, 12
(23)
, 8036-8047. https://doi.org/10.1039/D1SC00163A
- Jannis Born, Matteo Manica, Joris Cadow, Greta Markert, Nil Adell Mill, Modestas Filipavicius, Nikita Janakarajan, Antonio Cardinale, Teodoro Laino, María Rodríguez Martínez. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Machine Learning: Science and Technology 2021, 2
(2)
, 025024. https://doi.org/10.1088/2632-2153/abe808
- Jannis Born, Matteo Manica, Ali Oskooei, Joris Cadow, Greta Markert, María Rodríguez Martínez. PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning. iScience 2021, 24
(4)
, 102269. https://doi.org/10.1016/j.isci.2021.102269
- Riddhidev Banerjee, Lalith Perera, L.M. Viranga Tillekeratne. Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today 2021, 26
(3)
, 804-816. https://doi.org/10.1016/j.drudis.2020.12.005
- Junde Li, Rasit O. Topaloglu, Swaroop Ghosh. Quantum Generative Models for Small Molecule Drug Discovery. IEEE Transactions on Quantum Engineering 2021, 2 , 1-8. https://doi.org/10.1109/TQE.2021.3104804
- Stephen J. Barigye, José M. García de la Vega, Yunierkis Perez‐Castillo. Generative Adversarial Networks (GANs) Based Synthetic Sampling for Predictive Modeling. Molecular Informatics 2020, 39
(10)
https://doi.org/10.1002/minf.202000086
- Marina Macchiagodena, Marco Pagliai, Piero Procacci. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chemical Physics Letters 2020, 750 , 137489. https://doi.org/10.1016/j.cplett.2020.137489
- Xiaoqing Gu, Cong Zhang, Tongguang Ni. Feature Selection and Rule Generation Integrated Learning for Takagi-Sugeno-Kang Fuzzy System and its Application in Medical Data Classification. IEEE Access 2019, 7 , 169029-169037. https://doi.org/10.1109/ACCESS.2019.2954707
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.