Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Nanoscale Detection of Magnon Excitations with Variable Wavevectors Through a Quantum Spin Sensor
My Activity
    Letter

    Nanoscale Detection of Magnon Excitations with Variable Wavevectors Through a Quantum Spin Sensor
    Click to copy article linkArticle link copied!

    • Eric Lee-Wong
      Eric Lee-Wong
      Department of Physics, University of California San Diego, La Jolla, California 92093, United States
      Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    • Ruolan Xue
      Ruolan Xue
      Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, United States
      John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      More by Ruolan Xue
    • Feiyang Ye
      Feiyang Ye
      Department of Physics, University of California San Diego, La Jolla, California 92093, United States
      More by Feiyang Ye
    • Andreas Kreisel
      Andreas Kreisel
      Institute for Theoretical Physics, University of Leipzig, Brderstr.16, 04103 Leipzig, Germany
    • Toeno van der Sar
      Toeno van der Sar
      Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
    • Amir Yacoby
      Amir Yacoby
      Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, United States
      John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      More by Amir Yacoby
    • Chunhui Rita Du*
      Chunhui Rita Du
      Department of Physics, University of California San Diego, La Jolla, California 92093, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 5, 3284–3290
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c00085
    Published April 16, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report the optical detection of magnons with a broad range of wavevectors in magnetic insulator Y3Fe5O12 thin films by proximate nitrogen-vacancy (NV) single-spin sensors. Through multimagnon scattering processes, the excited magnons generate fluctuating magnetic fields at the NV electron spin resonance frequencies, which accelerate the relaxation of NV spins. By measuring the variation of the emitted spin-dependent photoluminescence of the NV centers, magnons with variable wavevectors up to ∼5 × 107 m–1 can be optically accessed, providing an alternative perspective to reveal the underlying spin behaviors in magnetic systems. Our results highlight the significant opportunities offered by NV single-spin quantum sensors in exploring nanoscale spin dynamics of emergent spintronic materials.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00085.

    • Detailed information on the samples and NV measurement systems, calculation of magnon dispersion relationship of YIG films, calibration of the NV-to-sample distances, characterization of the local microwave fields at NV sites, optical detection of magnetic resonance measurements, and measurements of T2* of an NV center on a YIG thin film (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 54 publications.

    1. Obed Alves Santos, Bart J. van Wees. Magnon Confinement in an All-on-Chip YIG Cavity Resonator Using Hybrid YIG/Py Magnon Barriers. Nano Letters 2023, 23 (20) , 9303-9309. https://doi.org/10.1021/acs.nanolett.3c02388
    2. Erin S. Grant, Liam T. Hall, Lloyd C. L. Hollenberg, Gawain McColl, David A. Simpson. Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry. ACS Nano 2023, 17 (1) , 372-381. https://doi.org/10.1021/acsnano.2c08698
    3. Brecht G. Simon, Samer Kurdi, Helena La, Iacopo Bertelli, Joris J. Carmiggelt, Maximilian Ruf, Nick de Jong, Hans van den Berg, Allard J. Katan, Toeno van der Sar. Directional Excitation of a High-Density Magnon Gas Using Coherently Driven Spin Waves. Nano Letters 2021, 21 (19) , 8213-8219. https://doi.org/10.1021/acs.nanolett.1c02654
    4. Jilei Chen, Hanchen Wang, Tobias Hula, Chuanpu Liu, Song Liu, Tao Liu, Hao Jia, Qiuming Song, Chenyang Guo, Yuelin Zhang, Jinxing Zhang, Xiufeng Han, Dapeng Yu, Mingzhong Wu, Helmut Schultheiss, Haiming Yu. Reconfigurable Spin-Wave Interferometer at the Nanoscale. Nano Letters 2021, 21 (14) , 6237-6244. https://doi.org/10.1021/acs.nanolett.1c02010
    5. Guoqing Wang, Yi-Xiang Liu, Yuan Zhu, Paola Cappellaro. Nanoscale Vector AC Magnetometry with a Single Nitrogen-Vacancy Center in Diamond. Nano Letters 2021, 21 (12) , 5143-5150. https://doi.org/10.1021/acs.nanolett.1c01165
    6. Derek S. Wang, Michael Haas, Prineha Narang. Quantum Interfaces to the Nanoscale. ACS Nano 2021, 15 (5) , 7879-7888. https://doi.org/10.1021/acsnano.1c01255
    7. Ryo Furukawa, Shoki Nezu, Takuro Eguchi, Koji Sekiguchi. Mode-dependent magnonic noise. NPG Asia Materials 2024, 16 (1) https://doi.org/10.1038/s41427-023-00522-8
    8. Ravi Kumar, Saurabh Kumar Srivastav, Ujjal Roy, Jinhong Park, Christian Spånslätt, K. Watanabe, T. Taniguchi, Yuval Gefen, Alexander D. Mirlin, Anindya Das. Electrical noise spectroscopy of magnons in a quantum Hall ferromagnet. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49446-z
    9. Han‐Xiang Zang, Wang Jiang, Nai‐Jie Guo, Yong Liu, Meng‐Qi Ma, Zhi‐Wei Liu, Long‐Kun Shan, Yang Dong, Shao‐Chun Zhang, Jian‐Shun Tang, Xiang‐Dong Chen, Guang‐Can Guo, Fang‐Wen Sun. Detecting and Imaging of Magnons at Nanoscale with van der Waals Quantum Sensor. Advanced Functional Materials 2024, 6 https://doi.org/10.1002/adfm.202412166
    10. Xiufeng Han, Hao Wu, Tianyi Zhang. Magnonics: Materials, physics, and devices. Applied Physics Letters 2024, 125 (2) https://doi.org/10.1063/5.0216094
    11. Troy Losey, Denis R. Candido, Jin Zhang, Y. Meurice, Michael E. Flatté, S.-W. Tsai. Quantum simulation of the spin- 1 2 XYZ model using solid-state spin centers. Physical Review B 2024, 110 (1) https://doi.org/10.1103/PhysRevB.110.014413
    12. Denis R. Candido, Michael E. Flatté. Interplay between charge and spin noise in the near-surface theory of decoherence and relaxation of C 3 v symmetry qutrit spin-1 centers. Physical Review B 2024, 110 (2) https://doi.org/10.1103/PhysRevB.110.024419
    13. Jingcheng Zhou, Hanyi Lu, Di Chen, Mengqi Huang, Gerald Q. Yan, Faris Al-matouq, Jiu Chang, Dziga Djugba, Zhigang Jiang, Hailong Wang, Chunhui Rita Du. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Science Advances 2024, 10 (18) https://doi.org/10.1126/sciadv.adk8495
    14. Qin Xu, Hil Fung Harry Cheung, Donley S. Cormode, Tharnier O. Puel, Srishti Pal, Huma Yusuf, Michael Chilcote, Michael E. Flatté, Ezekiel Johnston‐Halperin, Gregory D. Fuchs. Strong Photon‐Magnon Coupling Using a Lithographically Defined Organic Ferrimagnet. Advanced Science 2024, 11 (14) https://doi.org/10.1002/advs.202310032
    15. Rupak Timalsina, Haohan Wang, Bharat Giri, Adam Erickson, Xiaoshan Xu, Abdelghani Laraoui. Mapping of Spin‐Wave Transport in Thulium Iron Garnet Thin Films Using Diamond Quantum Microscopy. Advanced Electronic Materials 2024, 10 (3) https://doi.org/10.1002/aelm.202300648
    16. J. Trimble, B. Gould, F. J. Heremans, S. S.-L. Zhang, D. D. Awschalom, J. Berezovsky. Parallel pumping of magnons in inhomogeneous spin textures probed through NV spin relaxometry. Journal of Applied Physics 2024, 135 (7) https://doi.org/10.1063/5.0192063
    17. Masaya Fukami, Jonathan C. Marcks, Denis R. Candido, Leah R. Weiss, Benjamin Soloway, Sean E. Sullivan, Nazar Delegan, F. Joseph Heremans, Michael E. Flatté, David D. Awschalom. Magnon-mediated qubit coupling determined via dissipation measurements. Proceedings of the National Academy of Sciences 2024, 121 (2) https://doi.org/10.1073/pnas.2313754120
    18. So Takei, Yaroslav Tserkovnyak. Detecting fractionalization in critical spin liquids using color centers. Physical Review Research 2024, 6 (1) https://doi.org/10.1103/PhysRevResearch.6.013043
    19. Md Mobarak Hossain Polash, Alex I. Smirnov, Daryoosh Vashaee. Electron spin resonance in emerging spin-driven applications: Fundamentals and future perspectives. Applied Physics Reviews 2023, 10 (4) https://doi.org/10.1063/5.0072564
    20. Adrian Solyom, Michael Caouette-Mansour, Brandon Ruffolo, Patrick Braganca, Lilian Childress, Jack C. Sankey. Single-spin spectroscopy of spontaneous and phase-locked spin-torque-oscillator dynamics. Physical Review Applied 2023, 20 (5) https://doi.org/10.1103/PhysRevApplied.20.054055
    21. T. Hache, L. Körber, T. Hula, K. Lenz, A. Kákay, O. Hellwig, J. Lindner, J. Fassbender, H. Schultheiss. Control of Four-Magnon Scattering by Pure Spin Current in a Magnonic Waveguide. Physical Review Applied 2023, 20 (1) https://doi.org/10.1103/PhysRevApplied.20.014062
    22. Eufemio Moreno‐Pineda, Wolfgang Wernsdorfer. Single‐Molecule Magnets Spin Devices. 2023, 269-304. https://doi.org/10.1002/9783527837427.ch12
    23. Ying Xu, Weiye Zhang, Chuanshan Tian. Recent advances on applications of NV − magnetometry in condensed matter physics. Photonics Research 2023, 11 (3) , 393. https://doi.org/10.1364/PRJ.471266
    24. Jared Rovny, Zhiyang Yuan, Mattias Fitzpatrick, Ahmed I. Abdalla, Laura Futamura, Carter Fox, Matthew Carl Cambria, Shimon Kolkowitz, Nathalie P. de Leon. Nanoscale covariance magnetometry with diamond quantum sensors. Science 2022, 378 (6626) , 1301-1305. https://doi.org/10.1126/science.ade9858
    25. Jeffrey Rable, Benjamin Piazza, Jyotirmay Dwivedi, Nitin Samarth. Local Ferromagnetic Resonance Measurements of Mesoscopically Patterned Ferromagnets Using Deterministically Placed Nanodiamonds. Physical Review Applied 2022, 18 (6) https://doi.org/10.1103/PhysRevApplied.18.064004
    26. Patrick Quarterman, Yabin Fan, Zhijie Chen, Christopher J. Jensen, Rajesh V. Chopdekar, Dustin A. Gilbert, Megan E. Holtz, Mark D. Stiles, Julie A. Borchers, Kai Liu, Luqiao Liu, Alexander J. Grutter. Probing antiferromagnetic coupling in magnetic insulator/metal heterostructures. Physical Review Materials 2022, 6 (9) https://doi.org/10.1103/PhysRevMaterials.6.094418
    27. Binghui Yin, Mingming Yang, Xiaoyan Zeng, Ming Yan. Micromagnetic Study on Branch Hybridizations of Spin-Wave Modes in Ferromagnetic Nanostrips. Materials 2022, 15 (17) , 6144. https://doi.org/10.3390/ma15176144
    28. Gerald Q. Yan, Senlei Li, Hanyi Lu, Mengqi Huang, Yuxuan Xiao, Luke Wernert, Jeffrey A. Brock, Eric E. Fullerton, Hua Chen, Hailong Wang, Chunhui Rita Du. Quantum Sensing and Imaging of Spin–Orbit‐Torque‐Driven Spin Dynamics in the Non‐Collinear Antiferromagnet Mn 3 Sn. Advanced Materials 2022, 34 (23) https://doi.org/10.1002/adma.202200327
    29. Kamran Ullah, Emre Köse, Rawana Yagan, Mehmet C. Onbaşlı, Özgür E. Müstecaplıoğlu. Steady state entanglement of distant nitrogen-vacancy centers in a coherent thermal magnon bath. Physical Review Research 2022, 4 (2) https://doi.org/10.1103/PhysRevResearch.4.023221
    30. A. V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A. O. Adeyeye, J. Akerman, F. G. Aliev, A. Anane, A. Awad, C. H. Back, A. Barman, G. E. W. Bauer, M. Becherer, E. N. Beginin, V. A. S. V. Bittencourt, Y. M. Blanter, P. Bortolotti, I. Boventer, D. A. Bozhko, S. A. Bunyaev, J. J. Carmiggelt, R. R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba, O. V. Dobrovolskiy, C. Dubs, M. Elyasi, K. G. Fripp, H. Fulara, I. A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H. Huebl, M. Huth, E. Iacocca, M. B. Jungfleisch, G. N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M. Klaui, O. Klein, J. W. Klos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk, I. N. Krivorotov, V. V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun, Y. Li, M. Lindner, R. Macedo, S. Mayr, G. A. Melkov, S. Mieszczak, Y. Nakamura, H. T. Nembach, A. A. Nikitin, S. A. Nikitov, V. Novosad, J. A. Otalora, Y. Otani, A. Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A. A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko, K. Szulc, T. Taniguchi, M. Urbanek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics 2022, 58 (6) , 1-72. https://doi.org/10.1109/TMAG.2022.3149664
    31. Haocheng Fang, Shu Zhang, Yaroslav Tserkovnyak. Generalized model of magnon kinetics and subgap magnetic noise. Physical Review B 2022, 105 (18) https://doi.org/10.1103/PhysRevB.105.184406
    32. C. Gonzalez-Ballestero, Toeno van der Sar, O. Romero-Isart. Towards a quantum interface between spin waves and paramagnetic spin baths. Physical Review B 2022, 105 (7) https://doi.org/10.1103/PhysRevB.105.075410
    33. Hailong Wang, Shu Zhang, Nathan J. McLaughlin, Benedetta Flebus, Mengqi Huang, Yuxuan Xiao, Chuanpu Liu, Mingzhong Wu, Eric E. Fullerton, Yaroslav Tserkovnyak, Chunhui Rita Du. Noninvasive measurements of spin transport properties of an antiferromagnetic insulator. Science Advances 2022, 8 (1) https://doi.org/10.1126/sciadv.abg8562
    34. Farid Kalhor, Shoaib Mahmud, Noah F Opondo, Leif Bauer, Pronoy Das, Li-Ping Yang, Sunil Bhave, Zubin Jacob. Optically Induced Static Magnetic Field for Nitrogen-vacancy Centers in Diamond. 2022, FTh4M.6. https://doi.org/10.1364/CLEO_QELS.2022.FTh4M.6
    35. Dwi Prananto, Yuta Kainuma, Kunitaka Hayashi, Norikazu Mizuochi, Ken-ichi Uchida, Toshu An. Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond. Physical Review Applied 2021, 16 (6) https://doi.org/10.1103/PhysRevApplied.16.064058
    36. Denis R. Candido, Michael E. Flatté. Suppression of the Optical Linewidth and Spin Decoherence of a Quantum Spin Center in a p - n Diode. PRX Quantum 2021, 2 (4) https://doi.org/10.1103/PRXQuantum.2.040310
    37. Tao Qu, Aneesh Venugopal, Randall Victora. Dependence of Nonlinear Response and Magnon Scattering on Damping. IEEE Journal of Microwaves 2021, 1 (4) , 997-1002. https://doi.org/10.1109/JMW.2021.3110433
    38. J. Trimble, B. Gould, F. J. Heremans, S. S.-L. Zhang, D. D. Awschalom, J. Berezovsky. Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex. Journal of Applied Physics 2021, 130 (8) https://doi.org/10.1063/5.0055595
    39. Guillermo Nava Antonio, Iacopo Bertelli, Brecht G. Simon, Rajasekhar Medapalli, Dmytro Afanasiev, Toeno van der Sar. Magnetic imaging and statistical analysis of the metamagnetic phase transition of FeRh with electron spins in diamond. Journal of Applied Physics 2021, 129 (22) https://doi.org/10.1063/5.0051791
    40. Jin Lan, Weichao Yu, Jiang Xiao. Geometric magnonics with chiral magnetic domain walls. Physical Review B 2021, 103 (21) https://doi.org/10.1103/PhysRevB.103.214407
    41. Maxime Rollo, Aurore Finco, Rana Tanos, Florentin Fabre, Thibaut Devolder, Isabelle Robert-Philip, Vincent Jacques. Quantitative study of the response of a single NV defect in diamond to magnetic noise. Physical Review B 2021, 103 (23) https://doi.org/10.1103/PhysRevB.103.235418
    42. Rouven Dreyer, Niklas Liebing, Eric R. J. Edwards, Andreas Müller, Georg Woltersdorf. Spin-wave localization and guiding by magnon band structure engineering in yttrium iron garnet. Physical Review Materials 2021, 5 (6) https://doi.org/10.1103/PhysRevMaterials.5.064411
    43. H. Yusuf, M. Chilcote, D. R. Candido, S. Kurfman, D. S. Cormode, Y. Lu, M. E. Flatté, E. Johnston-Halperin. Exploring a quantum-information-relevant magnonic material: Ultralow damping at low temperature in the organic ferrimagnet V[TCNE]x. AVS Quantum Science 2021, 3 (2) https://doi.org/10.1116/5.0044193
    44. Nathan J. McLaughlin, Yoav Kalcheim, Albert Suceava, Hailong Wang, Ivan K. Schuller, Chunhui Rita Du. Quantum Sensing of Insulator‐to‐Metal Transitions in a Mott Insulator. Advanced Quantum Technologies 2021, 4 (5) https://doi.org/10.1002/qute.202000142
    45. T. Qu, Aneesh Venugopal, R. H. Victora. Dependence of nonlinear response and magnon scattering on material properties. Journal of Applied Physics 2021, 129 (16) https://doi.org/10.1063/5.0044925
    46. Eric Lee-Wong, Jinjun Ding, Xiaoche Wang, Chuanpu Liu, Nathan J. McLaughlin, Hailong Wang, Mingzhong Wu, Chunhui Rita Du. Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with Perpendicular Anisotropy. Physical Review Applied 2021, 15 (3) https://doi.org/10.1103/PhysRevApplied.15.034031
    47. Kin On Ho, Yang Shen, Yiu Yung Pang, Wai Kuen Leung, Nan Zhao, Sen Yang. Diamond quantum sensors: from physics to applications on condensed matter research. Functional Diamond 2021, 1 (1) , 160-173. https://doi.org/10.1080/26941112.2021.1964926
    48. Mauricio Bejarano, Francisco Jose Trindade Goncalves, Michael Hollenbach, Toni Hache, Tobias Hula, Yonder Berencen, Jurgen Fassbender, Manfred Helm, Georgy V. Astakhov, Helmut Schultheiss. Mapping the Stray Fields of a Micromagnet Using Spin Centers in SiC. IEEE Magnetics Letters 2021, 12 , 1-5. https://doi.org/10.1109/LMAG.2021.3066341
    49. David D. Awschalom, Chunhui Rita Du, Rui He, F. Joseph Heremans, Axel Hoffmann, Justin Hou, Hidekazu Kurebayashi, Yi Li, Luqiao Liu, Valentine Novosad, Joseph Sklenar, Sean E. Sullivan, Dali Sun, Hong Tang, Vasyl Tyberkevych, Cody Trevillian, Adam W. Tsen, Leah R. Weiss, Wei Zhang, Xufeng Zhang, Liuyan Zhao, Ch. W. Zollitsch. Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper). IEEE Transactions on Quantum Engineering 2021, 2 , 1-36. https://doi.org/10.1109/TQE.2021.3057799
    50. Brendan A. McCullian, Ahmed M. Thabt, Benjamin A. Gray, Alex L. Melendez, Michael S. Wolf, Vladimir L. Safonov, Denis V. Pelekhov, Vidya P. Bhallamudi, Michael R. Page, P. Chris Hammel. Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19121-0
    51. Xiaoche Wang, Yuxuan Xiao, Chuanpu Liu, Eric Lee-Wong, Nathan J. McLaughlin, Hanfeng Wang, Mingzhong Wu, Hailong Wang, Eric E. Fullerton, Chunhui Rita Du. Electrical control of coherent spin rotation of a single-spin qubit. npj Quantum Information 2020, 6 (1) https://doi.org/10.1038/s41534-020-00308-8
    52. Avinash Rustagi, Iacopo Bertelli, Toeno van der Sar, Pramey Upadhyaya. Sensing chiral magnetic noise via quantum impurity relaxometry. Physical Review B 2020, 102 (22) https://doi.org/10.1103/PhysRevB.102.220403
    53. Yi Li, Wei Zhang, Vasyl Tyberkevych, Wai-Kwong Kwok, Axel Hoffmann, Valentine Novosad. Hybrid magnonics: Physics, circuits, and applications for coherent information processing. Journal of Applied Physics 2020, 128 (13) https://doi.org/10.1063/5.0020277
    54. B.A. McCullian, M. Chilcote, V.P. Bhallamudi, C.M. Purser, E. Johnston-Halperin, P.C. Hammel. Broadband Optical Detection of Ferromagnetic Resonance From the Organic-Based Ferrimagnet V[TCNE] x Using N- V Centers in Diamond. Physical Review Applied 2020, 14 (2) https://doi.org/10.1103/PhysRevApplied.14.024033

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 5, 3284–3290
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c00085
    Published April 16, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4979

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.