Near-Unity Light Absorption in a Monolayer WS2 Van der Waals Heterostructure Cavity
- Itai Epstein*Itai Epstein*Email: [email protected]ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, SpainMore by Itai Epstein
- ,
- Bernat TerrésBernat TerrésICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, SpainMore by Bernat Terrés
- ,
- André J. ChavesAndré J. ChavesGrupo de Materiais Semicondutores e Nanotecnologia and Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos,BrazilMore by André J. Chaves
- ,
- Varun-Varma PusapatiVarun-Varma PusapatiICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, SpainMore by Varun-Varma Pusapati
- ,
- Daniel A. RhodesDaniel A. RhodesDepartment of Mechanical Engineering, Columbia University, New York, New York 10027, United StatesMore by Daniel A. Rhodes
- ,
- Bettina FrankBettina FrankFourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, GermanyMore by Bettina Frank
- ,
- Valentin ZimmermannValentin ZimmermannFourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, GermanyMore by Valentin Zimmermann
- ,
- Ying QinYing QinSchool for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona 85287, United StatesMore by Ying Qin
- ,
- Kenji WatanabeKenji WatanabeNational Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, JapanMore by Kenji Watanabe
- ,
- Takashi TaniguchiTakashi TaniguchiNational Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, JapanMore by Takashi Taniguchi
- ,
- Harald GiessenHarald GiessenFourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, GermanyMore by Harald Giessen
- ,
- Sefaattin TongaySefaattin TongaySchool for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona 85287, United StatesMore by Sefaattin Tongay
- ,
- James C. HoneJames C. HoneDepartment of Mechanical Engineering, Columbia University, New York, New York 10027, United StatesMore by James C. Hone
- ,
- Nuno M. R. PeresNuno M. R. PeresCentro de Física and Departamento de Física and QuantaLab, Universidade do Minho, P-4710-057 Braga, PortugalInternational Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, PortugalMore by Nuno M. R. Peres
- , and
- Frank H. L. Koppens*Frank H. L. Koppens*Email: [email protected]ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, SpainICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, SpainMore by Frank H. L. Koppens
Abstract

Excitons in monolayer transition-metal-dichalcogenides (TMDs) dominate their optical response and exhibit strong light–matter interactions with lifetime-limited emission. While various approaches have been applied to enhance light-exciton interactions in TMDs, the achieved strength have been far below unity, and a complete picture of its underlying physical mechanisms and fundamental limits has not been provided. Here, we introduce a TMD-based van der Waals heterostructure cavity that provides near-unity excitonic absorption, and emission of excitonic complexes that are observed at ultralow excitation powers. Our results are in full agreement with a quantum theoretical framework introduced to describe the light–exciton–cavity interaction. We find that the subtle interplay between the radiative, nonradiative and dephasing decay rates plays a crucial role, and unveil a universal absorption law for excitons in 2D systems. This enhanced light–exciton interaction provides a platform for studying excitonic phase-transitions and quantum nonlinearities and enables new possibilities for 2D semiconductor-based optoelectronic devices.
Cited By
This article is cited by 38 publications.
- Aaron J. Sternbach, Rocco A. Vitalone, Sara Shabani, Jin Zhang, Thomas P. Darlington, Samuel L. Moore, Sang Hoon Chae, Eric Seewald, Xiaodong Xu, Cory R. Dean, Xiaoyang Zhu, Angel Rubio, James Hone, Abhay N. Pasupathy, P. James Schuck, D. N. Basov. Quenched Excitons in WSe2/α-RuCl3 Heterostructures Revealed by Multimessenger Nanoscopy. Nano Letters 2023, 23 (11) , 5070-5075. https://doi.org/10.1021/acs.nanolett.3c00974
- Igor Ilyakov, Alexey Ponomaryov, David Saleta Reig, Conor Murphy, Jake Dudley Mehew, Thales V.A.G. de Oliveira, Gulloo Lal Prajapati, Atiqa Arshad, Jan-Christoph Deinert, Monica Felicia Craciun, Saverio Russo, Sergey Kovalev, Klaas-Jan Tielrooij. Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials. Nano Letters 2023, 23 (9) , 3872-3878. https://doi.org/10.1021/acs.nanolett.3c00507
- Melissa Li, Claudio U. Hail, Souvik Biswas, Harry A. Atwater. Excitonic Beam Steering in an Active van der Waals Metasurface. Nano Letters 2023, 23 (7) , 2771-2777. https://doi.org/10.1021/acs.nanolett.3c00032
- Surendra B. Anantharaman, Kiyoung Jo, Deep Jariwala. Exciton–Photonics: From Fundamental Science to Applications. ACS Nano 2021, 15 (8) , 12628-12654. https://doi.org/10.1021/acsnano.1c02204
- Jakob Genser, Daniele Nazzari, Viktoria Ritter, Ole Bethge, Kenji Watanabe, Takashi Taniguchi, Emmerich Bertagnolli, Friedhelm Bechstedt, Alois Lugstein. Optical Signatures of Dirac Electrodynamics for hBN-Passivated Silicene on Au(111). Nano Letters 2021, 21 (12) , 5301-5307. https://doi.org/10.1021/acs.nanolett.1c01440
- Antoine Reserbat-Plantey, Itai Epstein, Iacopo Torre, Antonio T. Costa, P. A. D. Gonçalves, N. Asger Mortensen, Marco Polini, Justin C. W. Song, Nuno M. R. Peres, Frank H. L. Koppens. Quantum Nanophotonics in Two-Dimensional Materials. ACS Photonics 2021, 8 (1) , 85-101. https://doi.org/10.1021/acsphotonics.0c01224
- Evgeny M. Alexeev, Nic Mullin, Pablo Ares, Harriet Nevison-Andrews, Oleksandr Skrypka, Tillmann Godde, Aleksey Kozikov, Lee Hague, Yibo Wang, Kostya S. Novoselov, Laura Fumagalli, Jamie K. Hobbs, Alexander I. Tartakovskii. Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation. ACS Nano 2020, 14 (9) , 11110-11119. https://doi.org/10.1021/acsnano.0c01146
- Guoteng Ma, Wanfu Shen, Soy Daniel Sanchez, Yu Yu, Lidong Sun, Chunguang Hu. Ultrasensitive in-plane excitons-dominated pseudo-Brewster angle of transition metal dichalcogenides monolayers. Applied Surface Science 2023, 630 , 157493. https://doi.org/10.1016/j.apsusc.2023.157493
- Jorik van de Groep, Qitong Li, Jung-Hwan Song, Pieter G. Kik, Mark L. Brongersma. Impact of substrates and quantum effects on exciton line shapes of 2D semiconductors at room temperature. Nanophotonics 2023, 12 (16) , 3291-3300. https://doi.org/10.1515/nanoph-2023-0193
- Garima Gupta, Kausik Majumdar. Polarized and narrow excitonic emission from graphene-capped monolayer W S 2 through resonant phonon relaxation. Physical Review B 2023, 108 (7) https://doi.org/10.1103/PhysRevB.108.075436
- Qitong Li, Jung-Hwan Song, Fenghao Xu, Jorik van de Groep, Jiho Hong, Alwin Daus, Yan Joe Lee, Amalya C. Johnson, Eric Pop, Fang Liu, Mark L. Brongersma. A Purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics 2023, 105 https://doi.org/10.1038/s41566-023-01250-9
- Jinglong Chen, Zhonghao Zhou, Zhi Li, Zhiyong Wang. Theoretical Design of an Mo x W 1‐x S 2 /Graphene (x=0.25/0.75) Heterojunction with Adjustable Band Gap: Potential Candidate Materials for the Next Generation of Optoelectronic Devices. ChemPhysChem 2023, 24 (13) https://doi.org/10.1002/cphc.202300095
- Jonas K König, Jamie M Fitzgerald, Joakim Hagel, Daniel Erkensten, Ermin Malic. Interlayer exciton polaritons in homobilayers of transition metal dichalcogenides. 2D Materials 2023, 10 (2) , 025019. https://doi.org/10.1088/2053-1583/acc1f5
- Sanat Ghosh, Digambar A Jangade, Mandar M Deshmukh. Nanowire bolometer using a 2D high-temperature superconductor. Nanotechnology 2023, 34 (1) , 015304. https://doi.org/10.1088/1361-6528/ac9684
- Shuai Zhang, Baichang Li, Xinzhong Chen, Francesco L. Ruta, Yinming Shao, Aaron J. Sternbach, A. S. McLeod, Zhiyuan Sun, Lin Xiong, S. L. Moore, Xinyi Xu, Wenjing Wu, Sara Shabani, Lin Zhou, Zhiying Wang, Fabian Mooshammer, Essance Ray, Nathan Wilson, P. J. Schuck, C. R. Dean, A. N. Pasupathy, Michal Lipson, Xiaodong Xu, Xiaoyang Zhu, A. J. Millis, Mengkun Liu, James C. Hone, D. N. Basov. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28117-x
- Song Li, Gergő Thiering, Péter Udvarhelyi, Viktor Ivády, Adam Gali. Carbon defect qubit in two-dimensional WS2. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28876-7
- Hee Seong Kang, Jung Hoon Kang, Sol Lee, Kihyun Lee, Do Hyoung Koo, Yong-Sung Kim, Young Joon Hong, Yong-Jin Kim, Kwanpyo Kim, Donghun Lee, Chul-Ho Lee. Bowing-alleviated continuous bandgap engineering of wafer-scale WS2xSe2(1-x) monolayer alloys and their assembly into hetero-multilayers. NPG Asia Materials 2022, 14 (1) https://doi.org/10.1038/s41427-022-00437-w
- Tomer Eini, Tal Asherov, Yarden Mazor, Itai Epstein. Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at visible frequencies. Physical Review B 2022, 106 (20) https://doi.org/10.1103/PhysRevB.106.L201405
- Raul Perea-Causin, Daniel Erkensten, Jamie M. Fitzgerald, Joshua J. P. Thompson, Roberto Rosati, Samuel Brem, Ermin Malic. Exciton optics, dynamics, and transport in atomically thin semiconductors. APL Materials 2022, 10 (10) https://doi.org/10.1063/5.0107665
- Jason Lynch, Ludovica Guarneri, Deep Jariwala, Jorik van de Groep. Exciton resonances for atomically-thin optics. Journal of Applied Physics 2022, 132 (9) , 091102. https://doi.org/10.1063/5.0101317
- Kandammathe Valiyaveedu Sreekanth, Patinharekandy Prabhathan, Apoorva Chaturvedi, Yulia Lekina, Song Han, Shen Zexiang, Edwin Hang Tong Teo, Jinghua Teng, Ranjan Singh. Wide‐Angle Tunable Critical Coupling in Nanophotonic Optical Coatings with Low‐Loss Phase Change Material. Small 2022, 18 (28) https://doi.org/10.1002/smll.202202005
- Alberto Ciarrocchi, Fedele Tagarelli, Ahmet Avsar, Andras Kis. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews Materials 2022, 7 (6) , 449-464. https://doi.org/10.1038/s41578-021-00408-7
- Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85 (4) , 046401. https://doi.org/10.1088/1361-6633/ac45f9
- Xia Zhang, A. Louise Bradley. Polaritonic critical coupling in a hybrid quasibound states in the continuum cavity– WS 2 monolayer system. Physical Review B 2022, 105 (16) https://doi.org/10.1103/PhysRevB.105.165424
- Vasilios Karanikolas, Seiya Suzuki, Shisheng Li, Takuya Iwasaki. Perspective on 2D material polaritons and innovative fabrication techniques. Applied Physics Letters 2022, 120 (4) https://doi.org/10.1063/5.0074355
- H. Z. Zhang, H. Y. Qin, W. X. Zhang, L. Huang, X. D. Zhang. Moiré graphene nanoribbons: nearly perfect absorptions and highly efficient reflections with wide angles. Optics Express 2022, 30 (2) , 2219. https://doi.org/10.1364/OE.445348
- Suman Chatterjee, Sarthak Das, Garima Gupta, Kenji Watanabe, Takashi Taniguchi, Kausik Majumdar. Probing biexciton in monolayer WS 2 through controlled many-body interaction. 2D Materials 2022, 9 (1) , 015023. https://doi.org/10.1088/2053-1583/ac3b1c
- J. C. G. Henriques, Itai Epstein, N. M. R. Peres. Absorption and optical selection rules of tunable excitons in biased bilayer graphene. Physical Review B 2022, 105 (4) https://doi.org/10.1103/PhysRevB.105.045411
- I G Rebollo, F C Rodrigues-Machado, W Wright, G J Melin, A R Champagne. Thin-suspended 2D materials: facile, versatile, and deterministic transfer assembly. 2D Materials 2021, 8 (3) , 035028. https://doi.org/10.1088/2053-1583/abf98c
- J. C. G. Henriques, M. F. C. Martins Quintela, N. M. R. Peres. Theoretical model of the polarizability due to transitions between exciton states in transition metal dichalcogenides: application to WSe 2. Journal of the Optical Society of America B 2021, 38 (7) , 2065. https://doi.org/10.1364/JOSAB.421279
- Itai Epstein, David Alcaraz, Zhiqin Huang, Varun-Varma Pusapati, Jean-Paul Hugonin, Avinash Kumar, Xander Deputy, Tymofiy Khodkov, Tatiana G. Rappoport, Jin-Yong Hong, Nuno M. M. R. Peres, Jing Kong, David R. Smith, Frank H. Koppens, , , . Nanometer-scale cavities for mid-infrared light based on graphene plasmons. 2021, 32. https://doi.org/10.1117/12.2590037
- Fei Ge, Xiao Han, Jialiang Xu. Strongly Coupled Systems for Nonlinear Optics. Laser & Photonics Reviews 2021, 15 (4) https://doi.org/10.1002/lpor.202000514
- J. C. G. Henriques, B. Amorim, N. M. R. Peres. Exciton-polariton mediated interaction between two nitrogen-vacancy color centers in diamond using two-dimensional transition metal dichalcogenides. Physical Review B 2021, 103 (8) https://doi.org/10.1103/PhysRevB.103.085407
- Lei Ren, Cédric Robert, Bernhard Urbaszek, Xavier Marie, Marina Semina, Mikhail M. Glazov. Tuning absorption and emission in monolayer semiconductors: a brief survey. Comptes Rendus. Physique 2021, 22 (S4) , 43-52. https://doi.org/10.5802/crphys.59
- Shivangi Shree, Ioannis Paradisanos, Xavier Marie, Cedric Robert, Bernhard Urbaszek. Guide to optical spectroscopy of layered semiconductors. Nature Reviews Physics 2021, 3 (1) , 39-54. https://doi.org/10.1038/s42254-020-00259-1
- Florian Katsch, Andreas Knorr. Optical Preparation and Coherent Control of Ultrafast Nonlinear Quantum Superpositions in Exciton Gases: A Case Study for Atomically Thin Semiconductors. Physical Review X 2020, 10 (4) https://doi.org/10.1103/PhysRevX.10.041039
- M. H. Doha, J. I. Santos Batista, A. F. Rawwagah, J. P. Thompson, A. Fereidouni, K. Watanabe, T. Taniguchi, M. El-Shenawee, H. O. H. Churchill. Integration of multi-layer black phosphorus into photoconductive antennas for THz emission. Journal of Applied Physics 2020, 128 (6) https://doi.org/10.1063/5.0016370
- Itai Epstein, André J Chaves, Daniel A Rhodes, Bettina Frank, Kenji Watanabe, Takashi Taniguchi, Harald Giessen, James C Hone, Nuno M R Peres, Frank H L Koppens. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Materials 2020, 7 (3) , 035031. https://doi.org/10.1088/2053-1583/ab8dd4