ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Near-Unity Light Absorption in a Monolayer WS2 Van der Waals Heterostructure Cavity

  • Itai Epstein*
    Itai Epstein
    ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    *Email: [email protected]
    More by Itai Epstein
  • Bernat Terrés
    Bernat Terrés
    ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
  • André J. Chaves
    André J. Chaves
    Grupo de Materiais Semicondutores e Nanotecnologia and Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos,Brazil
  • Varun-Varma Pusapati
    Varun-Varma Pusapati
    ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
  • Daniel A. Rhodes
    Daniel A. Rhodes
    Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
  • Bettina Frank
    Bettina Frank
    Fourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
  • Valentin Zimmermann
    Valentin Zimmermann
    Fourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
  • Ying Qin
    Ying Qin
    School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
    More by Ying Qin
  • Kenji Watanabe
    Kenji Watanabe
    National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
  • Takashi Taniguchi
    Takashi Taniguchi
    National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
  • Harald Giessen
    Harald Giessen
    Fourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
  • Sefaattin Tongay
    Sefaattin Tongay
    School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
  • James C. Hone
    James C. Hone
    Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
  • Nuno M. R. Peres
    Nuno M. R. Peres
    Centro de Física and Departamento de Física and QuantaLab, Universidade do Minho, P-4710-057 Braga, Portugal
    International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
  • , and 
  • Frank H. L. Koppens*
    Frank H. L. Koppens
    ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    ICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
    *Email: [email protected]
Cite this: Nano Lett. 2020, 20, 5, 3545–3552
Publication Date (Web):April 13, 2020
https://doi.org/10.1021/acs.nanolett.0c00492
Copyright © 2020 American Chemical Society

    Article Views

    4163

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Excitons in monolayer transition-metal-dichalcogenides (TMDs) dominate their optical response and exhibit strong light–matter interactions with lifetime-limited emission. While various approaches have been applied to enhance light-exciton interactions in TMDs, the achieved strength have been far below unity, and a complete picture of its underlying physical mechanisms and fundamental limits has not been provided. Here, we introduce a TMD-based van der Waals heterostructure cavity that provides near-unity excitonic absorption, and emission of excitonic complexes that are observed at ultralow excitation powers. Our results are in full agreement with a quantum theoretical framework introduced to describe the light–exciton–cavity interaction. We find that the subtle interplay between the radiative, nonradiative and dephasing decay rates plays a crucial role, and unveil a universal absorption law for excitons in 2D systems. This enhanced light–exciton interaction provides a platform for studying excitonic phase-transitions and quantum nonlinearities and enables new possibilities for 2D semiconductor-based optoelectronic devices.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00492.

    • Theoretical modeling, fitting procedure, identification of excitonic complexes, structure optimization, and experimental and fabrication methods (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Aaron J. Sternbach, Rocco A. Vitalone, Sara Shabani, Jin Zhang, Thomas P. Darlington, Samuel L. Moore, Sang Hoon Chae, Eric Seewald, Xiaodong Xu, Cory R. Dean, Xiaoyang Zhu, Angel Rubio, James Hone, Abhay N. Pasupathy, P. James Schuck, D. N. Basov. Quenched Excitons in WSe2/α-RuCl3 Heterostructures Revealed by Multimessenger Nanoscopy. Nano Letters 2023, 23 (11) , 5070-5075. https://doi.org/10.1021/acs.nanolett.3c00974
    2. Igor Ilyakov, Alexey Ponomaryov, David Saleta Reig, Conor Murphy, Jake Dudley Mehew, Thales V.A.G. de Oliveira, Gulloo Lal Prajapati, Atiqa Arshad, Jan-Christoph Deinert, Monica Felicia Craciun, Saverio Russo, Sergey Kovalev, Klaas-Jan Tielrooij. Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials. Nano Letters 2023, 23 (9) , 3872-3878. https://doi.org/10.1021/acs.nanolett.3c00507
    3. Melissa Li, Claudio U. Hail, Souvik Biswas, Harry A. Atwater. Excitonic Beam Steering in an Active van der Waals Metasurface. Nano Letters 2023, 23 (7) , 2771-2777. https://doi.org/10.1021/acs.nanolett.3c00032
    4. Surendra B. Anantharaman, Kiyoung Jo, Deep Jariwala. Exciton–Photonics: From Fundamental Science to Applications. ACS Nano 2021, 15 (8) , 12628-12654. https://doi.org/10.1021/acsnano.1c02204
    5. Jakob Genser, Daniele Nazzari, Viktoria Ritter, Ole Bethge, Kenji Watanabe, Takashi Taniguchi, Emmerich Bertagnolli, Friedhelm Bechstedt, Alois Lugstein. Optical Signatures of Dirac Electrodynamics for hBN-Passivated Silicene on Au(111). Nano Letters 2021, 21 (12) , 5301-5307. https://doi.org/10.1021/acs.nanolett.1c01440
    6. Antoine Reserbat-Plantey, Itai Epstein, Iacopo Torre, Antonio T. Costa, P. A. D. Gonçalves, N. Asger Mortensen, Marco Polini, Justin C. W. Song, Nuno M. R. Peres, Frank H. L. Koppens. Quantum Nanophotonics in Two-Dimensional Materials. ACS Photonics 2021, 8 (1) , 85-101. https://doi.org/10.1021/acsphotonics.0c01224
    7. Evgeny M. Alexeev, Nic Mullin, Pablo Ares, Harriet Nevison-Andrews, Oleksandr Skrypka, Tillmann Godde, Aleksey Kozikov, Lee Hague, Yibo Wang, Kostya S. Novoselov, Laura Fumagalli, Jamie K. Hobbs, Alexander I. Tartakovskii. Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation. ACS Nano 2020, 14 (9) , 11110-11119. https://doi.org/10.1021/acsnano.0c01146
    8. Guoteng Ma, Wanfu Shen, Soy Daniel Sanchez, Yu Yu, Lidong Sun, Chunguang Hu. Ultrasensitive in-plane excitons-dominated pseudo-Brewster angle of transition metal dichalcogenides monolayers. Applied Surface Science 2023, 630 , 157493. https://doi.org/10.1016/j.apsusc.2023.157493
    9. Jorik van de Groep, Qitong Li, Jung-Hwan Song, Pieter G. Kik, Mark L. Brongersma. Impact of substrates and quantum effects on exciton line shapes of 2D semiconductors at room temperature. Nanophotonics 2023, 12 (16) , 3291-3300. https://doi.org/10.1515/nanoph-2023-0193
    10. Garima Gupta, Kausik Majumdar. Polarized and narrow excitonic emission from graphene-capped monolayer W S 2 through resonant phonon relaxation. Physical Review B 2023, 108 (7) https://doi.org/10.1103/PhysRevB.108.075436
    11. Qitong Li, Jung-Hwan Song, Fenghao Xu, Jorik van de Groep, Jiho Hong, Alwin Daus, Yan Joe Lee, Amalya C. Johnson, Eric Pop, Fang Liu, Mark L. Brongersma. A Purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics 2023, 105 https://doi.org/10.1038/s41566-023-01250-9
    12. Jinglong Chen, Zhonghao Zhou, Zhi Li, Zhiyong Wang. Theoretical Design of an Mo x W 1‐x S 2 /Graphene (x=0.25/0.75) Heterojunction with Adjustable Band Gap: Potential Candidate Materials for the Next Generation of Optoelectronic Devices. ChemPhysChem 2023, 24 (13) https://doi.org/10.1002/cphc.202300095
    13. Jonas K König, Jamie M Fitzgerald, Joakim Hagel, Daniel Erkensten, Ermin Malic. Interlayer exciton polaritons in homobilayers of transition metal dichalcogenides. 2D Materials 2023, 10 (2) , 025019. https://doi.org/10.1088/2053-1583/acc1f5
    14. Sanat Ghosh, Digambar A Jangade, Mandar M Deshmukh. Nanowire bolometer using a 2D high-temperature superconductor. Nanotechnology 2023, 34 (1) , 015304. https://doi.org/10.1088/1361-6528/ac9684
    15. Shuai Zhang, Baichang Li, Xinzhong Chen, Francesco L. Ruta, Yinming Shao, Aaron J. Sternbach, A. S. McLeod, Zhiyuan Sun, Lin Xiong, S. L. Moore, Xinyi Xu, Wenjing Wu, Sara Shabani, Lin Zhou, Zhiying Wang, Fabian Mooshammer, Essance Ray, Nathan Wilson, P. J. Schuck, C. R. Dean, A. N. Pasupathy, Michal Lipson, Xiaodong Xu, Xiaoyang Zhu, A. J. Millis, Mengkun Liu, James C. Hone, D. N. Basov. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28117-x
    16. Song Li, Gergő Thiering, Péter Udvarhelyi, Viktor Ivády, Adam Gali. Carbon defect qubit in two-dimensional WS2. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28876-7
    17. Hee Seong Kang, Jung Hoon Kang, Sol Lee, Kihyun Lee, Do Hyoung Koo, Yong-Sung Kim, Young Joon Hong, Yong-Jin Kim, Kwanpyo Kim, Donghun Lee, Chul-Ho Lee. Bowing-alleviated continuous bandgap engineering of wafer-scale WS2xSe2(1-x) monolayer alloys and their assembly into hetero-multilayers. NPG Asia Materials 2022, 14 (1) https://doi.org/10.1038/s41427-022-00437-w
    18. Tomer Eini, Tal Asherov, Yarden Mazor, Itai Epstein. Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at visible frequencies. Physical Review B 2022, 106 (20) https://doi.org/10.1103/PhysRevB.106.L201405
    19. Raul Perea-Causin, Daniel Erkensten, Jamie M. Fitzgerald, Joshua J. P. Thompson, Roberto Rosati, Samuel Brem, Ermin Malic. Exciton optics, dynamics, and transport in atomically thin semiconductors. APL Materials 2022, 10 (10) https://doi.org/10.1063/5.0107665
    20. Jason Lynch, Ludovica Guarneri, Deep Jariwala, Jorik van de Groep. Exciton resonances for atomically-thin optics. Journal of Applied Physics 2022, 132 (9) , 091102. https://doi.org/10.1063/5.0101317
    21. Kandammathe Valiyaveedu Sreekanth, Patinharekandy Prabhathan, Apoorva Chaturvedi, Yulia Lekina, Song Han, Shen Zexiang, Edwin Hang Tong Teo, Jinghua Teng, Ranjan Singh. Wide‐Angle Tunable Critical Coupling in Nanophotonic Optical Coatings with Low‐Loss Phase Change Material. Small 2022, 18 (28) https://doi.org/10.1002/smll.202202005
    22. Alberto Ciarrocchi, Fedele Tagarelli, Ahmet Avsar, Andras Kis. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews Materials 2022, 7 (6) , 449-464. https://doi.org/10.1038/s41578-021-00408-7
    23. Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85 (4) , 046401. https://doi.org/10.1088/1361-6633/ac45f9
    24. Xia Zhang, A. Louise Bradley. Polaritonic critical coupling in a hybrid quasibound states in the continuum cavity– WS 2 monolayer system. Physical Review B 2022, 105 (16) https://doi.org/10.1103/PhysRevB.105.165424
    25. Vasilios Karanikolas, Seiya Suzuki, Shisheng Li, Takuya Iwasaki. Perspective on 2D material polaritons and innovative fabrication techniques. Applied Physics Letters 2022, 120 (4) https://doi.org/10.1063/5.0074355
    26. H. Z. Zhang, H. Y. Qin, W. X. Zhang, L. Huang, X. D. Zhang. Moiré graphene nanoribbons: nearly perfect absorptions and highly efficient reflections with wide angles. Optics Express 2022, 30 (2) , 2219. https://doi.org/10.1364/OE.445348
    27. Suman Chatterjee, Sarthak Das, Garima Gupta, Kenji Watanabe, Takashi Taniguchi, Kausik Majumdar. Probing biexciton in monolayer WS 2 through controlled many-body interaction. 2D Materials 2022, 9 (1) , 015023. https://doi.org/10.1088/2053-1583/ac3b1c
    28. J. C. G. Henriques, Itai Epstein, N. M. R. Peres. Absorption and optical selection rules of tunable excitons in biased bilayer graphene. Physical Review B 2022, 105 (4) https://doi.org/10.1103/PhysRevB.105.045411
    29. I G Rebollo, F C Rodrigues-Machado, W Wright, G J Melin, A R Champagne. Thin-suspended 2D materials: facile, versatile, and deterministic transfer assembly. 2D Materials 2021, 8 (3) , 035028. https://doi.org/10.1088/2053-1583/abf98c
    30. J. C. G. Henriques, M. F. C. Martins Quintela, N. M. R. Peres. Theoretical model of the polarizability due to transitions between exciton states in transition metal dichalcogenides: application to WSe 2. Journal of the Optical Society of America B 2021, 38 (7) , 2065. https://doi.org/10.1364/JOSAB.421279
    31. Itai Epstein, David Alcaraz, Zhiqin Huang, Varun-Varma Pusapati, Jean-Paul Hugonin, Avinash Kumar, Xander Deputy, Tymofiy Khodkov, Tatiana G. Rappoport, Jin-Yong Hong, Nuno M. M. R. Peres, Jing Kong, David R. Smith, Frank H. Koppens, , , . Nanometer-scale cavities for mid-infrared light based on graphene plasmons. 2021, 32. https://doi.org/10.1117/12.2590037
    32. Fei Ge, Xiao Han, Jialiang Xu. Strongly Coupled Systems for Nonlinear Optics. Laser & Photonics Reviews 2021, 15 (4) https://doi.org/10.1002/lpor.202000514
    33. J. C. G. Henriques, B. Amorim, N. M. R. Peres. Exciton-polariton mediated interaction between two nitrogen-vacancy color centers in diamond using two-dimensional transition metal dichalcogenides. Physical Review B 2021, 103 (8) https://doi.org/10.1103/PhysRevB.103.085407
    34. Lei Ren, Cédric Robert, Bernhard Urbaszek, Xavier Marie, Marina Semina, Mikhail M. Glazov. Tuning absorption and emission in monolayer semiconductors: a brief survey. Comptes Rendus. Physique 2021, 22 (S4) , 43-52. https://doi.org/10.5802/crphys.59
    35. Shivangi Shree, Ioannis Paradisanos, Xavier Marie, Cedric Robert, Bernhard Urbaszek. Guide to optical spectroscopy of layered semiconductors. Nature Reviews Physics 2021, 3 (1) , 39-54. https://doi.org/10.1038/s42254-020-00259-1
    36. Florian Katsch, Andreas Knorr. Optical Preparation and Coherent Control of Ultrafast Nonlinear Quantum Superpositions in Exciton Gases: A Case Study for Atomically Thin Semiconductors. Physical Review X 2020, 10 (4) https://doi.org/10.1103/PhysRevX.10.041039
    37. M. H. Doha, J. I. Santos Batista, A. F. Rawwagah, J. P. Thompson, A. Fereidouni, K. Watanabe, T. Taniguchi, M. El-Shenawee, H. O. H. Churchill. Integration of multi-layer black phosphorus into photoconductive antennas for THz emission. Journal of Applied Physics 2020, 128 (6) https://doi.org/10.1063/5.0016370
    38. Itai Epstein, André J Chaves, Daniel A Rhodes, Bettina Frank, Kenji Watanabe, Takashi Taniguchi, Harald Giessen, James C Hone, Nuno M R Peres, Frank H L Koppens. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Materials 2020, 7 (3) , 035031. https://doi.org/10.1088/2053-1583/ab8dd4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect