ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Remote Doping of Scalable Nanowire Branches

  • Martin Friedl
    Martin Friedl
    Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • Kris Cerveny
    Kris Cerveny
    Department of Physics, University of Basel, Basel, Switzerland
    More by Kris Cerveny
  • Chunyi Huang
    Chunyi Huang
    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States
    More by Chunyi Huang
  • Didem Dede
    Didem Dede
    Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    More by Didem Dede
  • Mohammad Samani
    Mohammad Samani
    Department of Physics, University of Basel, Basel, Switzerland
  • Megan O. Hill
    Megan O. Hill
    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States
  • Nicholas Morgan
    Nicholas Morgan
    Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • Wonjong Kim
    Wonjong Kim
    Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    More by Wonjong Kim
  • Lucas Güniat
    Lucas Güniat
    Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • Jaime Segura-Ruiz
    Jaime Segura-Ruiz
    ESRF: the European Synchrotron, Grenoble, 38043, France
  • Lincoln J. Lauhon
    Lincoln J. Lauhon
    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States
  • Dominik M. Zumbühl
    Dominik M. Zumbühl
    Department of Physics, University of Basel, Basel, Switzerland
  • , and 
  • Anna Fontcuberta i Morral*
    Anna Fontcuberta i Morral
    Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Institute of Physics, Faculty of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    *E-mail: [email protected]
Cite this: Nano Lett. 2020, 20, 5, 3577–3584
Publication Date (Web):April 21, 2020
https://doi.org/10.1021/acs.nanolett.0c00517

Copyright © 2020 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

2808

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (4 MB)
Supporting Info (1)»

Abstract

Selective-area epitaxy provides a path toward high crystal quality, scalable, complex nanowire networks. These high-quality networks could be used in topological quantum computing as well as in ultrafast photodetection schemes. Control of the carrier density and mean free path in these devices is key for all of these applications. Factors that affect the mean free path include scattering by surfaces, donors, defects, and impurities. Here, we demonstrate how to reduce donor scattering in InGaAs nanowire networks by adopting a remote-doping strategy. Low-temperature magnetotransport measurements indicate weak anti-localization—a signature of strong spin–orbit interaction—across a nanowire Y-junction. This work serves as a blueprint for achieving remotely doped, ultraclean, and scalable nanowire networks for quantum technologies.

Introduction

ARTICLE SECTIONS
Jump To

In the last two decades, semiconductor nanowires (NWs) (1) have opened multiple new perspectives in a wide variety of applications including photovoltaics, (2−6) photodetectors, (7−10) lasers, (11−15) single-photon emitters, (16,17) photoelectrochemistry, (18) nanoscale electronics, (19) and research into topological quantum computing. (20−24) While most NW fabrication approaches result in free-standing structures, selective-area epitaxy (SAE) has recently been revived for the fabrication of horizontal NW assemblies that can be directly contacted on a wafer. (25,26) SAE has thus been used to obtain lateral III–V NWs, with high NW crystal quality and with scalability unmatched by any other bottom-up NW growth method. The ability of SAE NWs to be grown into NW networks, (27) and the relative ease with which they can be further processed directly on the original substrate, makes them extremely attractive for use in experiments exploring topological quantum transport physics. (28−32)
It has generally been reported that surface scattering in NWs reduces carrier mean free paths which, by extension, also reduces carrier mobility with respect to their bulk counterparts. This is especially pertinent in InAs NWs, where the surface Fermi level pinning results in most of the conduction occurring at the surface. (33) Room-temperature electrically measured mobilities for undoped, vertically grown InAs NWs thus fall in the range of ∼20–3000 cm2/(V s). (34−38) Noncontact measurement techniques such as THz pump–probe spectroscopy report slightly higher mobilities of ∼4000–6000 cm2/(V s) due to the smaller length scale of the assessment and a possible selection bias (higher mobility sections contributing more to the signal). (38−40) Still, mobilities remain significantly lower than the reported values for thin films of around 30000 cm2/(V s). (41) InGaAs nanowires with In:Ga ratios around 50%, on the other hand, have been reported with somewhat lower mobilities ranging from ∼500 to 1500 cm2/(V s). (42,43)
Over the years, modulation doping has proven to be a staple technique to many applications employing high-performance semiconductor heterostructures. This technique allows for the creation of two-dimensional electron gases (2DEGs) with high carrier concentration combined with extremely high mobilities. From groundbreaking scientific discoveries such as the integer and fractional quantum Hall effects, (44−46) and enabling novel concepts such as topological qubits (47−50) to high-power applications using high electron mobility transistors (HEMTs), (51,52) a wide range of fields have benefited and are continuing to benefit from remotely doped 2DEG heterostructure schemes. With current knowledge and modern epitaxy techniques, state-of-the-art 2DEG devices can achieve mobilities regularly exceeding 107 cm2/(V s). (53,54) Similarly to bulk, direct doping of NWs reduces carrier mobilities due to ionized dopant scattering. To circumvent this carrier scattering mechanism, vertically grown free-standing GaAs NWs with a remote-doping design exhibit both high carrier densities and high mobility. (55−58)
In this work, we demonstrate the growth of quasi-1D InGaAs NW heterostructures hosting coherent transport by combining remote doping with SAE. The InGaAs NWs are obtained on a GaAs nanomembrane (NM) buffer in which the doping is located. The band alignment naturally results in the localization of electrons in the region with higher indium content (and lower bandgap). Improved electrical transport is demonstrated by low-temperature field-effect and magnetotransport measurements across InGaAs NW Y-branches, demonstrating high-quality NW junctions. This research thus lays the groundwork for future exploitation of remote-doping schemes in scalable NW networks, including materials beyond InGaAs.

Growth

ARTICLE SECTIONS
Jump To

Remotely doped InGaAs NWs were grown on top of GaAs NM buffers using a SAE approach, as depicted in Figure 1a. A GaAs (1 1 1)B substrate was covered by a SiO2 mask to achieve high growth selectivity. The SiO2 mask was then patterned with stripes along the three equivalent ⟨1 1 ⟩ directions on the substrate using e-beam lithography and reactive ion etching. The resist was stripped with an O2 plasma, and the substrate was etched in a dilute buffered HF solution before being loaded into the molecular beam epitaxy (MBE) cluster for growth to ensure an ultraclean surface.

Figure 1

Figure 1. (a) Illustration of the SAE growth process. (b) Diagram showing the desired doping profile for remotely doped InGaAs NWs on GaAs NMs. (c) Tilted SEM image of an array of NWs after MBE growth. (d) Close-up tilted SEM image of a Y-junction showing uniform coalescence of InGaAs NWs. (e–h) Elemental maps of In concentration taken with STEM EDS on NW cross sections showing the dependence of growth conditions on NW composition.

Figure 1b corresponds to the general scheme of the structures in this work. Silicon dopants are introduced at a distance from the InGaAs channel. We expect carriers to localize into the lower-bandgap NW region. As a result, the NWs benefit from an increased carrier concentration thanks to the extrinsic dopants, while ionized impurity scattering is limited due to the physical separation between the doped and transport regions.
Figure 1c shows a representative scanning electron microscopy (SEM) image of the remotely doped NW structures. We recognize a high degree of uniformity in both the buffer NMs and the NWs. Similarly, as shown in Figure 1d, Y-branched structures result from the merging of NWs growing in three equivalent directions. (27) These branched structures exhibit a high degree of NW uniformity, which is further confirmed by X-ray fluorescence (XRF) measurements performed at the ID16B beamline of the European Synchrotron Radiation Facility (ESRF) shown in the Supporting Information.
In–Ga intermixing is commonly observed at the interface between InAs and GaAs. (59) This is also the case for InAs grown on GaAs buffer NMs. In a previous study, we demonstrated InGaAs NWs with a relatively low In content. (27) Increasing the In content is key to enhancing spin–orbit interaction (SOI). In this context, we explored different growth conditions to increase the In concentration. In particular, we varied temperature along with In and As4 fluxes. We present four representative samples with a variation in the In deposition rate and As4 beam equivalent pressure (BEP). The composition was analyzed by performing elemental maps by scanning transmission electron microscopy (STEM) energy dispersive X-ray spectroscopy (EDS) on prepared cross sections. The resulting In concentration maps are shown in Figure 1e–h. Here, the atomic concentration of In is calculated as CIn/(CIn + CGa + CAs) with the maximum possible concentration being 50% for pure InAs. In Figure 1e, we see that an In rate of 0.1 Å/s and V/III ratio of 150 yields a self-terminating growth and a flat (111) top facet with an In concentration of ∼10% at the two upper corners of the structure. Decreasing the V/III ratio to 110, as shown in Figure 1f, results in a more pointed structure that does not self-terminate. This results in a larger amount of material being deposited and a maximum In concentration of ∼20%. Doubling the In deposition rate to 0.2 Å/s (while halving the growth time to keep the total deposited volume constant) gives a similarly shaped structure; however, now the peak In concentration is ∼25%, as shown in Figure 1g. Finally, Figure 1h shows the result of also increasing the V/III ratio to 150 with an In deposition rate of 0.2 Å/s. We observe a structure very similar to Figure 1f with a pointed shape and maximum In concentration of 20%.
We, therefore, observe that a higher In flux yields an increased In concentration in the NW, up to about 25%. On the other hand, at low In rates, In concentrations of only 10% or less are observed. The InAs growth temperatures are relatively low for solid-phase diffusion which is typically only observed above 750 °C. (60−62) The In–Ga intermixing could instead be mediated by surface adatom diffusion during growth. This is a thermodynamically driven effect which, consequently, can be suppressed at higher deposition rates where the system approaches a kinetic regime. (63)
Also, the V/III ratio is known to affect the atomic surface reconstruction which in turn affects facet-dependent growth rates and the resulting shape. (64,65) In Figure 1e, at high V/III ratios and low growth rates, InGaAs grows to form a flat (111)B top facet, after which NW growth stops. This suggests that desorption of In species from this flat top facet is higher than the incoming flux. However, if the In rate is increased, as in Figure 1h, then NW growth is re-established which can be explained by the fact that the increased incoming flux becomes greater than the desorbing flux, thus continuing NW growth. Similarly, if the V/III ratio is decreased, as in Figure 1f, a similar effect is achieved. This, therefore, suggests that, at the higher V/III ratio, the abundance of As atoms also plays a role in inhibiting growth on the (111)B top facet. Thus, higher In rates and lower V/III ratios should be pursued to reduce Ga intermixing in the NW. This result is at least partially supported by recent reports on (100) GaAs substrates where very low V/III ratios are used to grow pure InAs NWs on top of GaAs(Sb) buffers. (28)
The highest In concentration was about 25% absolute, corresponding to In0.5Ga0.5As. This sample was obtained with a high In flux and lower V/III ratio. These conditions were kept for the rest of the structures presented in this study.

Atom-Probe Tomography

ARTICLE SECTIONS
Jump To

As the silicon dopant concentration was well below the detection limits of STEM EDS, atom probe tomography (APT) was used as a technique to image the three-dimensional distribution of the dopants in the structure.
APT was used to analyze the distribution of the dopants in the nanowire heterostructures, as shown in Figure 2. (27,66) Samples were prepared by lift-out and annular milling using a focused ion beam to isolate the nanowire region for analysis. (67,68) Details of the specimen preparation and APT analysis conditions can be found in the Experimental Section. Figure 2a shows the APT reconstruction of the region indicated by the dashed white line in the schematic. Silicon dopants were mostly detected on the GaAs top facet, as shown in Figure S8. The analysis here focuses on the subregion indicated in the dashed black line. To accurately measure the Si dopant distribution despite this artifact, a proximity histogram (69) was generated, as shown in Figure 2b on either side of a 16% In mole fraction isosurface. The Si concentration peaks below the NM–NW interface, as expected from the doping scheme. APT analysis of two additional heterostructures (see the Supporting Information) found a similar distribution of Si concentrated at the NM–NW boundary. Moving 5–10 nm away from the interface, Si was not detected above the noise level (see Figure S8). The upper bounds on the Si concentration in the upper and lower regions away from the interface are 2 × 1018 and 7 × 1018 cm–3, respectively, as indicated by dashed lines in Figure 2b. These measurements demonstrate that Si was incorporated at a distance from the InGaAs transport channel, validating the remote doping from the compositional mapping point of view.

Figure 2

Figure 2. (a) APT reconstruction of an InGaAs NW on a GaAs NM. The white dashed line in the schematic indicates the region analyzed by APT. Ga and In atoms are shown in green and red, respectively. As atoms are omitted for clarity. The NM–NW boundary is rendered with an isoconcentration surface of 5% In mole fraction. (b) Proximity histogram across the NM–NW interface showing the Si dopant distribution. Gray dashed lines show the upper bounds on Si concentration in regions away from the interface, where Si counts were not above the noise level. The isoconcentration surface of 16% In mole fraction is at 0 nm as a reference.

Magnetotransport

ARTICLE SECTIONS
Jump To

NW structures were electrically contacted for four-point measurements on all three arms of the Y-junctions (see the Experimental Section). A top gate was fabricated by first covering the junction with a 40 nm thick HfO2 gate oxide by atomic layer deposition (ALD) followed by metal evaporation. An SEM image of an electrical device illustrating the overall design is displayed in Figure 3a. A false-colored cross-sectional focused ion beam (FIB) STEM image is displayed in Figure 3b with the identification of the different layers of the device. It is important to note that the metallic contact layers are continuous through the whole high-aspect-ratio structure, as a result of the dual-angle evaporation.

Figure 3

Figure 3. (a) False-colored SEM image of a fabricated electrical device showing three pairs of contacts to enable four-point measurements and a global top gate. (b) False-colored cross-sectional STEM high-angle annular dark-field (HAADF) image showing the layers in a fabricated electrical device. (c) Differential conductance as a function of top gate voltage Vg, from which the field-effect mobility μ = ∼480 ± 50 cm2/(V s), the conduction threshold Vth = −1.9 ± 0.2 V, and the contact resistance Rs = 12.2 ± 0.6 kΩ were extracted. (d) Differential conductance plot (color scale) as a function of magnetic field perpendicular to the substrate and top gate voltage with Vg,AC = 200 mV (peak-to-peak) oscillation added. (e) Magnetoconductance cuts (black) with fits (red) as labeled, exhibiting clear WAL. The WAL model is valid between the dashed vertical lines, which also denote the fitting range (solid red). Theory curves are extended to the full B-range (dashed red). Over the full gate range, average values of lϕ = 100 ± 20 nm and lso = 80 ± 20 nm, where the mean free path le = 20 nm was held fixed here. (f) Finite element simulation in nextnano of remotely doped structure obtained from APT measurements showing an electron distribution in the InGaAs NW which is spatially separated from the n-type silicon dopants and disordered GaAs/InGaAs interface. Inset: band structure cut along x = 0 nm with electron concentration overlaid in red.

The samples were then cooled down and electrically characterized at cryogenic temperature. The conductance as a function of top gate voltage Vg is shown in Figure 3c in units of e2/h, giving very similar results over all pairs of arms of the Y-junctions. From this measurement, the field-effect mobility is extracted using (70)
(1)
with L = 600 nm being the length of the channel, ϵ0 = 8.854 × 1012 F/m, , (28) and C the gate capacitance. The contact resistance Rs, the conductance threshold voltage Vth, and the mobility μ are the fit parameters. The gate capacitance was estimated numerically using a finite element simulation in COMSOL, though similar values were calculated analytically using coaxial cable or parallel plate capacitor models. The contribution of the GaAs NM to the electrical transport is negligible, as already previously demonstrated. (27)
We extract a field-effect mobility μ of ∼480 ± 50 cm2/(V s). At zero gate voltage, this corresponds to a mean free path le of ∼300 ± 30 nm in the 1D limit and ∼20 ± 5 nm in the 3D limit. The associated Fermi wavelengths λF are smaller than the effective width of the nanowire, suggesting that a 3D approach is appropriate. Given a rather high carrier density from the capacitance models, the conductance of ∼1 e2/h corresponds to partial transmission of many transverse quantum modes, corresponding to a multimode conductor. This mean free path le represents a significant improvement over previous work, (27) where le was found to be limited by ionized dopant scattering on an ∼nm length scale.
Reported electron mobility values in free-standing InGaAs NWs at room temperature range between 500 and 1500 cm2/(V s), for similar In content. (42,43) We associate this difference, in part, to the reduced diameter and the presence of strong surface and boundary scattering at both the top surface and disordered GaAs/InGaAs interface. In addition, the presence of alloy scattering due to disorder, as evidenced by the STEM EDS investigations, is also likely to play a role in limiting mobility in this ternary system. (71) While our result is on the low end of this spectrum, we stress that our wires, grown by a SAE approach, enable scalability not achievable via standard growth techniques.
The magnetoconductance of the devices was then probed. Figure 3d and e displays the conductance as a function of the applied perpendicular magnetic field B. Again, the results are independent of which Y-junction arms are used. The enhanced conductance at zero field indicates the presence of weak anti-localization (WAL), a hallmark signature of the SOI. WAL is the result of the accumulating spin precessions around momentum-dependent effective magnetic fields arising from spin–orbit coupling in the Dyakonov–Perel mechanism. (72) In the quasiclassical, clean limit (73−76)
(2)
for a multimode quasi-1D wire, where the phase coherence length lϕ is exceeding the wire width W and leW. Here, e is the electron charge, h is the Planck constant, lso is the spin–orbit length, and lB is the magnetic dephasing length, which in the clean limit leW is given by
(3)
where lm = is the magnetic length and C1,2 are constants dependent on the type of boundary scattering. (73) Here, similar values were obtained in using both specular and diffusive boundary scattering. The coherence length, lϕ, is a measure for how far an electron will travel on average before having its phase randomized due to inelastic scattering events. The spin–orbit length, lso, is the typical length for the spin to precess appreciably and is, thus, a key measure for the strength of the SOI, with a shorter lso corresponding to stronger spin–orbit coupling. We mention here that our extracted mean free path falls outside the clear validity of either of the clean (leW) or diffusive (leW) limits. Thus, we have done the fits in both regimes (see the Supporting Information for details), giving very good agreement with the experiment. We obtain values of lϕ ∼ 100 nm and lso ∼ 80 nm using both the clean and diffusive limits. For the clean regime fits, le = 20 nm was held fixed in order to extract lϕ and lso unambiguously. The presence of WAL indicating strong SOI in the system is also a clear advance over previous results, (27) in addition to the longer mean free path. Also, the coherence and spin–orbit parameters extracted here are very similar to other studies. (28,29,48)
Both Dresselhaus and Rashba SOIs are key resources for topological quantum computation and spin qubits. Dresselhaus SOI, on the one hand, is due to a lack of crystal inversion symmetry. NWs, particularly those with low symmetry and/or large aspect ratio cross sections, can have a strong Dresselhaus SOI, as recently predicted. (77) Rashba SOI, on the other hand, is due to a breaking of structural inversion symmetry, often appearing at an interface or surface. Both types of SOI may be gate-controlled, i.e., by changing the electric field (Rashba) (78−80) or by gate-tuning the wave function asymmetry (Dresselhaus). (28,77) Given the width of the present NWs, the estimated Dresselhaus contribution is negligible. We have measured the gate voltage dependence of the magnetoconductance. The resulting plot is shown in Figure 3d. Universal conductance fluctuations and charge switchers can often obscure the results of the magnetoconductance. In order to mitigate this, we coupled an AC-oscillation to the top gate. (81) Using the model from eq 2 over the full gate voltage range, lϕ and lso are found to be essentially independent of gate voltage (see Figures S5 and S6). This can be attributed to the wrap-around geometry of the gate, effectively shielding the NW from applied electric fields, while still allowing one to gate-tune the density (see Figure 3b). Thus, the WAL observed here is presumably due to the Rashba effect arising from built-in electric fields in the structure, such as gradients in the bandgap, presence of ionized dopants, or surface effects. In the Supporting Information, we give more details and a full analysis of the data with and without the AC oscillation.

Conclusion

ARTICLE SECTIONS
Jump To

We have demonstrated that remote doping of InGaAs NW networks grown by SAE is a promising approach to improving their quantum transport properties. Remote doping has enabled significant improvement of the key transport parameters such as the mean free path and SOI strength over previous bulk-doped NWs. (27) Together with increased In content lowering the band gap, the Y-junctions exhibit WAL, indicating strong SOI, which is a necessary ingredient for future applications in topological quantum computation. These measurements further serve as proof of the quality of the crystal across NW Y-junctions, and this work opens up new perspectives into using this approach in networked quantum computing schemes.

Experimental Section

ARTICLE SECTIONS
Jump To

Growth

MBE growth was performed in a DCA P600 solid-source MBE chamber. Twenty-five nm of SiO2 was deposited on GaAs (111)B substrates by plasma-enhanced chemical vapor deposition (PEVCD). These were patterned by e-beam lithography using 35 nm of ZEP resist and etching in an SPTS APS dielectric etching tool employing SF6 and CHF3 chemistry. After resist stripping in an O2 plasma, the samples were etched for 10 s in a highly dilute buffered HF solution to remove ∼5 nm of SiO2 everywhere and smoothen the mask. Samples were then loaded and annealed at 400 °C for 2 h in a degassing chamber followed by 630 °C for 30 min in the growth chamber immediately before growth. The GaAs buffer NMs were grown at a temperature of 630 °C at an equivalent 2D GaAs growth rate of 1 Å/s with an arsenic BEP of 4 × 10–6 Torr. They were grown to an equivalent 2D thickness of 100 nm, resulting in structures with a height of ∼300 nm. Toward the end of the buffer growth, Si dopants were introduced for a short duration via a Si sublimation cell at a rate of 1013 cm–2 s–1 to achieve the desired doping profile, nominally 2 nm below the surface of the NM. After GaAs growth, the substrate temperature was decreased to 540 °C, while the As BEP was increased to 8 × 10–6 Torr for InAs deposition. The In flux corresponded to an InAs equivalent growth rate of 0.1 Å/s. The In flux was closed after the 2D equivalent grown thickness of 60 nm of InAs, and the sample was then cooled down under As flux.

STEM

Cross sections of the samples were prepared first in a FEI Nova 600 Nanolab dual-beam SEM/FIB tool before being loaded into a FEI Tecnai Osiris microscope operating at 200 keV in STEM mode. Elemental contrast was obtained by EDS thanks to four cryo-cooled Super-X silicon drift detectors (SDDs).

APT

To protect the sample from damage during FIB milling, the sample was coated with 120 nm of Ni using ion-beam sputtering at 9 kV and 7 mA. Then, a further protective Pt capping layer was deposited by ion beam induced deposition prior to lift-out using a FEI Helios dual-beam focused ion beam. Wedge-shaped lift-outs were welded onto Si microposts, and annular milling was used to isolate the region of interest within a needle-shaped tip with a diameter of 20–60 nm. APT analysis was performed using a local-electrode atom-probe (LEAP) 5000 XS (CAMECA, Madison, WI) with a 355 nm wavelength laser under the following conditions: 250 kHz pulse rate, 30 K background temperature, 2.5 × 10–11 Torr background pressure, and 0.4% target detection rate. An initial pulse energy of 3 pJ was used to evaporate through the surface oxides; pulses of 0.65–0.74 pJ were used in the region analyzed. APT data were reconstructed using IVAS 3.8.5 software. The tip profile method was applied, in which SEM images of the nanotips before analysis were used to determine the reconstructed radius as a function of analyzed depth.

Contacts and Electrical Measurements

The devices were cleaned with standard solvents, and the contacts were patterned with e-beam lithography, followed by an O2 plasma cleaning. Before metallization, the samples were then exposed to an ammonium polysulfide (NH4Sx) solution for 150 s to remove the native oxide. (82) Contacts were deposited by dual-angle evaporation of 14/50 nm of Cr/Au to achieve suitable sidewall coverage. Next, 40 nm of HfO2 was deposited by ALD followed by another round of e-beam lithography and metallization to pattern the top gates. Finally, the sample was bonded into a chip carrier and measured using standard lock-in techniques in a variable temperature insert cryostat. Similar results were reproduced on another sample from the same wafer.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00517.

  • Finite element simulations, indium signal mapping by X-ray fluorescence, further magnetotransport measurement results, and atom-probe tomography on additional heterostructures. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Anna Fontcuberta i Morral - Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, SwitzerlandInstitute of Physics, Faculty of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, SwitzerlandOrcidhttp://orcid.org/0000-0002-5070-2196 Email: [email protected]
  • Authors
    • Martin Friedl - Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, SwitzerlandOrcidhttp://orcid.org/0000-0002-7897-2550
    • Kris Cerveny - Department of Physics, University of Basel, Basel, Switzerland
    • Chunyi Huang - Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States
    • Didem Dede - Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    • Mohammad Samani - Department of Physics, University of Basel, Basel, Switzerland
    • Megan O. Hill - Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United StatesOrcidhttp://orcid.org/0000-0002-7663-7986
    • Nicholas Morgan - Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    • Wonjong Kim - Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    • Lucas Güniat - Institute of Materials, Faculty of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, SwitzerlandOrcidhttp://orcid.org/0000-0001-7883-4433
    • Jaime Segura-Ruiz - ESRF: the European Synchrotron, Grenoble, 38043, France
    • Lincoln J. Lauhon - Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United StatesOrcidhttp://orcid.org/0000-0001-6046-3304
    • Dominik M. Zumbühl - Department of Physics, University of Basel, Basel, SwitzerlandOrcidhttp://orcid.org/0000-0001-5831-633X
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

The authors from EPFL and U. Basel acknowledge funding through the NCCR QSIT. Authors from EPFL further acknowledge funding from the Swiss NSF (project no. 200021_169908) and H2020 via the ITN project INDEED. Work at U. Basel was partially supported by the Swiss NSF, the Swiss Nanoscience Institute SNI, and the EU H2020 European Microkelvin Platform EMP Grant No. 824109. K.C., M.S., and D.M.Z. thank Daniel Loss and Christoph Kloeffel for useful discussions. Additional thanks to Taras Patlatiuk and Christian P. Scheller for technical support. J.S.-R. thanks the ESRF for the beamtime allocated on beamline ID16B. L.J.L. acknowledges the support of NSF DMR-1611341 and DMR-1905768. M.O.H. acknowledges the support of the NSF GRFP. The APT sample preparation made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois through the IIN. Atom-probe tomography was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomography at NUCAPT was purchased and upgraded with grants from the NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781, N00014-1712870) programs. NUCAPT received support from the MRSEC program (NSF DMR-1720139) at the Materials Research Center, the SHyNE Resource (NSF ECCS-1542205), and the Initiative for Sustainability and Energy (ISEN) at Northwestern University.

References

ARTICLE SECTIONS
Jump To

This article references 82 other publications.

  1. 1
    Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chem. Rev. 2019, 119, 89558957,  DOI: 10.1021/acs.chemrev.9b00423
  2. 2
    Holm, J. V.; Jørgensen, H. I.; Krogstrup, P.; Nygard, J.; Liu, H.; Aagesen, M.; Nygård, J.; Liu, H.; Aagesen, M. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat. Commun. 2013, 4, 1498,  DOI: 10.1038/ncomms2510
  3. 3
    Krogstrup, P.; Jørgensen, H. I.; Heiss, M.; Demichel, O.; Holm, J. V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 2013, 7, 306310,  DOI: 10.1038/nphoton.2013.32
  4. 4
    LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. III-V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi RRL 2013, 7, 815830,  DOI: 10.1002/pssr.201307109
  5. 5
    Mallorquí, A. D.; Alarcón-Lladó, E.; Russo-Averchi, E.; Tütüncüoglu, G.; Matteini, F.; Rüffer, D.; Morral, A. F. I. Characterization and analysis of InA s/p -Si heterojunction nanowire-based solar cell. J. Phys. D: Appl. Phys. 2014, 47, 394017,  DOI: 10.1088/0022-3727/47/39/394017
  6. 6
    Mallorquí, A. D.; Alarcón-Lladó, E.; Mundet, I. C.; Kiani, A.; Demaurex, B.; De Wolf, S.; Menzel, A.; Zacharias, M.; Fontcuberta i Morral, A. Field-effect passivation on silicon nanowire solar cells. Nano Res. 2015, 8, 673681,  DOI: 10.1007/s12274-014-0551-7
  7. 7
    Svensson, J.; Anttu, N.; Vainorius, N.; Borg, B. M.; Wernersson, L. E. Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett. 2013, 13, 13801385,  DOI: 10.1021/nl303751d
  8. 8
    Burgess, T.; Caro, P.; Wang, Y.; Badada, B. H.; Jackson, H. E.; Smith, L. M.; Guo, Y.; Tan, H. H.; Jagadish, C.; Caroff, P. Zn3As2 Nanowires and Nanoplatelets: Highly Efficient Infrared Emission and Photodetection by an Earth Abundant Material. Nano Lett. 2015, 15, 378385,  DOI: 10.1021/nl5036918
  9. 9
    Robson, M.; Azizur-Rahman, K. M.; Parent, D.; Wojdylo, P.; Thompson, D. A.; LaPierre, R. R. Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon. Nano Futures 2017, 1, 035001,  DOI: 10.1088/2399-1984/aa9015
  10. 10
    LaPierre, R. R.; Robson, M.; Azizur-Rahman, K. M.; Kuyanov, P. A review of III-V nanowire infrared photodetectors and sensors. J. Phys. D: Appl. Phys. 2017, 50, 123001,  DOI: 10.1088/1361-6463/aa5ab3
  11. 11
    Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H. H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 2013, 7, 963968,  DOI: 10.1038/nphoton.2013.303
  12. 12
    Mayer, B.; Rudolph, D.; Schnell, J.; Morkötter, S.; Winnerl, J.; Treu, J.; Müller, K.; Bracher, G.; Abstreiter, G.; Koblmüller, G. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 2013, 4, 2931,  DOI: 10.1038/ncomms3931
  13. 13
    Tatebayashi, J.; Kako, S.; Ho, J.; Ota, Y.; Iwamoto, S.; Arakawa, Y. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics 2015, 9, 501505,  DOI: 10.1038/nphoton.2015.111
  14. 14
    Burgess, T.; Saxena, D.; Mokkapati, S.; Li, Z.; Hall, C. R.; Davis, J. A.; Wang, Y.; Smith, L. M.; Fu, L.; Caroff, P. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 2016, 7, 11927,  DOI: 10.1038/ncomms11927
  15. 15
    Bermúdez-Ureña, E.; Tutuncuoglu, G.; Cuerda, J.; Smith, C. L. C.; Bravo-Abad, J.; Bozhevolnyi, S. I.; Fontcuberta i Morral, A.; García-Vidal, F. J.; Quidant, R. Plasmonic Waveguide-Integrated Nanowire Laser. Nano Lett. 2017, 17, 747754,  DOI: 10.1021/acs.nanolett.6b03879
  16. 16
    Claudon, J.; Bleuse, J.; Malik, N. S.; Bazin, M.; Jaffrennou, P.; Gregersen, N.; Sauvan, C.; Lalanne, P.; Gérard, J.-M. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 2010, 3, 116,  DOI: 10.1038/nphoton.2009.287
  17. 17
    Heiss, M.; Fontana, Y.; Gustafsson, a.; Wüst, G.; Magen, C.; O’Regan, D. D.; Luo, J. W.; Ketterer, B.; Conesa-Boj, S.; Kuhlmann, a. V. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 2013, 12, 43944,  DOI: 10.1038/nmat3557
  18. 18
    Deng, J.; Su, Y.; Liu, D.; Yang, P.; Liu, B.; Liu, C. Nanowire Photoelectrochemistry. Chem. Rev. 2019, 119, 92219259,  DOI: 10.1021/acs.chemrev.9b00232
  19. 19
    Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. Chem. Rev. 2019, 119, 90749135,  DOI: 10.1021/acs.chemrev.9b00164
  20. 20
    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S. Epitaxy of semiconductor-superconductor nanowires. Nat. Mater. 2015, 14, 400406,  DOI: 10.1038/nmat4176
  21. 21
    Plissard, S. R.; van Weperen, I.; Car, D.; Verheijen, M. a.; Immink, G. W. G.; Kammhuber, J.; Cornelissen, L. J.; Szombati, D. B.; Geresdi, A.; Frolov, S. M. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 2013, 8, 859864,  DOI: 10.1038/nnano.2013.198
  22. 22
    Car, D.; Wang, J.; Verheijen, M. A.; Bakkers, E. P. A. M.; Plissard, S. R. Rationally Designed Single-Crystalline Nanowire Networks. Adv. Mater. 2014, 26, 48754879,  DOI: 10.1002/adma.201400924
  23. 23
    Gazibegovic, S.; Car, D.; Zhang, H.; Balk, S. C.; Logan, J. A.; de Moor, M. W. A.; Cassidy, M. C.; Schmits, R.; Xu, D.; Wang, G. Epitaxy of advanced nanowire quantum devices. Nature 2017, 548, 434438,  DOI: 10.1038/nature23468
  24. 24
    Kang, J.-H.; Galicka, M.; Kacman, P.; Shtrikman, H. Wurtzite/Zinc-Blende ‘K’-shape InAs Nanowires with Embedded Two-Dimensional Wurtzite Plates. Nano Lett. 2017, 17, 531537,  DOI: 10.1021/acs.nanolett.6b04598
  25. 25
    Güniat, L.; Caroff, P.; Fontcuberta i Morral, A. Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chem. Rev. 2019, 119, 89588971,  DOI: 10.1021/acs.chemrev.8b00649
  26. 26
    McIntyre, P.; Fontcuberta i Morral, A. Semiconductor nanowires: to grow or not to grow?. Materials Today Nano 2020, 9, 100058,  DOI: 10.1016/j.mtnano.2019.100058
  27. 27
    Friedl, M.; Cerveny, K.; Weigele, P.; Tütüncüoglu, G.; Martí-Sánchez, S.; Huang, C.; Patlatiuk, T.; Potts, H.; Sun, Z.; Hill, M. O. Template-Assisted Scalable Nanowire Networks. Nano Lett. 2018, 18, 26662671,  DOI: 10.1021/acs.nanolett.8b00554
  28. 28
    Krizek, F.; Sestoft, J. E.; Aseev, P.; Marti-Sanchez, S.; Vaitiekėnas, S.; Casparis, L.; Khan, S. A.; Liu, Y.; Stankevič, T.; Whiticar, A. M. Field effect enhancement in buffered quantum nanowire networks. Physical Review Materials 2018, 2, 093401,  DOI: 10.1103/PhysRevMaterials.2.093401
  29. 29
    Vaitiekėnas, S.; Whiticar, A. M.; Deng, M.-T.; Krizek, F.; Sestoft, J. E.; Palmstrøm, C. J.; Marti-Sanchez, S.; Arbiol, J.; Krogstrup, P.; Casparis, L. Selective-Area-Grown Semiconductor-Superconductor Hybrids: A Basis for Topological Networks. Phys. Rev. Lett. 2018, 121, 147701,  DOI: 10.1103/PhysRevLett.121.147701
  30. 30
    Desplanque, L.; Bucamp, A.; Troadec, D.; Patriarche, G.; Wallart, X. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate. Nanotechnology 2018, 29, 305705,  DOI: 10.1088/1361-6528/aac321
  31. 31
    Aseev, P.; Fursina, A.; Boekhout, F.; Krizek, F.; Sestoft, J. E.; Borsoi, F.; Heedt, S.; Wang, G.; Binci, L.; Martí-Sánchez, S. Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks. Nano Lett. 2019, 19, 218227,  DOI: 10.1021/acs.nanolett.8b03733
  32. 32
    Lee, J. S.; Choi, S.; Pendharkar, M.; Pennachio, D. J.; Markman, B.; Seas, M.; Koelling, S.; Verheijen, M. A.; Casparis, L.; Petersson, K. D. Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111) B, and InP(011) surfaces. Physical Review Materials 2019, 3, 084606,  DOI: 10.1103/PhysRevMaterials.3.084606
  33. 33
    Karlsson, H. S.; Viselga, R.; Karlsson, U. O. Electron accumulation at the InAs(110) cleavage surface. Surf. Sci. 1998, 402–404, 590594,  DOI: 10.1016/S0039-6028(98)00002-8
  34. 34
    Bryllert, T.; Wernersson, L.-E.; Froberg, L.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 2006, 27, 323325,  DOI: 10.1109/LED.2006.873371
  35. 35
    Tanaka, T.; Tomioka, K.; Hara, S.; Motohisa, J.; Sano, E.; Fukui, T. Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates. Appl. Phys. Express 2010, 3, 025003,  DOI: 10.1143/APEX.3.025003
  36. 36
    Blömers, C.; Grap, T.; Lepsa, M. I.; Moers, J.; Trellenkamp, S.; Grützmacher, D.; Lüth, H.; Schäpers, T. Hall effect measurements on InAs nanowires. Appl. Phys. Lett. 2012, 101, 152106,  DOI: 10.1063/1.4759124
  37. 37
    Konar, A.; Mathew, J.; Nayak, K.; Bajaj, M.; Pandey, R. K.; Dhara, S.; Murali, K. V. R. M.; Deshmukh, M. M. Carrier Transport in High Mobility InAs Nanowire Junctionless Transistors. Nano Lett. 2015, 15, 16841690,  DOI: 10.1021/nl5043165
  38. 38
    Potts, H.; Friedl, M.; Amaduzzi, F.; Tang, K.; Tütüncüoglu, G.; Matteini, F.; Alarcon Lladó, E.; McIntyre, P. C. P.; Fontcuberta i Morral, A. From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires. Nano Lett. 2016, 16, 637643,  DOI: 10.1021/acs.nanolett.5b04367
  39. 39
    Joyce, H. J.; Docherty, C. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; Johnston, M. B. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 2013, 24, 214006,  DOI: 10.1088/0957-4484/24/21/214006
  40. 40
    Boland, J. L.; Amaduzzi, F.; Sterzl, S.; Potts, H.; Herz, L. M.; Fontcuberta i Morral, A.; Johnston, M. B. High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires. Nano Lett. 2018, 18, 37033710,  DOI: 10.1021/acs.nanolett.8b00842
  41. 41
    Harman, T. C.; Goering, H. L.; Beer, A. C. Electrical properties of n-type InAs. Phys. Rev. 1956, 104, 15621564,  DOI: 10.1103/PhysRev.104.1562
  42. 42
    Hou, J. J.; Wang, F.; Han, N.; Xiu, F.; Yip, S.; Fang, M.; Lin, H.; Hung, T. F.; Ho, J. C. Stoichiometric Effect on Electrical, Optical, and Structural Properties of Composition-Tunable In x Ga 1- x As Nanowires. ACS Nano 2012, 6, 93209325,  DOI: 10.1021/nn304174g
  43. 43
    Hou, J. J.; Wang, F.; Han, N.; Zhu, H.; Fok, K.; Lam, W.; Yip, S.; Hung, T.; Lee, J. E.; Ho, J. C. Diameter dependence of electron mobility in InGaAs nanowires. Appl. Phys. Lett. 2013, 102, 093112,  DOI: 10.1063/1.4794414
  44. 44
    Tsui, D. C.; Stormer, H. L.; Gossard, A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 1982, 48, 15591562,  DOI: 10.1103/PhysRevLett.48.1559
  45. 45
    von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 1986, 58, 519531,  DOI: 10.1103/RevModPhys.58.519
  46. 46
    Stormer, H. L. Nobel Lecture: The fractional quantum Hall effect. Rev. Mod. Phys. 1999, 71, 875889,  DOI: 10.1103/RevModPhys.71.875
  47. 47
    Shabani, J.; Kjaergaard, M.; Suominen, H. J.; Kim, Y.; Nichele, F.; Pakrouski, K.; Stankevic, T.; Lutchyn, R. M.; Krogstrup, P.; Feidenhans’L, R. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 16,  DOI: 10.1103/PhysRevB.93.159908
  48. 48
    Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure. Nat. Commun. 2016, 7, 12841,  DOI: 10.1038/ncomms12841
  49. 49
    Nichele, F.; Drachmann, A. C.; Whiticar, A. M.; O’Farrell, E. C.; Suominen, H. J.; Fornieri, A.; Wang, T.; Gardner, G. C.; Thomas, C.; Hatke, A. T. Scaling of Majorana Zero-Bias Conductance Peaks. Phys. Rev. Lett. 2017, 119, 15,  DOI: 10.1103/PhysRevLett.119.136803
  50. 50
    Suominen, H. J.; Kjaergaard, M.; Hamilton, A. R.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.; Nichele, F. Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform. Phys. Rev. Lett. 2017, 119, 176805,  DOI: 10.1103/PhysRevLett.119.176805
  51. 51
    Gonschorek, M.; Carlin, J.-F.; Feltin, E.; Py, M. A.; Grandjean, N. High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures. Appl. Phys. Lett. 2006, 89, 062106,  DOI: 10.1063/1.2335390
  52. 52
    Del Alamo, J. A. The high-electron mobility transistor at 30: Impressive accomplishments and exciting prospects. 2011 International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH 2011; 2011.
  53. 53
    Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 106 cm2/V s. J. Cryst. Growth 2009, 311, 16581661,  DOI: 10.1016/j.jcrysgro.2008.09.151
  54. 54
    Manfra, M. J. Molecular Beam Epitaxy of Ultra-High-Quality AlGaAs/GaAs Heterostructures: Enabling Physics in Low-Dimensional Electronic Systems. Annu. Rev. Condens. Matter Phys. 2014, 5, 347373,  DOI: 10.1146/annurev-conmatphys-031113-133905
  55. 55
    Boland, J. L.; Conesa-Boj, S.; Parkinson, P.; Tütüncüoglu, G.; Matteini, F.; Rüffer, D.; Casadei, A.; Amaduzzi, F.; Jabeen, F.; Davies, C. L. Modulation Doping of GaAs/AlGaAs Core-Shell Nanowires With Effective Defect Passivation and High Electron Mobility. Nano Lett. 2015, 15, 13361342,  DOI: 10.1021/nl504566t
  56. 56
    Boland, J. L.; Tütüncüoglu, G.; Gong, J. Q.; Conesa-Boj, S.; Davies, C. L.; Herz, L. M.; Fontcuberta i Morral, A.; Johnston, M. B. Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires. Nanoscale 2017, 9, 78397846,  DOI: 10.1039/C7NR00680B
  57. 57
    Funk, S.; Royo, M.; Zardo, I.; Rudolph, D.; Morkötter, S.; Mayer, B.; Becker, J.; Bechtold, A.; Matich, S.; Döblinger, M. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. Nano Lett. 2013, 13, 61896196,  DOI: 10.1021/nl403561w
  58. 58
    Tomioka, K.; Yoshimura, M.; Fukui, T. A., III nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 18992,  DOI: 10.1038/nature11293
  59. 59
    Leonard, D.; Krishnamurthy, M.; Reaves, C. M.; Denbaars, S. P.; Petroff, P. M. Direct formation of quantumsized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 1993, 63, 32033205,  DOI: 10.1063/1.110199
  60. 60
    Gillin, W. P.; Homewood, K. P.; Howard, L. K.; Emeny, M. T. Thermal interdiffusion in InGaAs/GaAs strained quantum wells as a function of doping density. Superlattices Microstruct. 1991, 9, 3942,  DOI: 10.1016/0749-6036(91)90089-A
  61. 61
    Khreis, O. M.; Homewood, K. P.; Gillin, W. P.; Singer, K. E. Intermixing in GaAsSb/GaAs single quantum wells. J. Appl. Phys. 1998, 84, 40174019,  DOI: 10.1063/1.368583
  62. 62
    Khreis, O. M.; Homewood, K. P.; Gillin, W. P. Interdiffusion in InGaAs/GaAs: The effect of growth conditions. J. Appl. Phys. 1998, 84, 232236,  DOI: 10.1063/1.368079
  63. 63
    Albani, M.; Bergamaschini, R.; Salvalaglio, M.; Voigt, A.; Miglio, L.; Montalenti, F. Competition Between Kinetics and Thermodynamics During the Growth of Faceted Crystal by Phase Field Modeling. Phys. Status Solidi B 2019, 256, 1800518,  DOI: 10.1002/pssb.201800518
  64. 64
    Moll, N.; Kley, A.; Pehlke, E.; Scheffler, M. GaAs equilibrium crystal shape from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 88448855,  DOI: 10.1103/PhysRevB.54.8844
  65. 65
    Albani, M.; Ghisalberti, L.; Bergamaschini, R.; Friedl, M.; Salvalaglio, M.; Voigt, A.; Montalenti, F.; Tütüncüoglu, G.; Fontcuberta i Morral, A.; Miglio, L. Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment. Physical Review Materials 2018, 2, 093404,  DOI: 10.1103/PhysRevMaterials.2.093404
  66. 66
    Morkötter, S.; Jeon, N.; Rudolph, D.; Loitsch, B.; Spirkoska, D.; Hoffmann, E.; Döblinger, M.; Matich, S.; Finley, J. J.; Lauhon, L. J. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. Nano Lett. 2015, 15, 32953302,  DOI: 10.1021/acs.nanolett.5b00518
  67. 67
    Sun, Z.; Hazut, O.; Huang, B.-C.; Chiu, Y.-P.; Chang, C.-S.; Yerushalmi, R.; Lauhon, L. J.; Seidman, D. N. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy. Nano Lett. 2016, 16, 44904500,  DOI: 10.1021/acs.nanolett.6b01693
  68. 68
    Sun, Z.; Hazut, O.; Yerushalmi, R.; Lauhon, L. J.; Seidman, D. N. Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology. Ultramicroscopy 2018, 184, 225233,  DOI: 10.1016/j.ultramic.2017.09.007
  69. 69
    Hellman, O. C.; Vandenbroucke, J. A.; Rüsing, J.; Isheim, D.; Seidman, D. N. Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram. Microsc. Microanal. 2000, 6, 437444,  DOI: 10.1007/S100050010051
  70. 70
    Gül, Ö.; Woerkom, D. J. V.; Weperen, I. V.; Car, D.; Plissard, S. R.; Bakkers, E. P. a. M.; Kouwenhoven, L. P. Towards high mobility InSb nanowire devices. Nanotechnology 2015, 26, 215202,  DOI: 10.1088/0957-4484/26/21/215202
  71. 71
    Harrison, J. W.; Hauser, J. R. Alloy scattering in ternary III-V compounds. Phys. Rev. B 1976, 13, 53475350,  DOI: 10.1103/PhysRevB.13.5347
  72. 72
    D’Yakonov, M. I.; Perel, V. I. Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors. Sov. Phys. JETP 1971, 33, 1053
  73. 73
    Beenakker, C. W. J.; van Houten, H. Boundary scattering and weak localization of electrons in a magnetic field. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 38, 32323240,  DOI: 10.1103/PhysRevB.38.3232
  74. 74
    Kurdak, C.; Chang, A. M.; Chin, A.; Chang, T. Y. Quantum interference effects and spin-orbit interaction in quasi-one-dimensional wires and rings. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 68466856,  DOI: 10.1103/PhysRevB.46.6846
  75. 75
    Al’tshuler, B.; Aronov, A. Magnetoresistance of thin films and of wires in a longitudinal magnetic field. JETP Lett. 1981, 33, 499
  76. 76
    van Weperen, I.; Tarasinski, B.; Eeltink, D.; Pribiag, V. S.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Wimmer, M. Spin-orbit interaction in InSb nanowires. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 201413,  DOI: 10.1103/PhysRevB.91.201413
  77. 77
    Carballido, M. J.; Kloeffel, C.; Zumbühl, D. M.; Loss, D. Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction. Condensed Matter 2019, https://arxiv.org/abs/1910.00562.
  78. 78
    Dettwiler, F.; Fu, J.; Mack, S.; Weigele, P. J.; Egues, J. C.; Awschalom, D. D.; Zumbühl, D. M. Stretchable Persistent Spin Helices in GaAs Quantum Wells. Phys. Rev. X 2017, 7, 031010,  DOI: 10.1103/PhysRevX.7.031010
  79. 79
    Hansen, A. E.; Björk, M. T.; Fasth, C.; Thelander, C.; Samuelson, L. Spin relaxation in InAs nanowires studied by tunable weak antilocalization. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 205328,  DOI: 10.1103/PhysRevB.71.205328
  80. 80
    Grundler, D. Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers. Phys. Rev. Lett. 2000, 84, 6074,  DOI: 10.1103/PhysRevLett.84.6074
  81. 81
    Wang, R.; Deacon, R. S.; Yao, J.; Lieber, C. M.; Ishibashi, K. Electrical modulation of weak-antilocalization and spin-orbit interaction in dual gated Ge/Si core/shell nanowires. Semicond. Sci. Technol. 2017, 32, 094002,  DOI: 10.1088/1361-6641/aa7ce6
  82. 82
    Suyatin, D. B.; Thelander, C.; Björk, M. T.; Maximov, I.; Samuelson, L. Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 2007, 18, 105307,  DOI: 10.1088/0957-4484/18/10/105307

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 13 publications.

  1. Chunyi Huang, Didem Dede, Nicholas Morgan, Valerio Piazza, Xiaobing Hu, Anna Fontcuberta i Morral, Lincoln J. Lauhon. Trapping Layers Prevent Dopant Segregation and Enable Remote Doping of Templated Self-Assembled InGaAs Nanowires. Nano Letters 2023, 23 (14) , 6284-6291. https://doi.org/10.1021/acs.nanolett.3c00281
  2. Nicholas Morgan, Vladimir G. Dubrovskii, Ann-Kristin Stief, Didem Dede, Marie Sanglé-Ferrière, Alok Rudra, Valerio Piazza, Anna Fontcuberta i Morral. From Layer-by-Layer Growth to Nanoridge Formation: Selective Area Epitaxy of GaAs by MOVPE. Crystal Growth & Design 2023, 23 (7) , 5083-5092. https://doi.org/10.1021/acs.cgd.3c00316
  3. Jiangtao Qu, Daria V. Beznasyuk, Maja Cassidy, Rawa Tanta, Limei Yang, Natalie P. Holmes, Matthew J. Griffith, Peter Krogstrup, Julie M. Cairney. Atomic-Scale Characterization of Planar Selective-Area-Grown InAs/InGaAs Nanowires. ACS Applied Materials & Interfaces 2022, 14 (42) , 47981-47990. https://doi.org/10.1021/acsami.2c09594
  4. Vladimir G. Dubrovskii, Wonjong Kim, Valerio Piazza, Lucas Güniat, Anna Fontcuberta i Morral. Simultaneous Selective Area Growth of Wurtzite and Zincblende Self-Catalyzed GaAs Nanowires on Silicon. Nano Letters 2021, 21 (7) , 3139-3145. https://doi.org/10.1021/acs.nanolett.1c00349
  5. Kun Peng, Nicholas Paul Morgan, Ford M. Wagner, Thomas Siday, Chelsea Qiushi Xia, Didem Dede, Victor Boureau, Valerio Piazza, Anna Fontcuberta i Morral, Michael B. Johnston. Direct and integrating sampling in terahertz receivers from wafer-scalable InAs nanowires. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-44345-1
  6. Santhanu Panikar Ramanandan, Joel Reñé Sapera, Alban Morelle, Sara Martí-Sánchez, Alok Rudra, Jordi Arbiol, Vladimir G. Dubrovskii, Anna Fontcuberta i Morral. Control of Ge island coalescence for the formation of nanowires on silicon. Nanoscale Horizons 2024, 8 https://doi.org/10.1039/D3NH00573A
  7. Didem Dede, Frank Glas, Valerio Piazza, Nicholas Morgan, Martin Friedl, Lucas Güniat, Elif Nur Dayi, Akshay Balgarkashi, Vladimir G Dubrovskii, Anna Fontcuberta i Morral. Selective area epitaxy of GaAs: the unintuitive role of feature size and pitch. Nanotechnology 2022, 33 (48) , 485604. https://doi.org/10.1088/1361-6528/ac88d9
  8. Didem Dede, Nicholas Morgan, Nadine Gächter, Timur Nurmamytov, Marta De Luca, Silvia Rubini, Anna Fontcuberta i Morral. Low Dimensional III-V and II-VI Semiconductors. Microscopy and Microanalysis 2022, 28 (S1) , 2004-2004. https://doi.org/10.1017/S1431927622007784
  9. Anibal Pacheco-Sanchez, Quim Torrent, David Jiménez. Schottky-like barrier characterization of field-effect transistors with multiple quasi-ballistic channels. Journal of Applied Physics 2022, 132 (2) https://doi.org/10.1063/5.0091077
  10. Daria V. Beznasyuk, Sara Martí-Sánchez, Jung-Hyun Kang, Rawa Tanta, Mohana Rajpalke, Tomaš Stankevič, Anna Wulff Christensen, Maria Chiara Spadaro, Roberto Bergamaschini, Nikhil N. Maka, Christian Emanuel N. Petersen, Damon J. Carrad, Thomas Sand Jespersen, Jordi Arbiol, Peter Krogstrup. Doubling the mobility of InAs/InGaAs selective area grown nanowires. Physical Review Materials 2022, 6 (3) https://doi.org/10.1103/PhysRevMaterials.6.034602
  11. Miguel J. Carballido, Christoph Kloeffel, Dominik M. Zumbühl, Daniel Loss. Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction. Physical Review B 2021, 103 (19) https://doi.org/10.1103/PhysRevB.103.195444
  12. Wonjong Kim, Lucas Güniat, Anna Fontcuberta i Morral, Valerio Piazza. Doping challenges and pathways to industrial scalability of III–V nanowire arrays. Applied Physics Reviews 2021, 8 (1) https://doi.org/10.1063/5.0031549
  13. Jan G. Gluschke, Jakob Seidl, H. Hoe Tan, Chennupati Jagadish, Philippe Caroff, Adam P. Micolich. Impact of invasive metal probes on Hall measurements in semiconductor nanostructures. Nanoscale 2020, 12 (39) , 20317-20325. https://doi.org/10.1039/D0NR04402D
  • Abstract

    Figure 1

    Figure 1. (a) Illustration of the SAE growth process. (b) Diagram showing the desired doping profile for remotely doped InGaAs NWs on GaAs NMs. (c) Tilted SEM image of an array of NWs after MBE growth. (d) Close-up tilted SEM image of a Y-junction showing uniform coalescence of InGaAs NWs. (e–h) Elemental maps of In concentration taken with STEM EDS on NW cross sections showing the dependence of growth conditions on NW composition.

    Figure 2

    Figure 2. (a) APT reconstruction of an InGaAs NW on a GaAs NM. The white dashed line in the schematic indicates the region analyzed by APT. Ga and In atoms are shown in green and red, respectively. As atoms are omitted for clarity. The NM–NW boundary is rendered with an isoconcentration surface of 5% In mole fraction. (b) Proximity histogram across the NM–NW interface showing the Si dopant distribution. Gray dashed lines show the upper bounds on Si concentration in regions away from the interface, where Si counts were not above the noise level. The isoconcentration surface of 16% In mole fraction is at 0 nm as a reference.

    Figure 3

    Figure 3. (a) False-colored SEM image of a fabricated electrical device showing three pairs of contacts to enable four-point measurements and a global top gate. (b) False-colored cross-sectional STEM high-angle annular dark-field (HAADF) image showing the layers in a fabricated electrical device. (c) Differential conductance as a function of top gate voltage Vg, from which the field-effect mobility μ = ∼480 ± 50 cm2/(V s), the conduction threshold Vth = −1.9 ± 0.2 V, and the contact resistance Rs = 12.2 ± 0.6 kΩ were extracted. (d) Differential conductance plot (color scale) as a function of magnetic field perpendicular to the substrate and top gate voltage with Vg,AC = 200 mV (peak-to-peak) oscillation added. (e) Magnetoconductance cuts (black) with fits (red) as labeled, exhibiting clear WAL. The WAL model is valid between the dashed vertical lines, which also denote the fitting range (solid red). Theory curves are extended to the full B-range (dashed red). Over the full gate range, average values of lϕ = 100 ± 20 nm and lso = 80 ± 20 nm, where the mean free path le = 20 nm was held fixed here. (f) Finite element simulation in nextnano of remotely doped structure obtained from APT measurements showing an electron distribution in the InGaAs NW which is spatially separated from the n-type silicon dopants and disordered GaAs/InGaAs interface. Inset: band structure cut along x = 0 nm with electron concentration overlaid in red.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 82 other publications.

    1. 1
      Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chem. Rev. 2019, 119, 89558957,  DOI: 10.1021/acs.chemrev.9b00423
    2. 2
      Holm, J. V.; Jørgensen, H. I.; Krogstrup, P.; Nygard, J.; Liu, H.; Aagesen, M.; Nygård, J.; Liu, H.; Aagesen, M. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat. Commun. 2013, 4, 1498,  DOI: 10.1038/ncomms2510
    3. 3
      Krogstrup, P.; Jørgensen, H. I.; Heiss, M.; Demichel, O.; Holm, J. V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 2013, 7, 306310,  DOI: 10.1038/nphoton.2013.32
    4. 4
      LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. III-V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi RRL 2013, 7, 815830,  DOI: 10.1002/pssr.201307109
    5. 5
      Mallorquí, A. D.; Alarcón-Lladó, E.; Russo-Averchi, E.; Tütüncüoglu, G.; Matteini, F.; Rüffer, D.; Morral, A. F. I. Characterization and analysis of InA s/p -Si heterojunction nanowire-based solar cell. J. Phys. D: Appl. Phys. 2014, 47, 394017,  DOI: 10.1088/0022-3727/47/39/394017
    6. 6
      Mallorquí, A. D.; Alarcón-Lladó, E.; Mundet, I. C.; Kiani, A.; Demaurex, B.; De Wolf, S.; Menzel, A.; Zacharias, M.; Fontcuberta i Morral, A. Field-effect passivation on silicon nanowire solar cells. Nano Res. 2015, 8, 673681,  DOI: 10.1007/s12274-014-0551-7
    7. 7
      Svensson, J.; Anttu, N.; Vainorius, N.; Borg, B. M.; Wernersson, L. E. Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett. 2013, 13, 13801385,  DOI: 10.1021/nl303751d
    8. 8
      Burgess, T.; Caro, P.; Wang, Y.; Badada, B. H.; Jackson, H. E.; Smith, L. M.; Guo, Y.; Tan, H. H.; Jagadish, C.; Caroff, P. Zn3As2 Nanowires and Nanoplatelets: Highly Efficient Infrared Emission and Photodetection by an Earth Abundant Material. Nano Lett. 2015, 15, 378385,  DOI: 10.1021/nl5036918
    9. 9
      Robson, M.; Azizur-Rahman, K. M.; Parent, D.; Wojdylo, P.; Thompson, D. A.; LaPierre, R. R. Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon. Nano Futures 2017, 1, 035001,  DOI: 10.1088/2399-1984/aa9015
    10. 10
      LaPierre, R. R.; Robson, M.; Azizur-Rahman, K. M.; Kuyanov, P. A review of III-V nanowire infrared photodetectors and sensors. J. Phys. D: Appl. Phys. 2017, 50, 123001,  DOI: 10.1088/1361-6463/aa5ab3
    11. 11
      Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H. H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 2013, 7, 963968,  DOI: 10.1038/nphoton.2013.303
    12. 12
      Mayer, B.; Rudolph, D.; Schnell, J.; Morkötter, S.; Winnerl, J.; Treu, J.; Müller, K.; Bracher, G.; Abstreiter, G.; Koblmüller, G. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 2013, 4, 2931,  DOI: 10.1038/ncomms3931
    13. 13
      Tatebayashi, J.; Kako, S.; Ho, J.; Ota, Y.; Iwamoto, S.; Arakawa, Y. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics 2015, 9, 501505,  DOI: 10.1038/nphoton.2015.111
    14. 14
      Burgess, T.; Saxena, D.; Mokkapati, S.; Li, Z.; Hall, C. R.; Davis, J. A.; Wang, Y.; Smith, L. M.; Fu, L.; Caroff, P. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 2016, 7, 11927,  DOI: 10.1038/ncomms11927
    15. 15
      Bermúdez-Ureña, E.; Tutuncuoglu, G.; Cuerda, J.; Smith, C. L. C.; Bravo-Abad, J.; Bozhevolnyi, S. I.; Fontcuberta i Morral, A.; García-Vidal, F. J.; Quidant, R. Plasmonic Waveguide-Integrated Nanowire Laser. Nano Lett. 2017, 17, 747754,  DOI: 10.1021/acs.nanolett.6b03879
    16. 16
      Claudon, J.; Bleuse, J.; Malik, N. S.; Bazin, M.; Jaffrennou, P.; Gregersen, N.; Sauvan, C.; Lalanne, P.; Gérard, J.-M. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 2010, 3, 116,  DOI: 10.1038/nphoton.2009.287
    17. 17
      Heiss, M.; Fontana, Y.; Gustafsson, a.; Wüst, G.; Magen, C.; O’Regan, D. D.; Luo, J. W.; Ketterer, B.; Conesa-Boj, S.; Kuhlmann, a. V. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 2013, 12, 43944,  DOI: 10.1038/nmat3557
    18. 18
      Deng, J.; Su, Y.; Liu, D.; Yang, P.; Liu, B.; Liu, C. Nanowire Photoelectrochemistry. Chem. Rev. 2019, 119, 92219259,  DOI: 10.1021/acs.chemrev.9b00232
    19. 19
      Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. Chem. Rev. 2019, 119, 90749135,  DOI: 10.1021/acs.chemrev.9b00164
    20. 20
      Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S. Epitaxy of semiconductor-superconductor nanowires. Nat. Mater. 2015, 14, 400406,  DOI: 10.1038/nmat4176
    21. 21
      Plissard, S. R.; van Weperen, I.; Car, D.; Verheijen, M. a.; Immink, G. W. G.; Kammhuber, J.; Cornelissen, L. J.; Szombati, D. B.; Geresdi, A.; Frolov, S. M. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 2013, 8, 859864,  DOI: 10.1038/nnano.2013.198
    22. 22
      Car, D.; Wang, J.; Verheijen, M. A.; Bakkers, E. P. A. M.; Plissard, S. R. Rationally Designed Single-Crystalline Nanowire Networks. Adv. Mater. 2014, 26, 48754879,  DOI: 10.1002/adma.201400924
    23. 23
      Gazibegovic, S.; Car, D.; Zhang, H.; Balk, S. C.; Logan, J. A.; de Moor, M. W. A.; Cassidy, M. C.; Schmits, R.; Xu, D.; Wang, G. Epitaxy of advanced nanowire quantum devices. Nature 2017, 548, 434438,  DOI: 10.1038/nature23468
    24. 24
      Kang, J.-H.; Galicka, M.; Kacman, P.; Shtrikman, H. Wurtzite/Zinc-Blende ‘K’-shape InAs Nanowires with Embedded Two-Dimensional Wurtzite Plates. Nano Lett. 2017, 17, 531537,  DOI: 10.1021/acs.nanolett.6b04598
    25. 25
      Güniat, L.; Caroff, P.; Fontcuberta i Morral, A. Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chem. Rev. 2019, 119, 89588971,  DOI: 10.1021/acs.chemrev.8b00649
    26. 26
      McIntyre, P.; Fontcuberta i Morral, A. Semiconductor nanowires: to grow or not to grow?. Materials Today Nano 2020, 9, 100058,  DOI: 10.1016/j.mtnano.2019.100058
    27. 27
      Friedl, M.; Cerveny, K.; Weigele, P.; Tütüncüoglu, G.; Martí-Sánchez, S.; Huang, C.; Patlatiuk, T.; Potts, H.; Sun, Z.; Hill, M. O. Template-Assisted Scalable Nanowire Networks. Nano Lett. 2018, 18, 26662671,  DOI: 10.1021/acs.nanolett.8b00554
    28. 28
      Krizek, F.; Sestoft, J. E.; Aseev, P.; Marti-Sanchez, S.; Vaitiekėnas, S.; Casparis, L.; Khan, S. A.; Liu, Y.; Stankevič, T.; Whiticar, A. M. Field effect enhancement in buffered quantum nanowire networks. Physical Review Materials 2018, 2, 093401,  DOI: 10.1103/PhysRevMaterials.2.093401
    29. 29
      Vaitiekėnas, S.; Whiticar, A. M.; Deng, M.-T.; Krizek, F.; Sestoft, J. E.; Palmstrøm, C. J.; Marti-Sanchez, S.; Arbiol, J.; Krogstrup, P.; Casparis, L. Selective-Area-Grown Semiconductor-Superconductor Hybrids: A Basis for Topological Networks. Phys. Rev. Lett. 2018, 121, 147701,  DOI: 10.1103/PhysRevLett.121.147701
    30. 30
      Desplanque, L.; Bucamp, A.; Troadec, D.; Patriarche, G.; Wallart, X. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate. Nanotechnology 2018, 29, 305705,  DOI: 10.1088/1361-6528/aac321
    31. 31
      Aseev, P.; Fursina, A.; Boekhout, F.; Krizek, F.; Sestoft, J. E.; Borsoi, F.; Heedt, S.; Wang, G.; Binci, L.; Martí-Sánchez, S. Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks. Nano Lett. 2019, 19, 218227,  DOI: 10.1021/acs.nanolett.8b03733
    32. 32
      Lee, J. S.; Choi, S.; Pendharkar, M.; Pennachio, D. J.; Markman, B.; Seas, M.; Koelling, S.; Verheijen, M. A.; Casparis, L.; Petersson, K. D. Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111) B, and InP(011) surfaces. Physical Review Materials 2019, 3, 084606,  DOI: 10.1103/PhysRevMaterials.3.084606
    33. 33
      Karlsson, H. S.; Viselga, R.; Karlsson, U. O. Electron accumulation at the InAs(110) cleavage surface. Surf. Sci. 1998, 402–404, 590594,  DOI: 10.1016/S0039-6028(98)00002-8
    34. 34
      Bryllert, T.; Wernersson, L.-E.; Froberg, L.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 2006, 27, 323325,  DOI: 10.1109/LED.2006.873371
    35. 35
      Tanaka, T.; Tomioka, K.; Hara, S.; Motohisa, J.; Sano, E.; Fukui, T. Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates. Appl. Phys. Express 2010, 3, 025003,  DOI: 10.1143/APEX.3.025003
    36. 36
      Blömers, C.; Grap, T.; Lepsa, M. I.; Moers, J.; Trellenkamp, S.; Grützmacher, D.; Lüth, H.; Schäpers, T. Hall effect measurements on InAs nanowires. Appl. Phys. Lett. 2012, 101, 152106,  DOI: 10.1063/1.4759124
    37. 37
      Konar, A.; Mathew, J.; Nayak, K.; Bajaj, M.; Pandey, R. K.; Dhara, S.; Murali, K. V. R. M.; Deshmukh, M. M. Carrier Transport in High Mobility InAs Nanowire Junctionless Transistors. Nano Lett. 2015, 15, 16841690,  DOI: 10.1021/nl5043165
    38. 38
      Potts, H.; Friedl, M.; Amaduzzi, F.; Tang, K.; Tütüncüoglu, G.; Matteini, F.; Alarcon Lladó, E.; McIntyre, P. C. P.; Fontcuberta i Morral, A. From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires. Nano Lett. 2016, 16, 637643,  DOI: 10.1021/acs.nanolett.5b04367
    39. 39
      Joyce, H. J.; Docherty, C. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; Johnston, M. B. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 2013, 24, 214006,  DOI: 10.1088/0957-4484/24/21/214006
    40. 40
      Boland, J. L.; Amaduzzi, F.; Sterzl, S.; Potts, H.; Herz, L. M.; Fontcuberta i Morral, A.; Johnston, M. B. High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires. Nano Lett. 2018, 18, 37033710,  DOI: 10.1021/acs.nanolett.8b00842
    41. 41
      Harman, T. C.; Goering, H. L.; Beer, A. C. Electrical properties of n-type InAs. Phys. Rev. 1956, 104, 15621564,  DOI: 10.1103/PhysRev.104.1562
    42. 42
      Hou, J. J.; Wang, F.; Han, N.; Xiu, F.; Yip, S.; Fang, M.; Lin, H.; Hung, T. F.; Ho, J. C. Stoichiometric Effect on Electrical, Optical, and Structural Properties of Composition-Tunable In x Ga 1- x As Nanowires. ACS Nano 2012, 6, 93209325,  DOI: 10.1021/nn304174g
    43. 43
      Hou, J. J.; Wang, F.; Han, N.; Zhu, H.; Fok, K.; Lam, W.; Yip, S.; Hung, T.; Lee, J. E.; Ho, J. C. Diameter dependence of electron mobility in InGaAs nanowires. Appl. Phys. Lett. 2013, 102, 093112,  DOI: 10.1063/1.4794414
    44. 44
      Tsui, D. C.; Stormer, H. L.; Gossard, A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 1982, 48, 15591562,  DOI: 10.1103/PhysRevLett.48.1559
    45. 45
      von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 1986, 58, 519531,  DOI: 10.1103/RevModPhys.58.519
    46. 46
      Stormer, H. L. Nobel Lecture: The fractional quantum Hall effect. Rev. Mod. Phys. 1999, 71, 875889,  DOI: 10.1103/RevModPhys.71.875
    47. 47
      Shabani, J.; Kjaergaard, M.; Suominen, H. J.; Kim, Y.; Nichele, F.; Pakrouski, K.; Stankevic, T.; Lutchyn, R. M.; Krogstrup, P.; Feidenhans’L, R. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 16,  DOI: 10.1103/PhysRevB.93.159908
    48. 48
      Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure. Nat. Commun. 2016, 7, 12841,  DOI: 10.1038/ncomms12841
    49. 49
      Nichele, F.; Drachmann, A. C.; Whiticar, A. M.; O’Farrell, E. C.; Suominen, H. J.; Fornieri, A.; Wang, T.; Gardner, G. C.; Thomas, C.; Hatke, A. T. Scaling of Majorana Zero-Bias Conductance Peaks. Phys. Rev. Lett. 2017, 119, 15,  DOI: 10.1103/PhysRevLett.119.136803
    50. 50
      Suominen, H. J.; Kjaergaard, M.; Hamilton, A. R.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.; Nichele, F. Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform. Phys. Rev. Lett. 2017, 119, 176805,  DOI: 10.1103/PhysRevLett.119.176805
    51. 51
      Gonschorek, M.; Carlin, J.-F.; Feltin, E.; Py, M. A.; Grandjean, N. High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures. Appl. Phys. Lett. 2006, 89, 062106,  DOI: 10.1063/1.2335390
    52. 52
      Del Alamo, J. A. The high-electron mobility transistor at 30: Impressive accomplishments and exciting prospects. 2011 International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH 2011; 2011.
    53. 53
      Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 106 cm2/V s. J. Cryst. Growth 2009, 311, 16581661,  DOI: 10.1016/j.jcrysgro.2008.09.151
    54. 54
      Manfra, M. J. Molecular Beam Epitaxy of Ultra-High-Quality AlGaAs/GaAs Heterostructures: Enabling Physics in Low-Dimensional Electronic Systems. Annu. Rev. Condens. Matter Phys. 2014, 5, 347373,  DOI: 10.1146/annurev-conmatphys-031113-133905
    55. 55
      Boland, J. L.; Conesa-Boj, S.; Parkinson, P.; Tütüncüoglu, G.; Matteini, F.; Rüffer, D.; Casadei, A.; Amaduzzi, F.; Jabeen, F.; Davies, C. L. Modulation Doping of GaAs/AlGaAs Core-Shell Nanowires With Effective Defect Passivation and High Electron Mobility. Nano Lett. 2015, 15, 13361342,  DOI: 10.1021/nl504566t
    56. 56
      Boland, J. L.; Tütüncüoglu, G.; Gong, J. Q.; Conesa-Boj, S.; Davies, C. L.; Herz, L. M.; Fontcuberta i Morral, A.; Johnston, M. B. Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires. Nanoscale 2017, 9, 78397846,  DOI: 10.1039/C7NR00680B
    57. 57
      Funk, S.; Royo, M.; Zardo, I.; Rudolph, D.; Morkötter, S.; Mayer, B.; Becker, J.; Bechtold, A.; Matich, S.; Döblinger, M. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. Nano Lett. 2013, 13, 61896196,  DOI: 10.1021/nl403561w
    58. 58
      Tomioka, K.; Yoshimura, M.; Fukui, T. A., III nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 18992,  DOI: 10.1038/nature11293
    59. 59
      Leonard, D.; Krishnamurthy, M.; Reaves, C. M.; Denbaars, S. P.; Petroff, P. M. Direct formation of quantumsized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 1993, 63, 32033205,  DOI: 10.1063/1.110199
    60. 60
      Gillin, W. P.; Homewood, K. P.; Howard, L. K.; Emeny, M. T. Thermal interdiffusion in InGaAs/GaAs strained quantum wells as a function of doping density. Superlattices Microstruct. 1991, 9, 3942,  DOI: 10.1016/0749-6036(91)90089-A
    61. 61
      Khreis, O. M.; Homewood, K. P.; Gillin, W. P.; Singer, K. E. Intermixing in GaAsSb/GaAs single quantum wells. J. Appl. Phys. 1998, 84, 40174019,  DOI: 10.1063/1.368583
    62. 62
      Khreis, O. M.; Homewood, K. P.; Gillin, W. P. Interdiffusion in InGaAs/GaAs: The effect of growth conditions. J. Appl. Phys. 1998, 84, 232236,  DOI: 10.1063/1.368079
    63. 63
      Albani, M.; Bergamaschini, R.; Salvalaglio, M.; Voigt, A.; Miglio, L.; Montalenti, F. Competition Between Kinetics and Thermodynamics During the Growth of Faceted Crystal by Phase Field Modeling. Phys. Status Solidi B 2019, 256, 1800518,  DOI: 10.1002/pssb.201800518
    64. 64
      Moll, N.; Kley, A.; Pehlke, E.; Scheffler, M. GaAs equilibrium crystal shape from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 88448855,  DOI: 10.1103/PhysRevB.54.8844
    65. 65
      Albani, M.; Ghisalberti, L.; Bergamaschini, R.; Friedl, M.; Salvalaglio, M.; Voigt, A.; Montalenti, F.; Tütüncüoglu, G.; Fontcuberta i Morral, A.; Miglio, L. Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment. Physical Review Materials 2018, 2, 093404,  DOI: 10.1103/PhysRevMaterials.2.093404
    66. 66
      Morkötter, S.; Jeon, N.; Rudolph, D.; Loitsch, B.; Spirkoska, D.; Hoffmann, E.; Döblinger, M.; Matich, S.; Finley, J. J.; Lauhon, L. J. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. Nano Lett. 2015, 15, 32953302,  DOI: 10.1021/acs.nanolett.5b00518
    67. 67
      Sun, Z.; Hazut, O.; Huang, B.-C.; Chiu, Y.-P.; Chang, C.-S.; Yerushalmi, R.; Lauhon, L. J.; Seidman, D. N. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy. Nano Lett. 2016, 16, 44904500,  DOI: 10.1021/acs.nanolett.6b01693
    68. 68
      Sun, Z.; Hazut, O.; Yerushalmi, R.; Lauhon, L. J.; Seidman, D. N. Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology. Ultramicroscopy 2018, 184, 225233,  DOI: 10.1016/j.ultramic.2017.09.007
    69. 69
      Hellman, O. C.; Vandenbroucke, J. A.; Rüsing, J.; Isheim, D.; Seidman, D. N. Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram. Microsc. Microanal. 2000, 6, 437444,  DOI: 10.1007/S100050010051
    70. 70
      Gül, Ö.; Woerkom, D. J. V.; Weperen, I. V.; Car, D.; Plissard, S. R.; Bakkers, E. P. a. M.; Kouwenhoven, L. P. Towards high mobility InSb nanowire devices. Nanotechnology 2015, 26, 215202,  DOI: 10.1088/0957-4484/26/21/215202
    71. 71
      Harrison, J. W.; Hauser, J. R. Alloy scattering in ternary III-V compounds. Phys. Rev. B 1976, 13, 53475350,  DOI: 10.1103/PhysRevB.13.5347
    72. 72
      D’Yakonov, M. I.; Perel, V. I. Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors. Sov. Phys. JETP 1971, 33, 1053
    73. 73
      Beenakker, C. W. J.; van Houten, H. Boundary scattering and weak localization of electrons in a magnetic field. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 38, 32323240,  DOI: 10.1103/PhysRevB.38.3232
    74. 74
      Kurdak, C.; Chang, A. M.; Chin, A.; Chang, T. Y. Quantum interference effects and spin-orbit interaction in quasi-one-dimensional wires and rings. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 68466856,  DOI: 10.1103/PhysRevB.46.6846
    75. 75
      Al’tshuler, B.; Aronov, A. Magnetoresistance of thin films and of wires in a longitudinal magnetic field. JETP Lett. 1981, 33, 499
    76. 76
      van Weperen, I.; Tarasinski, B.; Eeltink, D.; Pribiag, V. S.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Wimmer, M. Spin-orbit interaction in InSb nanowires. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 201413,  DOI: 10.1103/PhysRevB.91.201413
    77. 77
      Carballido, M. J.; Kloeffel, C.; Zumbühl, D. M.; Loss, D. Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction. Condensed Matter 2019, https://arxiv.org/abs/1910.00562.
    78. 78
      Dettwiler, F.; Fu, J.; Mack, S.; Weigele, P. J.; Egues, J. C.; Awschalom, D. D.; Zumbühl, D. M. Stretchable Persistent Spin Helices in GaAs Quantum Wells. Phys. Rev. X 2017, 7, 031010,  DOI: 10.1103/PhysRevX.7.031010
    79. 79
      Hansen, A. E.; Björk, M. T.; Fasth, C.; Thelander, C.; Samuelson, L. Spin relaxation in InAs nanowires studied by tunable weak antilocalization. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 205328,  DOI: 10.1103/PhysRevB.71.205328
    80. 80
      Grundler, D. Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers. Phys. Rev. Lett. 2000, 84, 6074,  DOI: 10.1103/PhysRevLett.84.6074
    81. 81
      Wang, R.; Deacon, R. S.; Yao, J.; Lieber, C. M.; Ishibashi, K. Electrical modulation of weak-antilocalization and spin-orbit interaction in dual gated Ge/Si core/shell nanowires. Semicond. Sci. Technol. 2017, 32, 094002,  DOI: 10.1088/1361-6641/aa7ce6
    82. 82
      Suyatin, D. B.; Thelander, C.; Björk, M. T.; Maximov, I.; Samuelson, L. Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 2007, 18, 105307,  DOI: 10.1088/0957-4484/18/10/105307
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00517.

    • Finite element simulations, indium signal mapping by X-ray fluorescence, further magnetotransport measurement results, and atom-probe tomography on additional heterostructures. (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect