ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Hierarchically 3D Porous Ag Nanostructures Derived from Silver Benzenethiolate Nanoboxes: Enabling CO2 Reduction with a Near-Unity Selectivity and Mass-Specific Current Density over 500 A/g

  • Sasitha C. Abeyweera
    Sasitha C. Abeyweera
    Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
  • Jie Yu
    Jie Yu
    Department of Physics, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
    More by Jie Yu
  • John P. Perdew
    John P. Perdew
    Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
    Department of Physics, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
  • Qimin Yan
    Qimin Yan
    Department of Physics, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
    More by Qimin Yan
  • , and 
  • Yugang Sun*
    Yugang Sun
    Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
    *E-mail: [email protected]
    More by Yugang Sun
Cite this: Nano Lett. 2020, 20, 4, 2806–2811
Publication Date (Web):March 20, 2020
https://doi.org/10.1021/acs.nanolett.0c00518
Copyright © 2020 American Chemical Society

    Article Views

    2393

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Silver nanostructures with hierarchical porosities of multiple length scales have been synthesized through electrochemical reduction of silver benzenethiolate nanoboxes. The porous Ag nanostructures exhibit superior catalytic performance toward electrochemical reduction of CO2. The Faradaic efficiency of reducing CO2 to CO can be close to 100% at high cathodic potentials, benefiting from the readsorbed benzenethiolate ions on the Ag surface that can suppress the hydrogen evolution reaction (HER). Density functional theory calculations using the SCAN functional reveal that the disfavored H binding on the benzenethiolate-modified Ag surface is responsible for inhibiting the HER. The mass-specific activity of CO2 reduction can be over 500 A/g because the multiple-scale porosities maximize the diffusion of reactive species to and away from the Ag surface. The unique multiscale porosities and surface modification of the as-synthesized Ag nanostructures make them a class of promising catalysts for electrochemical reduction of CO2 in protic electrolytes to achieve maximum activity and selectivity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00518.

    • Experimental details, details of DFT calculations, performance summary of eCO2RR catalysts in the literature, additional SEM, XRD, GC, NMR, and electrochemical data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Yuheng Wu, Xiangdong Kong, Yechao Su, Jiankang Zhao, Yiling Ma, Tongzheng Ji, Di Wu, Junyang Meng, Yan Liu, Zhigang Geng, Jie Zeng. Thiol Ligand-Modified Au for Highly Efficient Electroreduction of Nitrate to Ammonia. Precision Chemistry 2024, Article ASAP.
    2. Xian-Xia Yang, Yi-Ran Du, Xiao-Qiang Li, Guo-Yi Duan, Yong-Mei Chen, Bao-Hua Xu. Covalent Organic Frameworks Boost the Silver-Electrocatalyzed Reduction of CO2: The Electronic and Confinement Effect. ACS Applied Materials & Interfaces 2023, 15 (26) , 31533-31542. https://doi.org/10.1021/acsami.3c05679
    3. Noho Lee, Ho Yeon Jang, Kyubin Shim, Sang-Mun Jung, Jinhyeon Lee, Sang-Hoon You, Hye Su Kang, Jong Kyu Kim, Seoin Back, Yong-Tae Kim. Enhanced Activity and Selectivity for Electrochemical CO2 Reduction through Water Activation by Oxophilic Metal Deposited on Ag. ACS Applied Energy Materials 2023, 6 (8) , 4413-4421. https://doi.org/10.1021/acsaem.3c00530
    4. Ravari Kandy Aparna, Vishnu Surendran, Diptendu Roy, Biswarup Pathak, Manikoth M. Shaijumon, Sukhendu Mandal. Silver Nanoparticle-Decorated Defective Zr-Based Metal–Organic Frameworks for Efficient Electrocatalytic Carbon Dioxide Reduction with Ultrahigh Mass Activity. ACS Applied Energy Materials 2023, 6 (7) , 4072-4078. https://doi.org/10.1021/acsaem.3c00299
    5. Jia Zhou, Wen Yan, Zhuofan Gan, Chengyong Shu, Zhe Zheng, Wei Tang, Tiantian Wu, Keyu Xie, Ming Ma. Layer-Stacked Zn with Abundant Corners for Selective CO2 Electroreduction to CO. ACS Applied Energy Materials 2023, 6 (5) , 2954-2961. https://doi.org/10.1021/acsaem.2c03988
    6. Nicolò B. D. Monti, Marco Fontana, Adriano Sacco, Angelica Chiodoni, Andrea Lamberti, Candido F. Pirri, Juqin Zeng. Facile Fabrication of Ag Electrodes for CO2-to-CO Conversion with Near-Unity Selectivity and High Mass Activity. ACS Applied Energy Materials 2022, 5 (12) , 14779-14788. https://doi.org/10.1021/acsaem.2c02143
    7. Xiangdong Kong, Cheng Wang, Zifan Xu, Yongzhi Zhong, Yan Liu, Lang Qin, Jie Zeng, Zhigang Geng. Enhancing CO2 Electroreduction Selectivity toward Multicarbon Products via Tuning the Local H2O/CO2 Molar Ratio. Nano Letters 2022, 22 (19) , 8000-8007. https://doi.org/10.1021/acs.nanolett.2c02668
    8. Fenglian Qi, Ki-Jae Jeong, Jianxiao Gong, Zhiyong Tang. Modulation of Nano-superstructures and Their Optical Properties. Accounts of Chemical Research 2022, 55 (17) , 2425-2438. https://doi.org/10.1021/acs.accounts.2c00202
    9. Qin Chen, Kang Liu, Yajiao Zhou, Xiqing Wang, Kuangzhe Wu, Hongmei Li, Evangelina Pensa, Junwei Fu, Masahiro Miyauchi, Emiliano Cortés, Min Liu. Ordered Ag Nanoneedle Arrays with Enhanced Electrocatalytic CO2 Reduction via Structure-Induced Inhibition of Hydrogen Evolution. Nano Letters 2022, 22 (15) , 6276-6284. https://doi.org/10.1021/acs.nanolett.2c01853
    10. Zixu Tao, Adam J. Pearce, James M. Mayer, Hailiang Wang. Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO2 Reduction. Journal of the American Chemical Society 2022, 144 (19) , 8641-8648. https://doi.org/10.1021/jacs.2c01098
    11. Zulin Wang, Kirsi Yliniemi, Eeva-Leena Rautama, Pyry-Mikko Hannula, Benjamin P. Wilson, Mari Lundström. Electrochemical Growth of Ag/Zn Alloys from Zinc Process Solutions and Their Dealloying Behavior. ACS Sustainable Chemistry & Engineering 2022, 10 (11) , 3716-3725. https://doi.org/10.1021/acssuschemeng.2c00284
    12. Omer Ahmed Taialla, Umar Mustapha, Abdul Hakam Shafiu Abdullahi, Esraa Kotob, Mohammed Mosaad Awad, Aliyu Musa Alhassan, Ijaz Hussain, Khalid Omer, Saheed A. Ganiyu, Khalid Alhooshani. Unlocking the potential of ZIF-based electrocatalysts for electrochemical reduction of CO2: Recent advances, current trends, and machine learnings. Coordination Chemistry Reviews 2024, 504 , 215669. https://doi.org/10.1016/j.ccr.2024.215669
    13. Chaojie Chen, Huanyu Jin, Pengtang Wang, Xiaogang Sun, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao. Local reaction environment in electrocatalysis. Chemical Society Reviews 2024, 53 (4) , 2022-2055. https://doi.org/10.1039/D3CS00669G
    14. Hendrik Hoffmann, Maximilian Kutter, Jens Osiewacz, Melanie-Cornelia Paulisch-Rinke, Steffen Lechner, Barbara Ellendorff, Annika Hilgert, Ingo Manke, Thomas Turek, Christina Roth. Highly selective Ag foam gas diffusion electrodes for CO 2 electroreduction by pulsed hydrogen bubble templation. EES Catalysis 2024, 2 (1) , 286-299. https://doi.org/10.1039/D3EY00220A
    15. Qiang Wang, Hehe Wei, Ping Liu, Zixiang Su, Xue-Qing Gong. Recent advances in copper-based catalysts for electrocatalytic CO 2 reduction toward multi-carbon products. Nano Research Energy 2024, https://doi.org/10.26599/NRE.2024.9120112
    16. Bowen Deng, Huayi Yin, Kaifa Du, Dihua Wang. Efficient molten salt CO2 capture and selective electrochemical transformation processes toward carbon neutrality: advances, challenges, and prospects. Science China Chemistry 2023, 66 (11) , 3116-3135. https://doi.org/10.1007/s11426-023-1826-3
    17. Yongchao Yao, Weihua Zhuang, Ruizhi Li, Kai Dong, Yonglan Luo, Xun He, Shengjun Sun, Sulaiman Alfaifi, Xuping Sun, Wenchuang (Walter) Hu. Sn-based electrocatalysts for electrochemical CO 2 reduction. Chemical Communications 2023, 59 (59) , 9017-9028. https://doi.org/10.1039/D3CC02531D
    18. Renquan Wang, Tiantian Li, Rui Gao, Jiaqi Qin, Mengyao Li, Yizheng Guo, Yujiang Song. Carbonized Yolk-shell Metal-Organic Frameworks for Electrochemical Conversion of CO2 into Ethylene. Chemical Research in Chinese Universities 2023, 39 (2) , 246-252. https://doi.org/10.1007/s40242-022-2149-z
    19. Qing Xia, Mingcong Tang, Xiao Zhang. Flow Cells for CO2 Reduction. 2023, 199-228. https://doi.org/10.1007/978-3-031-37271-1_8
    20. Zhongzheng Zhang, Jialin Shi, Tianyang Zhu, Lina Zhang, Wei Wei. Nitrogen-doped mesoporous carbon single crystal-based Ag nanoparticles for boosting mild CO2 conversion with terminal alkynes. Journal of Colloid and Interface Science 2022, 627 , 81-89. https://doi.org/10.1016/j.jcis.2022.07.043
    21. Chao Cai, Bao Liu, Kang Liu, Pengcheng Li, Junwei Fu, Yanqiu Wang, Wenzhang Li, Chen Tian, Yicui Kang, Andrei Stefancu, Hongmei Li, Cheng‐Wei Kao, Ting‐Shan Chan, Zhang Lin, Liyuan Chai, Emiliano Cortés, Min Liu. Heteroatoms Induce Localization of the Electric Field and Promote a Wide Potential‐Window Selectivity Towards CO in the CO 2 Electroreduction. Angewandte Chemie International Edition 2022, 61 (44) https://doi.org/10.1002/anie.202212640
    22. Chao Cai, Bao Liu, Kang Liu, Pengcheng Li, Junwei Fu, Yanqiu Wang, Wenzhang Li, Chen Tian, Yicui Kang, Andrei Stefancu, Hongmei Li, Cheng‐Wei Kao, Ting‐Shan Chan, Zhang Lin, Liyuan Chai, Emiliano Cortés, Min Liu. Heteroatoms Induce Localization of the Electric Field and Promote a Wide Potential‐Window Selectivity Towards CO in the CO 2 Electroreduction. Angewandte Chemie 2022, 134 (44) https://doi.org/10.1002/ange.202212640
    23. Geng Li, Yong Liu, Qiang Zhang, Qiushi Hu, Weihua Guo, Xiaohu Cao, Yubing Dou, Le Cheng, Yun Song, Jianjun Su, Libei Huang, Ruquan Ye. Development of catalysts and electrolyzers toward industrial-scale CO 2 electroreduction. Journal of Materials Chemistry A 2022, 10 (37) , 19254-19277. https://doi.org/10.1039/D2TA02086F
    24. Hu Yang, Jialu Huang, Hui Yang, Qiyang Guo, Bei Jiang, Jinxing Chen, Xiaolei Yuan. Design and Synthesis of Ag‐based Catalysts for Electrochemical CO 2 Reduction: Advances and Perspectives. Chemistry – An Asian Journal 2022, 17 (18) https://doi.org/10.1002/asia.202200637
    25. Mohd Zafar Iqbal, Shahla Imteyaz, Chandan Ghanty, Santanu Sarkar. A review on electrochemical conversion of CO2 to CO: Ag-based electrocatalyst and cell configuration for industrial application. Journal of Industrial and Engineering Chemistry 2022, 113 , 15-31. https://doi.org/10.1016/j.jiec.2022.05.041
    26. Jinli Yu, Jinwen Yin, Ruchun Li, Yangbo Ma, Zhanxi Fan. Interfacial electric field effect on electrochemical carbon dioxide reduction reaction. Chem Catalysis 2022, 2 (9) , 2229-2252. https://doi.org/10.1016/j.checat.2022.07.024
    27. Tian Wang, Jincheng Zhang, Fuhua Li, Bin Liu, Sibudjing Kawi. Recent progress of electrochemical reduction of CO2 by single atom catalysts. Materials Reports: Energy 2022, 2 (3) , 100140. https://doi.org/10.1016/j.matre.2022.100140
    28. X. Zhang, N. Qin, E. Ye, G. Guan, M. Y. Han, Z. Li. Nanotechnology for CO2 Capture, Storage, and Conversion. 2022, 65-116. https://doi.org/10.1039/9781839165771-00065
    29. Jeong Dae Kim, Hyunsik Choi, Kwangjun Kim, Hyoungseok Chae, Hoon Yi, Myeong Hee Jeong, Nayeong Lee, Minyoung Lee, Min Cheol Kim, Ji Won Suk, Kyu-Tae Lee, Hoon Eui Jeong, Jong G. Ok. Ionic solution-processable Ag nanostructures with tunable optical and electrical properties and strong adhesion to general substrates. Applied Materials Today 2022, 27 , 101475. https://doi.org/10.1016/j.apmt.2022.101475
    30. Ying Chen, Feng Hu, Yanan Hao, Yonghan Wang, Yaoyi Xie, Hui Wang, Lijie Yin, Deshuang Yu, Hongchao Yang, Jun Ma, Dan Kai, Linlin Li, Shengjie Peng. In situ construction of thiol-silver interface for selectively electrocatalytic CO2 reduction. Nano Research 2022, 15 (4) , 3283-3289. https://doi.org/10.1007/s12274-021-3978-7
    31. Sasitha C. Abeyweera, Matas Simukaitis, Qilin Wei, Yugang Sun. Interfaced Ag/Cu nanostructures derived from metal thiolate nanoplates: A highly selective catalyst for electrochemical reduction of CO 2 to ethanol. SmartMat 2022, 3 (1) , 173-182. https://doi.org/10.1002/smm2.1096
    32. Mingdong Sun, Zhengyun Bian, Weiwei Cui, Xiaolong Zhao, Shu Dong, Xuebin Ke, Yu Zhou, Jun Wang. Pyrolyzing soft template-containing poly(ionic liquid) into hierarchical N-doped porous carbon for electroreduction of carbon dioxide. Chinese Journal of Chemical Engineering 2022, 43 , 192-201. https://doi.org/10.1016/j.cjche.2021.07.020
    33. Ruizhi Li, Jie Liang, Tingshuai Li, Luchao Yue, Qian Liu, Yonglan Luo, Mohamed S. Hamdy, Yibai Sun, Xuping Sun. Recent advances in MoS 2 -based materials for electrocatalysis. Chemical Communications 2022, 58 (14) , 2259-2278. https://doi.org/10.1039/D1CC04004A
    34. Yunkai Li, Kaifu Zhang, Yu Yu, Xiaowen Zhan, Jiaojiao Gui, Jingyu Xue, Xin Jin, Shan Gao, Yi Xie. Pd homojunctions enable remarkable CO 2 electroreduction. Chemical Communications 2022, 58 (3) , 387-390. https://doi.org/10.1039/D1CC04780A
    35. Qinqin Sang, Shuo Hao, Jiuhui Han, Yi Ding. Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem 2022, 4 (1) , 100069. https://doi.org/10.1016/j.enchem.2022.100069
    36. Da Wang, Ying Zhu, Weiting Yu, Zhiqiao He, Feilong Dong, Yi Shen, Tao Zeng, Xiaohui Lu, Jun Ma, Lizhang Wang, Shuang Song. Ag-MOF-derived 3D Ag dendrites used for the efficient electrocatalytic reduction of CO2 to CO. Electrochimica Acta 2022, 403 , 139652. https://doi.org/10.1016/j.electacta.2021.139652
    37. Teppei Nishi, Shunsuke Sato, Takeshi Morikawa. Electrochemical CO 2 Reduction to HCOOH Catalyzed by Ag n (NO 3 ) n +1 Clusters Prepared by Laser Ablation at the Air-Liquid Interface. Chemistry Letters 2021, 50 (12) , 1941-1944. https://doi.org/10.1246/cl.210483
    38. Chao An, Yongli Shen, Wenxiu Yan, Linxiu Dai, Changhua An. Surface-tuning nanoporous AuCu3 engineering syngas proportion by electrochemical conversion of CO2. Nano Research 2021, 14 (11) , 3907-3912. https://doi.org/10.1007/s12274-021-3313-3
    39. Pengbo Zhai, Xiaokang Gu, Yi Wei, Jinghan Zuo, Qian Chen, Wei Liu, Huaning Jiang, Xingguo Wang, Yongji Gong. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. Journal of Energy Chemistry 2021, 62 , 43-50. https://doi.org/10.1016/j.jechem.2021.03.011
    40. Rakesh Kumar Sharma, Sneha Yadav, Sriparna Dutta, Hanumant B. Kale, Indrajeet R. Warkad, Radek Zbořil, Rajender S. Varma, Manoj B. Gawande. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews 2021, 50 (20) , 11293-11380. https://doi.org/10.1039/D0CS00912A
    41. Jingfu He, Chenghui Wu, Yanming Li, Changli Li. Design of pre-catalysts for heterogeneous CO 2 electrochemical reduction. Journal of Materials Chemistry A 2021, 9 (35) , 19508-19533. https://doi.org/10.1039/D1TA03624F
    42. Zhongyuan Xie, Yuan Qiu, Sanshuang Gao, Jiaqiang Sun, Huanqi Cao, Shusheng Zhang, Jun Luo, Xijun Liu. Surface Oxidized Ag Nanofilms Towards Highly Effective CO 2 Reduction. ChemElectroChem 2021, 8 (18) , 3579-3583. https://doi.org/10.1002/celc.202100921
    43. Liping Huang, Wenyao Li, Min Zeng, Guanjie He, Paul R. Shearing, Ivan P. Parkin, Dan J.L. Brett. Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. Composites Part B: Engineering 2021, 220 , 108986. https://doi.org/10.1016/j.compositesb.2021.108986
    44. Wangjing Xie, Shifu Zhang, Youxuan Ni, Guodong Shi, Jingjing Li, Xinliang Fu, Xiaojie Chen, Mingjian Yuan, Mei Wang. Graphdiyne‐Stabilized Silver Nanoparticles as an Efficient Electrocatalyst for CO 2 Reduction. Advanced Energy and Sustainability Research 2021, 2 (8) https://doi.org/10.1002/aesr.202100037
    45. Benjamin A. Zhang, Daniel G. Nocera. Cascade Electrochemical Reduction of Carbon Dioxide with Bimetallic Nanowire and Foam Electrodes. ChemElectroChem 2021, 8 (10) , 1918-1924. https://doi.org/10.1002/celc.202100295
    46. Li Zeng, Jun Shi, Hanxin Chen, Chong Lin. Ag Nanowires/C as a Selective and Efficient Catalyst for CO2 Electroreduction. Energies 2021, 14 (10) , 2840. https://doi.org/10.3390/en14102840
    47. Genxiang Wang, Junxiang Chen, Yichun Ding, Pingwei Cai, Luocai Yi, Yan Li, Chaoyang Tu, Yang Hou, Zhenhai Wen, Liming Dai. Electrocatalysis for CO 2 conversion: from fundamentals to value-added products. Chemical Society Reviews 2021, 50 (8) , 4993-5061. https://doi.org/10.1039/D0CS00071J
    48. Maryam Abdinejad, Iranaldo Santos da Silva, Heinz Bernhard Kraatz. Electrografting amines onto silver nanoparticle-modified electrodes for electroreduction of CO 2 at low overpotential. Journal of Materials Chemistry A 2021, 9 (15) , 9791-9797. https://doi.org/10.1039/D1TA00260K
    49. Dang Le Tri Nguyen, Ha Huu Do, Manh Tung Nguyen, Dai-Viet N. Vo, Van-Huy Nguyen, Chinh Chien Nguyen, Soo Young Kim, Quyet Van Le. Electrochemical conversion of carbon dioxide over silver-based catalysts: Recent progress in cathode structure and interface engineering. Chemical Engineering Science 2021, 234 , 116403. https://doi.org/10.1016/j.ces.2020.116403
    50. Yan Yan, Longwei Ke, Ying Ding, Yao Zhang, Kun Rui, Huijuan Lin, Jixin Zhu. Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. Materials Chemistry Frontiers 2021, 5 (6) , 2668-2683. https://doi.org/10.1039/D0QM01127D
    51. Xinyi Tan, Chang Yu, Yongwen Ren, Song Cui, Wenbin Li, Jieshan Qiu. Recent advances in innovative strategies for the CO 2 electroreduction reaction. Energy & Environmental Science 2021, 14 (2) , 765-780. https://doi.org/10.1039/D0EE02981E
    52. Richard I. Masel, Zengcai Liu, Hongzhou Yang, Jerry J. Kaczur, Daniel Carrillo, Shaoxuan Ren, Danielle Salvatore, Curtis P. Berlinguette. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology 2021, 16 (2) , 118-128. https://doi.org/10.1038/s41565-020-00823-x
    53. Xiaofei Zhang, Haitao Liu, Yanan Shi, Jianyu Han, Zhongjie Yang, Yin Zhang, Chang Long, Jun Guo, Yanfei Zhu, Xueying Qiu, Guangxin Xue, Lingjuan Zhang, Binghao Zhang, Lin Chang, Zhiyong Tang. Boosting CO2 Conversion with Terminal Alkynes by Molecular Architecture of Graphene Oxide-Supported Ag Nanoparticles. Matter 2020, 3 (2) , 558-570. https://doi.org/10.1016/j.matt.2020.07.022

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect