ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Low-Voltage Domain-Wall LiNbO3 Memristors

  • P. Chaudhary
    P. Chaudhary
    Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by P. Chaudhary
  • H. Lu
    H. Lu
    Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by H. Lu
  • A. Lipatov
    A. Lipatov
    Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by A. Lipatov
  • Z. Ahmadi
    Z. Ahmadi
    Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by Z. Ahmadi
  • J. P. V. McConville
    J. P. V. McConville
    Centre for Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
  • A. Sokolov
    A. Sokolov
    Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by A. Sokolov
  • J. E. Shield
    J. E. Shield
    Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by J. E. Shield
  • A. Sinitskii
    A. Sinitskii
    Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
    More by A. Sinitskii
  • J. M. Gregg
    J. M. Gregg
    Centre for Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
    More by J. M. Gregg
  • , and 
  • A. Gruverman*
    A. Gruverman
    Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, United States
    *Email: [email protected]
    More by A. Gruverman
Cite this: Nano Lett. 2020, 20, 8, 5873–5878
Publication Date (Web):June 23, 2020
https://doi.org/10.1021/acs.nanolett.0c01836
Copyright © 2020 American Chemical Society

    Article Views

    2505

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (8 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Application of conducting ferroelectric domain walls (DWs) as functional elements may facilitate development of conceptually new resistive switching devices. In a conventional approach, several orders of magnitude change in resistance can be achieved by controlling the DW density using supercoercive voltage. However, a deleterious characteristic of this approach is high-energy cost of polarization reversal due to high leakage current. Here, we demonstrate a new approach based on tuning the conductivity of DWs themselves rather than on domain rearrangement. Using LiNbO3 capacitors with graphene, we show that resistance of a device set to a polydomain state can be continuously tuned by application of subcoercive voltage. The tuning mechanism is based on the reversible transition between the conducting and insulating states of DWs. The developed approach allows an energy-efficient control of resistance without the need for domain structure modification. The developed memristive devices are promising for multilevel memories and neuromorphic computing applications.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01836.

    • Figure S1, AFM topographic images; Figure S2, PFM images; and Figure S3, time dependence of conductance of polydomain graphene/LNO/Pt capacitor (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 36 publications.

    1. Jie Sun, An-Quan Jiang, Pankaj Sharma. Ferroelectric Domain Wall Memory and Logic. ACS Applied Electronic Materials 2023, Article ASAP.
    2. Jie Sun, Yiming Li, Boyang Zhang, Anquan Jiang. High-Power LiNbO3 Domain-Wall Nanodevices. ACS Applied Materials & Interfaces 2023, 15 (6) , 8691-8698. https://doi.org/10.1021/acsami.2c20579
    3. Pankaj Sharma, Anna N. Morozovska, Eugene A. Eliseev, Qi Zhang, Daniel Sando, Nagarajan Valanoor, Jan Seidel. Specific Conductivity of a Ferroelectric Domain Wall. ACS Applied Electronic Materials 2022, 4 (6) , 2739-2746. https://doi.org/10.1021/acsaelm.2c00261
    4. Pankaj Sharma, Jan Seidel. Neuromorphic functionality of ferroelectric domain walls. Neuromorphic Computing and Engineering 2023, 3 (2) , 022001. https://doi.org/10.1088/2634-4386/accfbb
    5. Ahmet Suna, Conor Joseph McCluskey, Jesi Rit Maguire, Kristina Mary Holsgrove, Amit Kumar, Raymond Gerard Peter McQuaid, John Marty Gregg. Tuning Local Conductance to Enable Demonstrator Ferroelectric Domain Wall Diodes and Logic Gates. Advanced Physics Research 2023, 2 (5) https://doi.org/10.1002/apxr.202200095
    6. Wen Jie Zhang, Bo Wen Shen, Hao Chen Fan, Di Hu, An Quan Jiang, Jun Jiang. Nonvolatile Ferroelectric LiNbO 3 Domain Wall Crossbar Memory. IEEE Electron Device Letters 2023, 44 (3) , 420-423. https://doi.org/10.1109/LED.2023.3240762
    7. Yang-Jun Ou, Jie Sun, Yi-Ming Li, An-Quan Jiang. A Ferroelectric Domain-Wall Transistor. Chinese Physics Letters 2023, 40 (3) , 038501. https://doi.org/10.1088/0256-307X/40/3/038501
    8. E. K. H. Salje, S. Kustov. Dynamic domain boundaries: chemical dopants carried by moving twin walls. Physical Chemistry Chemical Physics 2023, 25 (3) , 1588-1601. https://doi.org/10.1039/D2CP04908B
    9. Jan L. Rieck, Davide Cipollini, Mart Salverda, Cynthia P. Quinteros, Lambert R. B. Schomaker, Beatriz Noheda. Ferroelastic Domain Walls in BiFeO 3 as Memristive Networks. Advanced Intelligent Systems 2023, 5 (1) https://doi.org/10.1002/aisy.202200292
    10. Wen Di Zhang, Xiao Zhuang, Jun Jiang, An Quan Jiang. Polarization retention dependence of imprint time within LiNbO3 single-crystal domain wall devices. Journal of Applied Physics 2022, 132 (22) https://doi.org/10.1063/5.0126608
    11. Felix Risch, Yuri Tikhonov, Igor Lukyanchuk, Adrian M. Ionescu, Igor Stolichnov. Giant switchable non thermally-activated conduction in 180° domain walls in tetragonal Pb(Zr,Ti)O3. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34777-6
    12. Jie Sun, Yiming Li, Yangjun Ou, Qianwei Huang, Xiaozhou Liao, Zibin Chen, Xiaojie Chai, Xiao Zhuang, Wendi Zhang, Chao Wang, Jun Jiang, Anquan Jiang. In‐Memory Computing of Multilevel Ferroelectric Domain Wall Diodes at LiNbO 3 Interfaces. Advanced Functional Materials 2022, 32 (49) https://doi.org/10.1002/adfm.202207418
    13. A. Suna, O. E. Baxter, J. P. V. McConville, A. Kumar, R. G. P. McQuaid, J. M. Gregg. Conducting ferroelectric domain walls emulating aspects of neurological behavior. Applied Physics Letters 2022, 121 (22) https://doi.org/10.1063/5.0124390
    14. Wenxiao Wang, Song Gao, Yaqi Wang, Yang Li, Wenjing Yue, Hongsen Niu, Feifei Yin, Yunjian Guo, Guozhen Shen. Advances in Emerging Photonic Memristive and Memristive‐Like Devices. Advanced Science 2022, 9 (28) https://doi.org/10.1002/advs.202105577
    15. Conor J. McCluskey, Matthew G. Colbear, James P. V. McConville, Shane J. McCartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymond G. P. McQuaid, J. Marty Gregg. Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature. Advanced Materials 2022, 34 (32) https://doi.org/10.1002/adma.202204298
    16. Jan Schultheiß, Tadej Rojac, Dennis Meier. Unveiling Alternating Current Electronic Properties at Ferroelectric Domain Walls. Advanced Electronic Materials 2022, 8 (6) https://doi.org/10.1002/aelm.202100996
    17. Aleksandr M. Kislyuk, Tatiana S. Ilina, Ilya V. Kubasov, Dmitry A. Kiselev, Aleksandr A. Temirov, Andrei V. Turutin, Andrey S. Shportenko, Mikhail D. Malinkovich, Yuri N. Parkhomenko. Degradation of the electrical conductivity of charged domain walls in reduced lithium niobate crystals. Modern Electronic Materials 2022, 8 (1) , 15-22. https://doi.org/10.3897/j.moem.8.1.85251
    18. Chao Wang, Tianyu Wang, Wendi Zhang, Jun Jiang, Lin Chen, Anquan Jiang. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Research 2022, 15 (4) , 3606-3613. https://doi.org/10.1007/s12274-021-3899-5
    19. Stuart R. Burns, Alexander Tselev, Anton V. Ievlev, Joshua C. Agar, Lane W. Martin, Sergei V. Kalinin, Daniel Sando, Petro Maksymovych. Tunable Microwave Conductance of Nanodomains in Ferroelectric PbZr 0.2 Ti 0.8 O 3 Thin Film. Advanced Electronic Materials 2022, 8 (3) https://doi.org/10.1002/aelm.202100952
    20. Pankaj Sharma, Theodore S. Moise, Luigi Colombo, Jan Seidel. Roadmap for Ferroelectric Domain Wall Nanoelectronics. Advanced Functional Materials 2022, 32 (10) https://doi.org/10.1002/adfm.202110263
    21. J. M. Gregg. A perspective on conducting domain walls and possibilities for ephemeral electronics. Applied Physics Letters 2022, 120 (1) https://doi.org/10.1063/5.0079738
    22. Wenping Geng, Xiaojun Qiao, Jinlong He, Linyu Mei, Kaixi Bi, Xiangjian Wang, Xiujian Chou. Permanent charged domain walls under tip-poling engineering. Journal of Materials Chemistry C 2021, 9 (44) , 15797-15803. https://doi.org/10.1039/D1TC03671H
    23. Lei Tong, Zhuiri Peng, Runfeng Lin, Zheng Li, Yilun Wang, Xinyu Huang, Kan-Hao Xue, Hangyu Xu, Feng Liu, Hui Xia, Peng Wang, Mingsheng Xu, Wei Xiong, Weida Hu, Jianbin Xu, Xinliang Zhang, Lei Ye, Xiangshui Miao. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373 (6561) , 1353-1358. https://doi.org/10.1126/science.abg3161
    24. Qiqi Peng, Xu Jiang, Yifan Chen, Wei Zhang, Jun Jiang, Anquan Jiang. Large domain-wall currents in epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors with modulated oxygen vacancy and wall densities. Ceramics International 2021, 47 (16) , 22753-22759. https://doi.org/10.1016/j.ceramint.2021.04.293
    25. Jianwei Lian, Xiaojie Chai, Chao Wang, Xiaobing Hu, Jun Jiang, Anquan Jiang. Sub 20 nm‐Node LiNbO 3 Domain‐Wall Memory. Advanced Materials Technologies 2021, 6 (7) https://doi.org/10.1002/admt.202001219
    26. Pan Zhang, Wenjing Zhai, Zhibo Yan, Xiang Li, Yongqiang Li, Shuhan Zheng, Yongsen Tang, Lin Lin, J.-M. Liu. High-performance complementary resistive switching in ferroelectric film. AIP Advances 2021, 11 (6) https://doi.org/10.1063/5.0043536
    27. Pamarti Viswanath, K. Kanishka H. De Silva, Yuki Morikuni, Masamichi Yoshimura. Robust Polarization Stability in a Self‐Assembled Ultrathin Organic Ferroelectric Nano Lamellae. Advanced Electronic Materials 2021, 7 (6) https://doi.org/10.1002/aelm.202001085
    28. Xiaojun Qiao, Wenping Geng, Dongwan Zheng, Jing Ren, Yao Sun, Yun Yang, Kaixi Bi, Xiujian Chou. Domain modulation in LiNbO 3 films using litho piezoresponse force microscopy. Nanotechnology 2021, 32 (14) , 145713. https://doi.org/10.1088/1361-6528/abc57c
    29. Jun Jiang, Xiaojie Chai, Chao Wang, Anquan Jiang. High temperature ferroelectric domain wall memory. Journal of Alloys and Compounds 2021, 856 , 158155. https://doi.org/10.1016/j.jallcom.2020.158155
    30. P. Chaudhary, P. Buragohain, M. Kozodaev, S. Zarubin, V. Mikheev, A. Chouprik, A. Lipatov, A. Sinitskii, A. Zenkevich, A. Gruverman. Electroresistance effect in MoS2-Hf0.5Zr0.5O2 heterojunctions. Applied Physics Letters 2021, 118 (8) https://doi.org/10.1063/5.0035306
    31. Fei Fan, Ziyan Gao, Louis Ponet, Jing Wang, Houbing Huang, Sergey Artyukhin, Jiawang Hong, Sang-Wook Cheong, Xueyun Wang. Visualization of large-scale charged domain Walls in hexagonal manganites. Applied Physics Letters 2021, 118 (7) https://doi.org/10.1063/5.0040512
    32. Xiang Liang, Xuhao Chen, Xiaoni Yang, Jing Ni. The fabrication of LiNbO 3 memristors for electronic synapses using oxygen annealing. Nanotechnology 2021, 32 (2) , 025706. https://doi.org/10.1088/1361-6528/abb1eb
    33. 赫 孙. Summary of the Principles and Related Applications of Memristors. Applied Physics 2021, 11 (06) , 311-318. https://doi.org/10.12677/APP.2021.116037
    34. Ekhard K. H. Salje. Mild and wild ferroelectrics and their potential role in neuromorphic computation. APL Materials 2021, 9 (1) https://doi.org/10.1063/5.0035250
    35. Yang Wang, Xiaoyuan Bai, Junwei Chu, Hongbo Wang, Gaofeng Rao, Xinqiang Pan, Xinchuan Du, Kai Hu, Xuepeng Wang, Chuanhui Gong, Chujun Yin, Chao Yang, Chaoyi Yan, Chunyang Wu, Yao Shuai, Xianfu Wang, Min Liao, Jie Xiong. Record‐Low Subthreshold‐Swing Negative‐Capacitance 2D Field‐Effect Transistors. Advanced Materials 2020, 32 (46) https://doi.org/10.1002/adma.202005353
    36. , Iu. Liubimova, S. Kustov, . Dynamics of Domain Walls in the Antiferromagnetic Phase of Dysprosium: a Brief Review. Reviews on advanced materials and technologies 2020, 2 (2) , 1-8. https://doi.org/10.17586/2687-0568-2020-2-2-1-8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect