ACS Publications. Most Trusted. Most Cited. Most Read
Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations
My Activity
    Letter

    Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations
    Click to copy article linkArticle link copied!

    • Peifu Cheng
      Peifu Cheng
      Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
      More by Peifu Cheng
    • Mattigan M. Kelly
      Mattigan M. Kelly
      Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
    • Nicole K. Moehring
      Nicole K. Moehring
      Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
      Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
    • Wonhee Ko
      Wonhee Ko
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      More by Wonhee Ko
    • An-Ping Li
      An-Ping Li
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      More by An-Ping Li
    • Juan Carlos Idrobo
      Juan Carlos Idrobo
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Michael S. H. Boutilier
      Michael S. H. Boutilier
      Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
    • Piran R. Kidambi*
      Piran R. Kidambi
      Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
      Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 8, 5951–5959
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c01934
    Published July 6, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Atomically thin graphene with a high-density of precise subnanometer pores represents the ideal membrane for ionic and molecular separations. However, a single large-nanopore can severely compromise membrane performance and differential etching between pre-existing defects/grain boundaries in graphene and pristine regions presents fundamental limitations. Here, we show for the first time that size-selective interfacial polymerization after high-density nanopore formation in graphene not only seals larger defects (>0.5 nm) and macroscopic tears but also successfully preserves the smaller subnanometer pores. Low-temperature growth followed by mild UV/ozone oxidation allows for facile and scalable formation of high-density (4–5.5 × 1012 cm–2) useful subnanometer pores in the graphene lattice. We demonstrate scalable synthesis of fully functional centimeter-scale nanoporous atomically thin membranes (NATMs) with water (∼0.28 nm) permeance ∼23× higher than commercially available membranes and excellent rejection to salt ions (∼0.66 nm, >97% rejection) as well as small organic molecules (∼0.7–1.5 nm, ∼100% rejection) under forward osmosis.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01934.

    • Experimental section; Figure S1, experimental setup; Figures S2 and S7, calculated pore size distributions adjusted to the carbon electron radius and carbon van der Waals radius; Figure S3, solute diffusion comparison between membranes; Figure S4, water flux through graphene membrane when draw solution is placed on the graphene side versus the PCTE membrane side; Figure S5, water level change on the feed side for PCTE+IP membrane during water flux measurement; Figure S6, performance of NATMs; Table S1, model fit pore density values; Table S2 and Table S3, comparison of performance among different FO membranes reported in the literature and this work; Table S4, solutions in the feed and permeate side for solute diffusion, water transport, and solute rejection experiments; Note 1, assessment of Raman spectra of graphene lattice after UV/ozone etch; Note 2, Table S5 and Figures S8–S10, transport model (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 47 publications.

    1. Nicole K. Moehring, Abdul Bashith Mansoor Basha, Pavan Chaturvedi, Thomas Knight, Xiaozong Fan, Peter N. Pintauro, Michael S. H. Boutilier, Kunal Karan, Piran R. Kidambi. Overcoming the Conductance versus Crossover Trade-off in State-of-the-Art Proton Exchange Fuel-Cell Membranes by Incorporating Atomically Thin Chemical Vapor Deposition Graphene. Nano Letters 2025, 25 (3) , 1165-1176. https://doi.org/10.1021/acs.nanolett.4c05725
    2. Hyeonji Oh, Laxmicharan Samineni, Ronald J. Vogler, Chenhao Yao, Harekrushna Behera, Raman Dhiman, Andreas Horner, Manish Kumar. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS Nano 2025, 19 (1) , 31-53. https://doi.org/10.1021/acsnano.4c09699
    3. Peifu Cheng, Nicholas Ferrell, Saban M. Hus, Nicole K. Moehring, Matthew J. Coupin, Jamie Warner, An-Ping Li, William H. Fissell, Piran R. Kidambi. Protein-Enabled Size-Selective Defect-Sealing of Atomically Thin 2D Membranes for Dialysis and Nanoscale Separations. Nano Letters 2025, 25 (1) , 193-203. https://doi.org/10.1021/acs.nanolett.4c04706
    4. Zhen Yao, Pengfei Li, Kuo Chen, Yang Yang, André Beyer, Michael Westphal, Qingshan Jason Niu, Armin Gölzhäuser. Defect-Healed Carbon Nanomembranes for Enhanced Salt Separation: Scalable Synthesis and Performance. ACS Applied Materials & Interfaces 2024, 16 (17) , 22614-22621. https://doi.org/10.1021/acsami.4c00252
    5. Yuancheng Liu, Shengping Zhang, Ruiyang Song, Haiou Zeng, Luda Wang. Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation. Nano Letters 2024, 24 (1) , 26-34. https://doi.org/10.1021/acs.nanolett.3c03041
    6. Yujing Tong, Hongjun Liu, Sheng Dai, De-en Jiang. Monolayer Fullerene Membranes for Hydrogen Separation. Nano Letters 2023, 23 (16) , 7470-7476. https://doi.org/10.1021/acs.nanolett.3c01946
    7. Nicole K. Moehring, Pavan Chaturvedi, Peifu Cheng, Wonhee Ko, An-Ping Li, Michael S. H. Boutilier, Piran R. Kidambi. Kinetic Control of Angstrom-Scale Porosity in 2D Lattices for Direct Scalable Synthesis of Atomically Thin Proton Exchange Membranes. ACS Nano 2022, 16 (10) , 16003-16018. https://doi.org/10.1021/acsnano.2c03730
    8. Shihao Su, Yong Liu, Man Li, Huaqing Huang, Jianming Xue. Long-Term Evolution of Vacancies in Large-Area Graphene. ACS Omega 2022, 7 (41) , 36379-36386. https://doi.org/10.1021/acsomega.2c04121
    9. Peifu Cheng, Jeremy Espano, Andrew Harkaway, Andrew E. Naclerio, Nicole K. Moehring, Philipp Braeuninger-Weimer, Piran R. Kidambi. Nanoporous Atomically Thin Graphene Filters for Nanoscale Aerosols. ACS Applied Materials & Interfaces 2022, 14 (36) , 41328-41336. https://doi.org/10.1021/acsami.2c10827
    10. Daniil Naberezhnyi, Lukas Mai, Nassar Doudin, Inga Ennen, Andreas Hütten, Eric I. Altman, Anjana Devi, Petr Dementyev. Molecular Permeation in Freestanding Bilayer Silica. Nano Letters 2022, 22 (3) , 1287-1293. https://doi.org/10.1021/acs.nanolett.1c04535
    11. Shihao Su, Jianming Xue. Facile Fabrication of Subnanopores in Graphene under Ion Irradiation: Molecular Dynamics Simulations. ACS Applied Materials & Interfaces 2021, 13 (10) , 12366-12374. https://doi.org/10.1021/acsami.0c22288
    12. Grzegorz Romaniak, Konrad Dybowski, Łukasz Kołodziejczyk, Paulina Kowalczyk. Qualitative Research of Composite Graphene Membranes Using the Electric Mode in SEM and AFM. Materials 2025, 18 (1) , 163. https://doi.org/10.3390/ma18010163
    13. Zongyao Zhou, Kangning Zhao, Heng-Yu Chi, Yueqing Shen, Shuqing Song, Kuang-Jung Hsu, Mojtaba Chevalier, Wenxiong Shi, Kumar Varoon Agrawal. Electrochemical-repaired porous graphene membranes for precise ion-ion separation. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48419-6
    14. Yang Yang, Xianhui Li, Cheng Xiang. 2D isoporous materials: From precursor molecular structures to post-processing methods. Materials Today Nano 2024, 28 , 100523. https://doi.org/10.1016/j.mtnano.2024.100523
    15. Samuel F. D. J. Gómez, Michael S. H. Boutilier. Water permeation through single sub-micron pores in single layer graphene measured by a micro-particle image velocimetry technique. Physics of Fluids 2024, 36 (12) https://doi.org/10.1063/5.0241089
    16. Liping Guo, Ningran Wu, Shengping Zhang, Haiou Zeng, Jing Yang, Xiao Han, Hongwei Duan, Yuancheng Liu, Luda Wang. Emerging Advances around Nanofluidic Transport and Mass Separation under Confinement in Atomically Thin Nanoporous Graphene. Small 2024, 20 (44) https://doi.org/10.1002/smll.202404087
    17. Qichao Sun, Yuanhui Mao, Lianying Wu. Research progress on the integration and optimal design of desalination process. Separation and Purification Technology 2024, 337 , 126423. https://doi.org/10.1016/j.seppur.2024.126423
    18. Nicole K. Moehring, Andrew E. Naclerio, Pavan Chaturvedi, Thomas Knight, Piran R. Kidambi. Ultra-thin proton conducting carrier layers for scalable integration of atomically thin 2D materials with proton exchange polymers for next-generation PEMs. Nanoscale 2024, 16 (14) , 6973-6983. https://doi.org/10.1039/D3NR05202H
    19. Peifu Cheng, Nicholas Ferrell, Carl M. Öberg, Steven F. Buchsbaum, Melinda L. Jue, Sei Jin Park, Dan Wang, Shuvo Roy, Francesco Fornasiero, William H. Fissell, Piran R. Kidambi. High‐Performance Hemofiltration via Molecular Sieving and Ultra‐Low Friction in Carbon Nanotube Capillary Membranes. Advanced Functional Materials 2023, 33 (50) https://doi.org/10.1002/adfm.202304672
    20. Grzegorz Romaniak, Peifu Cheng, Konrad Dybowski, Piotr Kula, Piran R Kidambi. Assessing the quality of large-area monolayer graphene grown on liquid copper for size-selective ionic/molecular membrane separations. Materials Research Express 2023, 10 (10) , 105101. https://doi.org/10.1088/2053-1591/acefb2
    21. Chun-Man Chow, Rohit Karnik. Effect of pore size distribution on the desalination performance of the selective layer of nanoporous atomically-thin membranes. Desalination 2023, 561 , 116645. https://doi.org/10.1016/j.desal.2023.116645
    22. Pavan Chaturvedi, Nicole K. Moehring, Thomas Knight, Rahul Shah, Ivan Vlassiouk, Piran R. Kidambi. The parameter space for scalable integration of atomically thin graphene with Nafion for proton exchange membrane (PEM) applications. Materials Advances 2023, 4 (16) , 3473-3481. https://doi.org/10.1039/D3MA00180F
    23. Aleksandra Bednarek, Konrad Dybowski, Grzegorz Romaniak, Jacek Grabarczyk, Witold Kaczorowski, Anna Sobczyk-Guzenda. Impact of Physical and Chemical Modification of the Surface of Porous Al2O3 Ceramic Membranes on the Quality of Transferred HSMG® and CVD Graphene. Membranes 2023, 13 (3) , 319. https://doi.org/10.3390/membranes13030319
    24. Petr Dementyev, Neita Khayya, David Zanders, Inga Ennen, Anjana Devi, Eric I. Altman. Size and Shape Exclusion in 2D Silicon Dioxide Membranes. Small 2023, 19 (9) https://doi.org/10.1002/smll.202205602
    25. Matia P. Edwards, Samuel F. D. J. Gómez, Michael S. H. Boutilier. Concentration field based micropore flow rate measurements. Physics of Fluids 2023, 35 (3) https://doi.org/10.1063/5.0142808
    26. Shiqi Huang, Luis Francisco Villalobos, Shaoxian Li, Mohammad Tohidi Vahdat, Heng‐Yu Chi, Kuang‐Jung Hsu, Luc Bondaz, Victor Boureau, Nicola Marzari, Kumar Varoon Agrawal. In Situ Nucleation‐Decoupled and Site‐Specific Incorporation of Å‐Scale Pores in Graphene Via Epoxidation. Advanced Materials 2022, 34 (51) https://doi.org/10.1002/adma.202206627
    27. Shihao Su, Yifan Zhang, Shengyuan Peng, Linxin Guo, Yong Liu, Engang Fu, Huijun Yao, Jinlong Du, Guanghua Du, Jianming Xue. Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32590-9
    28. Peifu Cheng, Francesco Fornasiero, Melinda L. Jue, Wonhee Ko, An-Ping Li, Juan Carlos Idrobo, Michael S. H. Boutilier, Piran R. Kidambi. Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34172-1
    29. Tae Hoon Lee, Ho Bum Park. Transport Mechanism of 2 D Membranes. 2022, 313-364. https://doi.org/10.1002/9783527829859.ch11
    30. Yexin Dai, Miao Liu, Jingyu Li, Ning Kang, Afaque Ahmed, Yanping Zong, Jianbo Tu, Yanzhen Chen, Pingping Zhang, Xianhua Liu. Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis. Polymers 2022, 14 (19) , 4246. https://doi.org/10.3390/polym14194246
    31. Pavan Chaturvedi, Nicole K. Moehring, Peifu Cheng, Ivan Vlassiouk, Michael S. H. Boutilier, Piran R. Kidambi. Deconstructing proton transport through atomically thin monolayer CVD graphene membranes. Journal of Materials Chemistry A 2022, 10 (37) , 19797-19810. https://doi.org/10.1039/D2TA01737G
    32. Zhe Yuan, Guangwei He, Sylvia Xin Li, Rahul Prasanna Misra, Michael S. Strano, Daniel Blankschtein. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. Advanced Materials 2022, 34 (32) https://doi.org/10.1002/adma.202201472
    33. Anika O.K. Wong, Harpreet K. Atwal, Michael S.H. Boutilier. Molecular advection–diffusion through graphene nanopores. European Journal of Mechanics - B/Fluids 2022, 94 , 366-374. https://doi.org/10.1016/j.euromechflu.2022.03.012
    34. Shengping Zhang, Ningran Wu, Zhiyang Zeng, Ruiyang Song, Xiao Han, Xiaobo Chen, Dandan Hou, Ayan Yao, Luda Wang. Tunable ion transport across graphene through tailoring grain boundaries. Cell Reports Physical Science 2022, 3 (7) , 100947. https://doi.org/10.1016/j.xcrp.2022.100947
    35. Yang Li, Na Li, Yun Xia, Shi Yuan, Xiwang Zhang. Tailoring the physicochemical and geometric properties of two-dimensional graphene membranes for aqueous separation. Desalination 2022, 530 , 115621. https://doi.org/10.1016/j.desal.2022.115621
    36. Doojoon Jang, Chirodeep Bakli, Suman Chakraborty, Rohit Karnik. Molecular Self‐Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport. Advanced Materials 2022, 34 (11) https://doi.org/10.1002/adma.202108940
    37. Yiting Wu, Huilan Ye, Chuanting You, Weiming Zhou, Jia Chen, Wei Xiao, Zaharaddeen N. Garba, Liwei Wang, Zhanhui Yuan. Construction of functionalized graphene separation membranes and their latest progress in water purification. Separation and Purification Technology 2022, 285 , 120301. https://doi.org/10.1016/j.seppur.2021.120301
    38. Harpreet K. Atwal, Anika O. K. Wong, Michael S. H. Boutilier. Mass Advection–Diffusion in Creeping Flow Through an Orifice Plate: A Model for Nanoporous Atomically Thin Membranes. Journal of Heat Transfer 2022, 144 (2) https://doi.org/10.1115/1.4053041
    39. Daniil Naberezhnyi, SangWook Park, Wei Li, Michael Westphal, Xinliang Feng, Renhao Dong, Petr Dementyev. Mass Transfer in Boronate Ester 2D COF Single Crystals. Small 2021, 17 (52) https://doi.org/10.1002/smll.202104392
    40. Piran R. Kidambi, Pavan Chaturvedi, Nicole K. Moehring. Subatomic species transport through atomically thin membranes: Present and future applications. Science 2021, 374 (6568) https://doi.org/10.1126/science.abd7687
    41. Zhuyuan Wang, Songmiao Liang, Yuan Kang, Wang Zhao, Yun Xia, Jindi Yang, Huanting Wang, Xiwang Zhang. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science 2021, 122 , 101450. https://doi.org/10.1016/j.progpolymsci.2021.101450
    42. Zheng Bo, Chenxuan Xu, Zhesong Huang, Pengpeng Chen, Guishu Yan, Huachao Yang, Jianhua Yan, Kefa Cen, Kostya Ken Ostrikov. Photo-electric capacitive deionization enabled by solar-driven nano-ionics on the edges of plasma-made vertical graphenes. Chemical Engineering Journal 2021, 422 , 130156. https://doi.org/10.1016/j.cej.2021.130156
    43. Shihao Su, Xinwei Wang, Jianming Xue. Nanopores in two-dimensional materials: accurate fabrication. Materials Horizons 2021, 8 (5) , 1390-1408. https://doi.org/10.1039/D0MH01412E
    44. Shiqi Huang, Shaoxian Li, Luis Francisco Villalobos, Mostapha Dakhchoune, Marina Micari, Deepu J. Babu, Mohammad Tohidi Vahdat, Mounir Mensi, Emad Oveisi, Kumar Varoon Agrawal. Millisecond lattice gasification for high-density CO 2 - and O 2 -sieving nanopores in single-layer graphene. Science Advances 2021, 7 (9) https://doi.org/10.1126/sciadv.abf0116
    45. Stefania Castelletto, Alberto Boretti. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Advances 2021, 11 (14) , 7981-8002. https://doi.org/10.1039/D1RA00278C
    46. Peifu Cheng, Nicole K. Moehring, Juan Carlos Idrobo, Ilia N. Ivanov, Piran R. Kidambi. Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations via facile isopropanol-assisted hot lamination. Nanoscale 2021, 13 (5) , 2825-2837. https://doi.org/10.1039/D0NR07384A
    47. Nassar Doudin, Greg Collinge, Pradeep Kumar Gurunathan, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, Zdenek Dohnálek. Creating self-assembled arrays of mono-oxo (MoO 3 ) 1 species on TiO 2 (101) via deposition and decomposition of (MoO 3 ) n oligomers. Proceedings of the National Academy of Sciences 2021, 118 (4) https://doi.org/10.1073/pnas.2017703118

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 8, 5951–5959
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c01934
    Published July 6, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3113

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.