ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions

Cite this: Nano Lett. 2020, 20, 9, 6429–6436
Publication Date (Web):July 28, 2020
https://doi.org/10.1021/acs.nanolett.0c02077
Copyright © 2020 American Chemical Society

    Article Views

    3453

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically nontrivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, achieved by incorporating specifically designed precursor monomers. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Mean-field Hubbard-based modeling of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic, or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route toward the fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c02077.

    • Synthesis detail of the precursor molecules, more experimental details, and methods (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 57 publications.

    1. Ryan D. McCurdy, Aidan Delgado, Jingwei Jiang, Junmian Zhu, Ethan Chi Ho Wen, Raymond E. Blackwell, Gregory C. Veber, Shenkai Wang, Steven G. Louie, Felix R. Fischer. Engineering Robust Metallic Zero-Mode States in Olympicene Graphene Nanoribbons. Journal of the American Chemical Society 2023, 145 (28) , 15162-15170. https://doi.org/10.1021/jacs.3c01576
    2. Guang-Yan Xing, Ya-Cheng Zhu, Deng-Yuan Li, Pei-Nian Liu. On-Surface Cross-Coupling Reactions. The Journal of Physical Chemistry Letters 2023, 14 (19) , 4462-4470. https://doi.org/10.1021/acs.jpclett.3c00344
    3. Isaac Alcón, Jordi Ribas-Ariño, Ibério de P.R. Moreira, Stefan T. Bromley. Emergent Spin Frustration in Neutral Mixed-Valence 2D Conjugated Polymers: A Potential Quantum Materials Platform. Journal of the American Chemical Society 2023, 145 (10) , 5674-5683. https://doi.org/10.1021/jacs.2c11185
    4. Yuki Hayashi, Shuichi Suzuki, Takanori Suzuki, Yusuke Ishigaki. Dibenzotropylium-Capped Orthogonal Geometry Enabling Isolation and Examination of a Series of Hydrocarbons with Multiple 14π-Aromatic Units. Journal of the American Chemical Society 2023, 145 (4) , 2596-2608. https://doi.org/10.1021/jacs.2c12574
    5. Kewei Sun, Orlando J. Silveira, Shohei Saito, Keisuke Sagisaka, Shigehiro Yamaguchi, Adam S. Foster, Shigeki Kawai. Manipulation of Spin Polarization in Boron-Substituted Graphene Nanoribbons. ACS Nano 2022, 16 (7) , 11244-11250. https://doi.org/10.1021/acsnano.2c04563
    6. Isaac Alcón, Gaetano Calogero, Nick Papior, Aleandro Antidormi, Kenan Song, Aron W. Cummings, Mads Brandbyge, Stephan Roche. Unveiling the Multiradical Character of the Biphenylene Network and Its Anisotropic Charge Transport. Journal of the American Chemical Society 2022, 144 (18) , 8278-8285. https://doi.org/10.1021/jacs.2c02178
    7. Hao Luo, Gui Yu. Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Chemistry of Materials 2022, 34 (8) , 3588-3615. https://doi.org/10.1021/acs.chemmater.1c04215
    8. Tao Wang, Sofia Sanz, Jesús Castro-Esteban, James Lawrence, Alejandro Berdonces-Layunta, Mohammed S. G. Mohammed, Manuel Vilas-Varela, Martina Corso, Diego Peña, Thomas Frederiksen, Dimas G. de Oteyza. Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. Nano Letters 2022, 22 (1) , 164-171. https://doi.org/10.1021/acs.nanolett.1c03578
    9. Daniel J. Rizzo, Jingwei Jiang, Dharati Joshi, Gregory Veber, Christopher Bronner, Rebecca A. Durr, Peter H. Jacobse, Ting Cao, Alin Kalayjian, Henry Rodriguez, Paul Butler, Ting Chen, Steven G. Louie, Felix R. Fischer, Michael F. Crommie. Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons. ACS Nano 2021, 15 (12) , 20633-20642. https://doi.org/10.1021/acsnano.1c09503
    10. Michele Pizzochero, Nikita V. Tepliakov, Arash A. Mostofi, Efthimios Kaxiras. Electrically Induced Dirac Fermions in Graphene Nanoribbons. Nano Letters 2021, 21 (21) , 9332-9338. https://doi.org/10.1021/acs.nanolett.1c03596
    11. Qiang Sun, Yuyi Yan, Xuelin Yao, Klaus Müllen, Akimitsu Narita, Roman Fasel, Pascal Ruffieux. Evolution of the Topological Energy Band in Graphene Nanoribbons. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8679-8684. https://doi.org/10.1021/acs.jpclett.1c02541
    12. Ryan D. McCurdy, Peter H. Jacobse, Ilya Piskun, Gregory C. Veber, Daniel J. Rizzo, Rafal Zuzak, Zafer Mutlu, Jeffrey Bokor, Michael F. Crommie, Felix R. Fischer. Synergetic Bottom-Up Synthesis of Graphene Nanoribbons by Matrix-Assisted Direct Transfer. Journal of the American Chemical Society 2021, 143 (11) , 4174-4178. https://doi.org/10.1021/jacs.1c01355
    13. Vivek Saraswat, Robert M. Jacobberger, Michael S. Arnold. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano 2021, 15 (3) , 3674-3708. https://doi.org/10.1021/acsnano.0c07835
    14. Alejandro Berdonces-Layunta, James Lawrence, Shayan Edalatmanesh, Jesús Castro-Esteban, Tao Wang, Mohammed S. G. Mohammed, Luciano Colazzo, Diego Peña, Pavel Jelínek, Dimas G. de Oteyza. Chemical Stability of (3,1)-Chiral Graphene Nanoribbons. ACS Nano 2021, 15 (3) , 5610-5617. https://doi.org/10.1021/acsnano.1c00695
    15. Michele Pizzochero, Efthimios Kaxiras. Imprinting Tunable π-Magnetism in Graphene Nanoribbons via Edge Extensions. The Journal of Physical Chemistry Letters 2021, 12 (4) , 1214-1219. https://doi.org/10.1021/acs.jpclett.0c03677
    16. Qingyang Du, Xuelei Su, Yufeng Liu, Yashi Jiang, Can Li, KaKing Yan, Ricardo Ortiz, Thomas Frederiksen, Shiyong Wang, Ping Yu. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40542-0
    17. Ricardo Ortiz. Olympicene radicals as building blocks of two-dimensional anisotropic networks. Physical Review B 2023, 108 (11) https://doi.org/10.1103/PhysRevB.108.115113
    18. Xiushang Xu, Kewei Sun, Atsushi Ishikawa, Akimitsu Narita, Shigeki Kawai. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202302534
    19. Xiushang Xu, Kewei Sun, Atsushi Ishikawa, Akimitsu Narita, Shigeki Kawai. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202302534
    20. Yanling Yang, Xu Zhao, Chunxu Bai. Tight-binding description of zigzag graphene nanoribbons with triangular patterned structure. Indian Journal of Physics 2023, 97 (7) , 2007-2012. https://doi.org/10.1007/s12648-022-02513-x
    21. Chunhua Tian, Wenjing Miao, Lei Zhao, Jingang Wang. Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials. Reviews in Physics 2023, 10 , 100082. https://doi.org/10.1016/j.revip.2023.100082
    22. Sanghita Sengupta, Thomas Frederiksen, Geza Giedke. Hyperfine interactions in open-shell planar s p 2 -carbon nanostructures. Physical Review B 2023, 107 (22) https://doi.org/10.1103/PhysRevB.107.224433
    23. Ziying Li, Shuilin Li, Yongjie Xu, Nujiang Tang. Recent advances in magnetism of graphene from 0D to 2D. Chemical Communications 2023, 59 (42) , 6286-6300. https://doi.org/10.1039/D3CC01311A
    24. Yanwei Gu, Zijie Qiu, Klaus Müllen. Graphene Nanoribbons as Ladder Polymers – Synthetic Challenges and Components of Future Electronics. 2023, 59-96. https://doi.org/10.1002/9783527833306.ch3
    25. Jian Zhang, Oliver Braun, Gabriela Borin Barin, Sara Sangtarash, Jan Overbeck, Rimah Darawish, Michael Stiefel, Roman Furrer, Antonis Olziersky, Klaus Müllen, Ivan Shorubalko, Abdalghani H. S. Daaoub, Pascal Ruffieux, Roman Fasel, Hatef Sadeghi, Mickael L. Perrin, Michel Calame. Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multi‐Gate Architecture. Advanced Electronic Materials 2023, 9 (4) https://doi.org/10.1002/aelm.202201204
    26. Ricardo Ortiz, Geza Giedke, Thomas Frederiksen. Magnetic frustration and fractionalization in oligo(indenoindenes). Physical Review B 2023, 107 (10) https://doi.org/10.1103/PhysRevB.107.L100416
    27. Da-cheng Ma, An Du. The exact solution of the edge-modified graphene nanoribbon-like structure Ising-Heisenberg spin (1,1/2) system. Physica E: Low-dimensional Systems and Nanostructures 2023, 147 , 115569. https://doi.org/10.1016/j.physe.2022.115569
    28. Yuxuan Cosmi Lin, Zafer Mutlu, Gabriela Borin Barin, Yejin Hong, Juan Pablo Llinas, Akimitsu Narita, Hanuman Singh, Klaus Müllen, Pascal Ruffieux, Roman Fasel, Jeffrey Bokor. Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors. Carbon 2023, 205 , 519-526. https://doi.org/10.1016/j.carbon.2023.01.054
    29. Zuhao Li, Yue Tang, Jing Guo, Jun Zhang, Menghua Deng, Wang Xiao, Fuxiang Li, Yifan Yao, Sheng Xie, Kun Yang, Zebing Zeng. Stair-like narrow N-doped nanographene with unusual diradical character at the topological interface. Chem 2023, 444 https://doi.org/10.1016/j.chempr.2023.01.019
    30. Sergio de-la-Huerta-Sainz, Angel Ballesteros, Nicolás A. Cordero. Gaussian Curvature Effects on Graphene Quantum Dots. Nanomaterials 2023, 13 (1) , 95. https://doi.org/10.3390/nano13010095
    31. Nikita V. Tepliakov, Johannes Lischner, Efthimios Kaxiras, Arash A. Mostofi, Michele Pizzochero. Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons. Physical Review Letters 2023, 130 (2) https://doi.org/10.1103/PhysRevLett.130.026401
    32. Ravi P.N. Tripathi, Vidyadhar Singh, Bharat Kumar Gupta, Nikhil Kumar. Magnetic and nanophotonics applications of carbon quantum dots. 2023, 377-396. https://doi.org/10.1016/B978-0-323-90895-5.00005-9
    33. Shiyong Wang, Tomohiko Nishiuchi, Carlo A. Pignedoli, Xuelin Yao, Marco Di Giovannantonio, Yan Zhao, Akimitsu Narita, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel. Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions. Quantum Frontiers 2022, 1 (1) https://doi.org/10.1007/s44214-022-00023-9
    34. Fatemeh Mazhari Mousavi, Rouhollah Farghadan. Electrical control of the spin-Seebeck coefficient in graphene nanoribbons with asymmetric zigzag edge extensions. Physical Chemistry Chemical Physics 2022, 24 (44) , 27195-27203. https://doi.org/10.1039/D2CP03734C
    35. Dimas G de Oteyza, Thomas Frederiksen. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. Journal of Physics: Condensed Matter 2022, 34 (44) , 443001. https://doi.org/10.1088/1361-648X/ac8a7f
    36. Meric E. Kucukbas, Seán McCann, Stephen R. Power. Predicting magnetic edge behavior in graphene using neural networks. Physical Review B 2022, 106 (8) https://doi.org/10.1103/PhysRevB.106.L081411
    37. Hong Yu, Danting Li, Yan Shang, Lei Pei, Guiling Zhang, Hong Yan, Long Wang. Transport properties of MoS 2 /V 7 (Bz) 8 and graphene/V 7 (Bz) 8 vdW junctions tuned by bias and gate voltages. RSC Advances 2022, 12 (27) , 17422-17433. https://doi.org/10.1039/D2RA02196J
    38. Prabhleen Kaur, Md. Ehesan Ali. The influence of the radicaloid character of polyaromatic hydrocarbon couplers on magnetic exchange interactions. Physical Chemistry Chemical Physics 2022, 24 (21) , 13094-13101. https://doi.org/10.1039/D1CP02044G
    39. Sergio de-la-Huerta-Sainz, Angel Ballesteros, Nicolás A. Cordero. Quantum Revivals in Curved Graphene Nanoflakes. Nanomaterials 2022, 12 (12) , 1953. https://doi.org/10.3390/nano12121953
    40. Peina Zhang, Xinlu Li, Jianting Dong, Meng Zhu, Fanxing Zheng, Jia Zhang. π -magnetism and spin-dependent transport in boron pair doped armchair graphene nanoribbons. Applied Physics Letters 2022, 120 (13) https://doi.org/10.1063/5.0086377
    41. Mark J. J. Mangnus, Felix R. Fischer, Michael F. Crommie, Ingmar Swart, Peter H. Jacobse. Charge transport in topological graphene nanoribbons and nanoribbon heterostructures. Physical Review B 2022, 105 (11) https://doi.org/10.1103/PhysRevB.105.115424
    42. Denis M. Krichevsky, Lei Shi, Vladimir S. Baturin, Dmitry V. Rybkovsky, Yangliu Wu, Pavel V. Fedotov, Elena D. Obraztsova, Pavel O. Kapralov, Polina V. Shilina, Kayleigh Fung, Craig T. Stoppiello, Vladimir I. Belotelov, Andrei Khlobystov, Alexander I. Chernov. Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes. Nanoscale 2022, 14 (5) , 1978-1989. https://doi.org/10.1039/D1NR06179H
    43. 希超 刘. First-Principles Study on the Magnetism of Triangular Graphene Quantum Dot with Armchair Edges Decorated by Zigzag Extensions. Advances in Condensed Matter Physics 2022, 11 (02) , 38-48. https://doi.org/10.12677/CMP.2022.112005
    44. Yu-Qiang Zheng, Shi-Yong Wang, , . Delocalized magnetism in low-dimensional graphene system. Acta Physica Sinica 2022, 71 (18) , 188101. https://doi.org/10.7498/aps.71.20220895
    45. Thi-Nga Do, Po-Hsin Shih, Godfrey Gumbs, Danhong Huang. Engineering plasmon modes and their loss in armchair graphene nanoribbons by selected edge-extended defects. Journal of Physics: Condensed Matter 2021, 33 (48) , 485001. https://doi.org/10.1088/1361-648X/ac2330
    46. Isaac Alcón, Raúl Santiago, Jordi Ribas-Arino, Mercè Deumal, Ibério de P. R. Moreira, Stefan T. Bromley. Controlling pairing of π-conjugated electrons in 2D covalent organic radical frameworks via in-plane strain. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21885-y
    47. Jingcheng Li, Sofia Sanz, Nestor Merino-Díez, Manuel Vilas-Varela, Aran Garcia-Lekue, Martina Corso, Dimas G. de Oteyza, Thomas Frederiksen, Diego Peña, Jose Ignacio Pascual. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25688-z
    48. Wenjing Miao, Li Wang, Xijiao Mu, Jingang Wang. The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. Journal of Materials Chemistry C 2021, 9 (39) , 13600-13616. https://doi.org/10.1039/D1TC02976B
    49. Wenjing Bo, Yi Zou, Jingang Wang. Novel electrical properties and applications in kaleidoscopic graphene nanoribbons. RSC Advances 2021, 11 (53) , 33675-33691. https://doi.org/10.1039/D1RA05902E
    50. Qiang Sun, Luis M. Mateo, Roberto Robles, Nicolas Lorente, Pascal Ruffieux, Giovanni Bottari, Tomás Torres, Roman Fasel. Bottom‐up Fabrication and Atomic‐Scale Characterization of Triply Linked, Laterally π‐Extended Porphyrin Nanotapes**. Angewandte Chemie International Edition 2021, 60 (29) , 16208-16214. https://doi.org/10.1002/anie.202105350
    51. Qiang Sun, Luis M. Mateo, Roberto Robles, Nicolas Lorente, Pascal Ruffieux, Giovanni Bottari, Tomás Torres, Roman Fasel. Bottom‐up Fabrication and Atomic‐Scale Characterization of Triply Linked, Laterally π‐Extended Porphyrin Nanotapes**. Angewandte Chemie 2021, 133 (29) , 16344-16350. https://doi.org/10.1002/ange.202105350
    52. R. S. Koen Houtsma, Joris de la Rie, Meike Stöhr. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews 2021, 50 (11) , 6541-6568. https://doi.org/10.1039/D0CS01541E
    53. Qiushi Zhang, Tsz Chun Wu, Guowen Kuang, A’yu Xie, Nian Lin. Investigation of edge states in artificial graphene nano-flakes. Journal of Physics: Condensed Matter 2021, 33 (22) , 225003. https://doi.org/10.1088/1361-648X/abe819
    54. Zijie Qiu, Qiang Sun, Shiyong Wang, Gabriela Borin Barin, Bastian Dumslaff, Pascal Ruffieux, Klaus Müllen, Akimitsu Narita, Roman Fasel. Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Organic Materials 2021, 03 (02) , 128-133. https://doi.org/10.1055/s-0041-1726295
    55. Sangheon Jeon, Pyunghwa Han, Jeonghwa Jeong, Wan Sik Hwang, Suck Won Hong. Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors. Nanomaterials 2021, 11 (1) , 33. https://doi.org/10.3390/nano11010033
    56. Zhen Xu, Jing Liu, Shimin Hou, Yongfeng Wang. Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. Nanomaterials 2020, 10 (12) , 2393. https://doi.org/10.3390/nano10122393
    57. Kristiāns Čerņevičs, Oleg V. Yazyev, Michele Pizzochero. Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions. Physical Review B 2020, 102 (20) https://doi.org/10.1103/PhysRevB.102.201406

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect