ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles

  • Rafael Piñol
    Rafael Piñol
    ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
  • Justyna Zeler
    Justyna Zeler
    Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
    Faculty of Chemistry, University of Wroclaw, Wroclaw 50-302, Poland
  • Carlos D. S. Brites
    Carlos D. S. Brites
    Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
  • Yuanyu Gu
    Yuanyu Gu
    ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
    School of Materials Science and Engineering, Nanjing Tech University, 210009 Nanjing, People’s Republic of China
    More by Yuanyu Gu
  • Pedro Téllez
    Pedro Téllez
    Servicio de Apoyo a la Investigación, University of Zaragoza, C/Pedro Cerbuna 10, 50006 Zaragoza, Spain
  • Albano N. Carneiro Neto
    Albano N. Carneiro Neto
    Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
  • Thiago E. da Silva
    Thiago E. da Silva
    Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
    Department of Fundamental Chemistry, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
  • Raquel Moreno-Loshuertos
    Raquel Moreno-Loshuertos
    Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
  • Patrício Fernandez-Silva
    Patrício Fernandez-Silva
    Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
  • Ana Isabel Gallego
    Ana Isabel Gallego
    Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
  • Luis Martinez-Lostao
    Luis Martinez-Lostao
    Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
  • Abelardo Martínez
    Abelardo Martínez
    Departamento de Electrónica de Potencia, I3A, University of Zaragoza, 50018 Zaragoza, Spain
  • Luís D. Carlos*
    Luís D. Carlos
    Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
    *Email: [email protected]
  • , and 
  • Angel Millán*
    Angel Millán
    ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
    *Email: [email protected]
Cite this: Nano Lett. 2020, 20, 9, 6466–6472
Publication Date (Web):July 30, 2020
https://doi.org/10.1021/acs.nanolett.0c02163
Copyright © 2020 American Chemical Society

    Article Views

    2355

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Measurement of thermogenesis in individual cells is a remarkable challenge due to the complexity of the biochemical environment (such as pH and ionic strength) and to the rapid and yet not well-understood heat transfer mechanisms throughout the cell. Here, we present a unique system for intracellular temperature mapping in a fluorescence microscope (uncertainty of 0.2 K) using rationally designed luminescent Ln3+-bearing polymeric micellar probes (Ln = Sm, Eu) incubated in breast cancer MDA-MB468 cells. Two-dimensional (2D) thermal images recorded increasing the temperature of the cells culture medium between 296 and 304 K shows inhomogeneous intracellular temperature progressions up to ∼20 degrees and subcellular gradients of ∼5 degrees between the nucleolus and the rest of the cell, illustrating the thermogenic activity of the different organelles and highlighting the potential of this tool to study intracellular processes.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c02163.

    • Materials and methods, thermometric imaging system, in silico experiments, photoluminescence, thermometric performance of the Ln3+-bearing micelles, cell cultures, and temperature imaging (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 64 publications.

    1. Fernando E. Maturi, Anuraag Gaddam, Carlos D. S. Brites, Joacilia M. M. Souza, Hellmut Eckert, Sidney J. L. Ribeiro, Luís D. Carlos, Danilo Manzani. Extending the Palette of Luminescent Primary Thermometers: Yb3+/Pr3+ Co-Doped Fluoride Phosphate Glasses. Chemistry of Materials 2023, 35 (17) , 7229-7238. https://doi.org/10.1021/acs.chemmater.3c01508
    2. Sander J. W. Vonk, Thomas P. van Swieten, Ario Cocina, Freddy T. Rabouw. Photonic Artifacts in Ratiometric Luminescence Nanothermometry. Nano Letters 2023, 23 (14) , 6560-6566. https://doi.org/10.1021/acs.nanolett.3c01602
    3. Chandra Choudhury, Courtney E. McAleese, Neville J. Butcher, Rodney F. Minchin. Contrasting Effects of Temperature on Human Arylamine N-Acetyltransferase and Acetyl Coenzyme A Hydrolase Activities. Biochemistry 2023, 62 (14) , 2093-2097. https://doi.org/10.1021/acs.biochem.3c00113
    4. Beatriz Torres-Herrero, Ilaria Armenia, Maria Alleva, Laura Asín, Sonali Correa, Cecilia Ortiz, Yilian Fernández-Afonso, Lucía Gutiérrez, Jesús M. de la Fuente, Lorena Betancor, Valeria Grazú. Remote Activation of Enzyme Nanohybrids for Cancer Prodrug Therapy Controlled by Magnetic Heating. ACS Nano 2023, 17 (13) , 12358-12373. https://doi.org/10.1021/acsnano.3c01599
    5. Allison R. Pessoa, Jefferson A. O. Galindo, Luiz F. dos Santos, Rogéria R. Gonçalves, Stefan A. Maier, Leonardo de S. Menezes, Anderson M. Amaral. Correction Due to Nonthermally Coupled Emission Bands and Its Implications on the Performance of Y2O3:Yb3+ /Er3+ Single-Particle Thermometers. The Journal of Physical Chemistry C 2023, 127 (20) , 9673-9680. https://doi.org/10.1021/acs.jpcc.3c00522
    6. Yuanyu Gu, Rafael Piñol, Raquel Moreno-Loshuertos, Carlos D. S. Brites, Justyna Zeler, Abelardo Martínez, Guillaume Maurin-Pasturel, Patricio Fernández-Silva, Joaquín Marco-Brualla, Pedro Téllez, Rafael Cases, Rafael Navarro Belsué, Debora Bonvin, Luís D. Carlos, Angel Millán. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. ACS Nano 2023, 17 (7) , 6822-6832. https://doi.org/10.1021/acsnano.3c00388
    7. Weixu Feng, Yujuan Huang, Yan Zhao, Wei Tian, Hongxia Yan. Water-Soluble Cationic Eu3+-Metallopolymer with High Quantum Yield and Sensitivity for Intracellular Temperature Sensing. ACS Applied Materials & Interfaces 2023, 15 (13) , 17211-17221. https://doi.org/10.1021/acsami.3c00478
    8. Hanyu Liang, Kaidong Yang, Yating Yang, Zhongzhu Hong, Shihua Li, Qiushui Chen, Juan Li, Xiaorong Song, Huanghao Yang. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. Nano Letters 2022, 22 (22) , 9045-9053. https://doi.org/10.1021/acs.nanolett.2c03392
    9. Elvin V. Salerno, Albano N. Carneiro Neto, Svetlana V. Eliseeva, Miguel A. Hernández-Rodríguez, Jacob C. Lutter, Timothée Lathion, Jeff W. Kampf, Stéphane Petoud, Luis D. Carlos, Vincent L. Pecoraro. Tunable Optical Molecular Thermometers Based on Metallacrowns. Journal of the American Chemical Society 2022, 144 (40) , 18259-18271. https://doi.org/10.1021/jacs.2c04821
    10. Michele Back, Jian Xu, Jumpei Ueda, Alvise Benedetti, Setsuhisa Tanabe. Thermochromic Narrow Band Gap Phosphors for Multimodal Optical Thermometry: The Case of Y3+-Stabilized β-Bi2O3:Nd3+. Chemistry of Materials 2022, 34 (18) , 8198-8206. https://doi.org/10.1021/acs.chemmater.2c01262
    11. Jandeilson L. Moura, Israel F. Costa, Paulo R. S. Santos, Iran F. Silva, Renaldo T. Moura Jr., Albano N. Carneiro Neto, Wagner M. Faustino, Hermi F. Brito, José R. Sabino, Ercules E. S. Teotonio. Enhancing the Luminescence of Eu(III) Complexes with the Ruthenocene Organometallic Unit as Ancillary Ligand. Inorganic Chemistry 2022, 61 (34) , 13510-13524. https://doi.org/10.1021/acs.inorgchem.2c02115
    12. Kai Lu, Tetsuichi Wazawa, Joe Sakamoto, Cong Quang Vu, Masahiro Nakano, Yasuhiro Kamei, Takeharu Nagai. Intracellular Heat Transfer and Thermal Property Revealed by Kilohertz Temperature Imaging with a Genetically Encoded Nanothermometer. Nano Letters 2022, 22 (14) , 5698-5707. https://doi.org/10.1021/acs.nanolett.2c00608
    13. Thomas P. van Swieten, Tijn van Omme, Dave J. van den Heuvel, Sander J.W. Vonk, Ronald G. Spruit, Florian Meirer, H. Hugo Pérez Garza, Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw, Robin G. Geitenbeek. Mapping Elevated Temperatures with a Micrometer Resolution Using the Luminescence of Chemically Stable Upconversion Nanoparticles. ACS Applied Nano Materials 2021, 4 (4) , 4208-4215. https://doi.org/10.1021/acsanm.1c00657
    14. Ana Espinosa, German R. Castro, Javier Reguera, Carlo Castellano, Javier Castillo, Julio Camarero, Claire Wilhelm, Miguel Angel García, Álvaro Muñoz-Noval. Photoactivated Nanoscale Temperature Gradient Detection Using X-ray Absorption Spectroscopy as a Direct Nanothermometry Method. Nano Letters 2021, 21 (1) , 769-777. https://doi.org/10.1021/acs.nanolett.0c04477
    15. Yuan Liu, Gongxun Bai, Yongxin Lyu, Youjie Hua, Renguang Ye, Junjie Zhang, Liang Chen, Shiqing Xu, Jianhua Hao. Ultrabroadband Tuning and Fine Structure of Emission Spectra in Lanthanide Er-Doped ZnSe Nanosheets for Display and Temperature Sensing. ACS Nano 2020, 14 (11) , 16003-16012. https://doi.org/10.1021/acsnano.0c07547
    16. Dnyandeo Pawar, Daniela Lo Presti, Sergio Silvestri, Emiliano Schena, Carlo Massaroni. Current and future technologies for monitoring cultured meat: A review. Food Research International 2023, 173 , 113464. https://doi.org/10.1016/j.foodres.2023.113464
    17. Tristan Pelluau, Saad Sene, Lamiaa M. A. Ali, Gautier Félix, Faustine Manhes, Albano N. Carneiro Neto, Luis D. Carlos, Belén Albela, Laurent Bonneviot, Erwan Oliviero, Magali Gary-Bobo, Yannick Guari, Joulia Larionova. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb 3+ /Eu 3+ complexes as efficient ratiometric emissive thermometers working in water. Nanoscale 2023, 15 (35) , 14409-14422. https://doi.org/10.1039/D3NR01851B
    18. Yufei Wu, Tao Wang, Huili Zhou, Jian Zhang, Linhua Ye, Yang Li, Zhitai Jia, Xutang Tao. Ultra-high melting point Ho3+, Yb3+ co-doped HfO2 single-crystal fibers for high-precision and robust ratiometric thermometry towards harsh environments. Ceramics International 2023, 49 (18) , 30365-30374. https://doi.org/10.1016/j.ceramint.2023.06.297
    19. Carlos D. S. Brites, Riccardo Marin, Markus Suta, Albano N. Carneiro Neto, Erving Ximendes, Daniel Jaque, Luís D. Carlos. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting‐Edge Applications. Advanced Materials 2023, 35 (36) https://doi.org/10.1002/adma.202302749
    20. Emanuel P. Santos, Roberta S. Pugina, Eloísa G. Hilário, Alyson J.A. Carvalho, Carlos Jacinto, Francisco A.M.G. Rego-Filho, Askery Canabarro, Anderson S.L. Gomes, José Maurício A. Caiut, André L. Moura. Towards accurate real-time luminescence thermometry: an automated machine learning approach. Sensors and Actuators A: Physical 2023, 11 , 114666. https://doi.org/10.1016/j.sna.2023.114666
    21. Sofia Zanella, Maxime Aragon‐Alberti, Carlos D. S. Brite, Fabrice Salles, Luís D. Carlos, Jérôme Long. Luminescent Single‐Molecule Magnets as Dual Magneto‐Optical Molecular Thermometers. Angewandte Chemie 2023, 135 (35) https://doi.org/10.1002/ange.202306970
    22. Sofia Zanella, Maxime Aragon‐Alberti, Carlos D. S. Brite, Fabrice Salles, Luís D. Carlos, Jérôme Long. Luminescent Single‐Molecule Magnets as Dual Magneto‐Optical Molecular Thermometers. Angewandte Chemie International Edition 2023, 62 (35) https://doi.org/10.1002/anie.202306970
    23. Rosalía López‐Méndez, Javier Reguera, Alexandre Fromain, Esraa Samy Abu Serea, Eva Céspedes, Francisco Jose Teran, Fangyuan Zheng, Ana Parente, Miguel Ángel García, Emiliano Fonda, Julio Camarero, Claire Wilhelm, Álvaro Muñoz‐Noval, Ana Espinosa. X‐Ray Nanothermometry of Nanoparticles in Tumor‐Mimicking Tissues under Photothermia. Advanced Healthcare Materials 2023, 6 https://doi.org/10.1002/adhm.202301863
    24. Yiwei Zhou, Christian D. Buch, Steen H. Hansen, Stergios Piligkos. Long aliphatic chain derivatives of trigonal lanthanide complexes. Dalton Transactions 2023, 52 (25) , 8792-8799. https://doi.org/10.1039/D3DT01191G
    25. Seonik Lee, Mengchi Jiao, Zihan Zhang, Yan Yu. Nanoparticles for Interrogation of Cell Signaling. Annual Review of Analytical Chemistry 2023, 16 (1) , 333-351. https://doi.org/10.1146/annurev-anchem-092822-085852
    26. Qi Fan, Chao Sun, Bingliang Hu, Quan Wang. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Materials Today Bio 2023, 20 , 100646. https://doi.org/10.1016/j.mtbio.2023.100646
    27. Nataliia S. Kariaka, Aneta Lipa, Albano N. Carneiro Neto, Oscar L. Malta, Paula Gawryszewska, Volodymyr M. Amirkhanov. Eu3+ and Tb3+ coordination compounds with phenyl-containing carbacylamidophosphates: comparison with selected Ln3+ β-diketonates. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1188314
    28. João Antonio Oliveira Santos, Lorrane Davi Brito, Paulo Inácio da Costa, Ana Maria Pires, Sergio Antonio Marques Lima. Development of red-luminescent hybrids as contrast agents for cell imaging: A correlation among surface, luminescence, and biological properties. Optical Materials 2023, 139 , 113759. https://doi.org/10.1016/j.optmat.2023.113759
    29. Mochen Jia, Xu Chen, Ranran Sun, Di Wu, Xinjian Li, Zhifeng Shi, Guanying Chen, Chongxin Shan. Lanthanide-based ratiometric luminescence nanothermometry. Nano Research 2023, 16 (2) , 2949-2967. https://doi.org/10.1007/s12274-022-4882-7
    30. Jorge A. A. Coelho, Renaldo T. Moura, Ricardo L. Longo, Oscar L. Malta, Albano N. Carneiro Neto. Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes. Inorganics 2023, 11 (1) , 38. https://doi.org/10.3390/inorganics11010038
    31. Joana C. Martins, Carlos D. S. Brites, Albano N. Carneiro Neto, Rute A. S. Ferreira, Luís D. Carlos. An Overview of Luminescent Primary Thermometers. 2023, 105-152. https://doi.org/10.1007/978-3-031-28516-5_3
    32. Christian Brosseau. Analytical Approaches of EMB at Multiple Scales. 2023, 101-177. https://doi.org/10.1007/978-3-031-37981-9_4
    33. Yasuhisa Mizutani, Misao Mizuno. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. The Journal of Chemical Physics 2022, 157 (24) https://doi.org/10.1063/5.0116734
    34. Zhi Li, Yongguang Xiao, Fu Liu, Xiangyu Yan, Daotong You, Kaiwei Li, Lixi Zeng, Mingshan Zhu, Gaozhi Xiao, Jacques Albert, Tuan Guo. Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00914-5
    35. Erving Ximendes, Riccardo Marin, Luis Dias Carlos, Daniel Jaque. Less is more: dimensionality reduction as a general strategy for more precise luminescence thermometry. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00932-3
    36. Xiangjun Di, Dejiang Wang, Qian Peter Su, Yongtao Liu, Jiayan Liao, Mahnaz Maddahfar, Jiajia Zhou, Dayong Jin. Spatiotemporally mapping temperature dynamics of lysosomes and mitochondria using cascade organelle-targeting upconversion nanoparticles. Proceedings of the National Academy of Sciences 2022, 119 (45) https://doi.org/10.1073/pnas.2207402119
    37. Zhiwei Deng, Jiacheng Li, Hui Liu, Tong Luo, Yanjing Yang, Minghui Yang, Xiang Chen. A light-controlled DNA nanothermometer for temperature sensing in the cellular membrane microenvironment. Biosensors and Bioelectronics 2022, 216 , 114627. https://doi.org/10.1016/j.bios.2022.114627
    38. Andreas Kourtellaris, William Lafargue‐Dit‐Hauret, Florian Massuyeau, Camille Latouche, Anastasios J. Tasiopoulos, Hélène Serier‐Brault. Tuning of Thermometric Performances of Mixed Eu–Tb Metal–Organic Frameworks through Single‐Crystal Coordinating Solvent Exchange Reactions. Advanced Optical Materials 2022, 10 (21) https://doi.org/10.1002/adom.202200484
    39. Joana Costa Martins, Artiom Skripka, Carlos D. S. Brites, Antonio Benayas, Rute A. S. Ferreira, Fiorenzo Vetrone, Luís D. Carlos. Upconverting nanoparticles as primary thermometers and power sensors. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.1037473
    40. Keyla M. N. de Souza, Rodolfo N. Silva, Juliana A. B. Silva, Carlos D. S. Brites, Biju Francis, Rute A. S. Ferreira, Luís D. Carlos, Ricardo L. Longo. Novel and High‐Sensitive Primary and Self‐Referencing Thermometers Based on the Excitation Spectra of Lanthanide Ions. Advanced Optical Materials 2022, 10 (19) https://doi.org/10.1002/adom.202200770
    41. Benedikt Bendel, Markus Suta. How to calibrate luminescent crossover thermometers: a note on “quasi”-Boltzmann systems. Journal of Materials Chemistry C 2022, 10 (37) , 13805-13814. https://doi.org/10.1039/D2TC01152B
    42. W. Milestone, Q. Hu, A. M. Loveless, A. L. Garner, R. P. Joshi. Modeling coupled single cell electroporation and thermal effects from nanosecond electric pulse trains. Journal of Applied Physics 2022, 132 (9) https://doi.org/10.1063/5.0107544
    43. Albano N. Carneiro Neto, Ewa Kasprzycka, Adelmo S. Souza, Paula Gawryszewska, Markus Suta, Luís D. Carlos, Oscar L. Malta. On the long decay time of the 7F5 level of Tb3+. Journal of Luminescence 2022, 248 , 118933. https://doi.org/10.1016/j.jlumin.2022.118933
    44. Paloma Rodríguez-Sevilla, Riccardo Marin, Erving Ximendes, Blanca del Rosal, Antonio Benayas, Daniel Jaque. Luminescence Thermometry for Brain Activity Monitoring: A Perspective. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.941861
    45. Lucca Blois, Albano N. Carneiro Neto, Oscar L. Malta, Hermi F. Brito. The role of the Eu3+ 7F1 level in the direct sensitization of the 5D0 emitting level through intramolecular energy transfer. Journal of Luminescence 2022, 247 , 118862. https://doi.org/10.1016/j.jlumin.2022.118862
    46. Konstantinos Karachousos-Spiliotakopoulos, Vassilis Tangoulis, Nikos Panagiotou, Anastasios Tasiopoulos, Eufemio Moreno-Pineda, Wolfgang Wernsdorfer, Michael Schulze, Alexandre M. P. Botas, Luis D. Carlos. Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex. Dalton Transactions 2022, 51 (21) , 8208-8216. https://doi.org/10.1039/D2DT00936F
    47. Na Wu, Yishuo Sun, Mengya Kong, Xue Lin, Cong Cao, Zhanxian Li, Wei Feng, Fuyou Li. Er‐Based Luminescent Nanothermometer to Explore the Real‐Time Temperature of Cells under External Stimuli. Small 2022, 18 (14) https://doi.org/10.1002/smll.202107963
    48. Albano N. Carneiro Neto, Ekaterina Mamontova, Alexandre M. P. Botas, Carlos D. S. Brites, Rute A. S. Ferreira, Jérôme Rouquette, Yannick Guari, Joulia Larionova, Jérôme Long, Luís D. Carlos. Rationalizing the Thermal Response of Dual‐Center Molecular Thermometers: The Example of an Eu/Tb Coordination Complex. Advanced Optical Materials 2022, 10 (5) https://doi.org/10.1002/adom.202101870
    49. Riccardo Marin, Natalie C. Millan, Laura Kelly, Nan Liu, Emille Martinazzo Rodrigues, Muralee Murugesu, Eva Hemmer. Luminescence thermometry using sprayed films of metal complexes. Journal of Materials Chemistry C 2022, 10 (5) , 1767-1775. https://doi.org/10.1039/D1TC05484H
    50. Peyman Fahimi, Chérif F. Matta. The hot mitochondrion paradox: reconciling theory and experiment. Trends in Chemistry 2022, 4 (2) , 96-110. https://doi.org/10.1016/j.trechm.2021.10.005
    51. Rodolfo N. Silva, Alexandre M.P. Botas, David Brandão, Verónica Bastos, Helena Oliveira, Mengistie L. Debasu, Rute A.S. Ferreira, Carlos D.S. Brites, Luís D. Carlos. 3D sub-cellular localization of upconverting nanoparticles through hyperspectral microscopy. Physica B: Condensed Matter 2022, 626 , 413470. https://doi.org/10.1016/j.physb.2021.413470
    52. Guixian Li, Yu Xue, Qinan Mao, Lang Pei, Hong He, Meijiao Liu, Liang Chu, Jiasong Zhong. Synergistic luminescent thermometer using co-doped Ca 2 GdSbO 6 :Mn 4+ /(Eu 3+ or Sm 3+ ) phosphors. Dalton Transactions 2022, 4 https://doi.org/10.1039/D2DT00005A
    53. L.F. Dos Santos, J.C. Martins, K.O. Lima, L.F.T. Gomes, M.T. De Melo, A.C. Tedesco, L.D. Carlos, R.A.S. Ferreira, R.R. Gonçalves. In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter 2022, 624 , 413447. https://doi.org/10.1016/j.physb.2021.413447
    54. Kohki Okabe, Seiichi Uchiyama. Intracellular thermometry uncovers spontaneous thermogenesis and associated thermal signaling. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02908-2
    55. Dechao Yu, Huaiyong Li, Dawei Zhang, Qinyuan Zhang, Andries Meijerink, Markus Suta. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00677-5
    56. Fernando E. Maturi, Carlos D. S. Brites, Erving C. Ximendes, Carolyn Mills, Bradley Olsen, Daniel Jaque, Sidney J. L. Ribeiro, Luís D. Carlos. Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression. Laser & Photonics Reviews 2021, 15 (11) https://doi.org/10.1002/lpor.202100301
    57. Renaldo T. Moura Jr., Albano N. Carneiro Neto, Eduardo C. Aguiar, Carlos V. Santos-Jr., Ewerton M. de Lima, Wagner M. Faustino, Ercules E.S. Teotonio, Hermi F. Brito, Maria C.F.C. Felinto, Rute A.S. Ferreira, Luís D. Carlos, Ricardo L. Longo, Oscar L. Malta. (INVITED) JOYSpectra: A web platform for luminescence of lanthanides. Optical Materials: X 2021, 11 , 100080. https://doi.org/10.1016/j.omx.2021.100080
    58. Hang Gao, Peng Zhang, Tianyong Guan, Yingjie Yang, Mingmao Chen, Jiaojiao Wei, Siyuan Han, Yan Liu, Xueyuan Chen. Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence. Talanta 2021, 231 , 122243. https://doi.org/10.1016/j.talanta.2021.122243
    59. Jiating Xu, Jun Wang, Jin Ye, Jiao Jiao, Zhiguo Liu, Chunjian Zhao, Bin Li, Yujie Fu. Metal‐Coordinated Supramolecular Self‐Assemblies for Cancer Theranostics. Advanced Science 2021, 8 (16) https://doi.org/10.1002/advs.202101101
    60. Pei Song, He Gao, Zhaoshuai Gao, Jiaxing Liu, Ruiping Zhang, Bin Kang, Jing-Juan Xu, Hong-Yuan Chen. Heat transfer and thermoregulation within single cells revealed by transient plasmonic imaging. Chem 2021, 7 (6) , 1569-1587. https://doi.org/10.1016/j.chempr.2021.02.027
    61. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak. Luminescence based temperature bio-imaging: Status, challenges, and perspectives. Applied Physics Reviews 2021, 8 (1) https://doi.org/10.1063/5.0030295
    62. Rui Shi, Eduardo D. Martinez, Carlos D. S. Brites, Luís D. Carlos. Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary. Physical Chemistry Chemical Physics 2021, 23 (1) , 20-42. https://doi.org/10.1039/D0CP05069E
    63. Hao Suo, Xiaoqi Zhao, Zhiyu Zhang, Yu Wang, Jiashu Sun, Minkun Jin, Chongfeng Guo. Rational Design of Ratiometric Luminescence Thermometry Based on Thermally Coupled Levels for Bioapplications. Laser & Photonics Reviews 2021, 15 (1) https://doi.org/10.1002/lpor.202000319
    64. Markus Suta, Andries Meijerink. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Advanced Theory and Simulations 2020, 3 (12) https://doi.org/10.1002/adts.202000176

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect