ACS Publications. Most Trusted. Most Cited. Most Read
Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles
My Activity
    Letter

    Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles
    Click to copy article linkArticle link copied!

    • Rafael Piñol
      Rafael Piñol
      ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
    • Justyna Zeler
      Justyna Zeler
      Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
      Faculty of Chemistry, University of Wroclaw, Wroclaw 50-302, Poland
    • Carlos D. S. Brites
      Carlos D. S. Brites
      Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
    • Yuanyu Gu
      Yuanyu Gu
      ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
      School of Materials Science and Engineering, Nanjing Tech University, 210009 Nanjing, People’s Republic of China
      More by Yuanyu Gu
    • Pedro Téllez
      Pedro Téllez
      Servicio de Apoyo a la Investigación, University of Zaragoza, C/Pedro Cerbuna 10, 50006 Zaragoza, Spain
    • Albano N. Carneiro Neto
      Albano N. Carneiro Neto
      Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
    • Thiago E. da Silva
      Thiago E. da Silva
      Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
      Department of Fundamental Chemistry, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
    • Raquel Moreno-Loshuertos
      Raquel Moreno-Loshuertos
      Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
    • Patrício Fernandez-Silva
      Patrício Fernandez-Silva
      Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
    • Ana Isabel Gallego
      Ana Isabel Gallego
      Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
    • Luis Martinez-Lostao
      Luis Martinez-Lostao
      Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
    • Abelardo Martínez
      Abelardo Martínez
      Departamento de Electrónica de Potencia, I3A, University of Zaragoza, 50018 Zaragoza, Spain
    • Luís D. Carlos*
      Luís D. Carlos
      Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
      *Email: [email protected]
    • Angel Millán*
      Angel Millán
      ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 9, 6466–6472
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c02163
    Published July 30, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Measurement of thermogenesis in individual cells is a remarkable challenge due to the complexity of the biochemical environment (such as pH and ionic strength) and to the rapid and yet not well-understood heat transfer mechanisms throughout the cell. Here, we present a unique system for intracellular temperature mapping in a fluorescence microscope (uncertainty of 0.2 K) using rationally designed luminescent Ln3+-bearing polymeric micellar probes (Ln = Sm, Eu) incubated in breast cancer MDA-MB468 cells. Two-dimensional (2D) thermal images recorded increasing the temperature of the cells culture medium between 296 and 304 K shows inhomogeneous intracellular temperature progressions up to ∼20 degrees and subcellular gradients of ∼5 degrees between the nucleolus and the rest of the cell, illustrating the thermogenic activity of the different organelles and highlighting the potential of this tool to study intracellular processes.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c02163.

    • Materials and methods, thermometric imaging system, in silico experiments, photoluminescence, thermometric performance of the Ln3+-bearing micelles, cell cultures, and temperature imaging (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 88 publications.

    1. Nana Yin, Chen Wei, Yang Shu, Jianhua Wang. A Nanothermometer with a Microwave Thermal Effect for Sensing Cell Membrane Temperature and Measuring Microwave-Induced Thermal Gradient Distribution. Analytical Chemistry 2025, 97 (1) , 543-554. https://doi.org/10.1021/acs.analchem.4c04737
    2. Jianhao Zheng, Pengye Du, Ran An, Yuan Liang, Yi Wei, Shuyu Liu, Xinyu Wang, Pengpeng Lei, Shuyan Song, Hongjie Zhang. Constructing a Self-Referenced NIR-II Thermometer with Energy Tuning of Coordinating Water Molecules by a Minimalist Method. ACS Applied Materials & Interfaces 2025, Article ASAP.
    3. Suchinder K. Sharma. Exploring the Possibility of Using Stark Lines of Pr3+ in CaTiO3 Perovskite for Low Temperature Luminescence Thermometry. The Journal of Physical Chemistry C 2023, 127 (47) , 22934-22942. https://doi.org/10.1021/acs.jpcc.3c06338
    4. Fernando E. Maturi, Anuraag Gaddam, Carlos D. S. Brites, Joacilia M. M. Souza, Hellmut Eckert, Sidney J. L. Ribeiro, Luís D. Carlos, Danilo Manzani. Extending the Palette of Luminescent Primary Thermometers: Yb3+/Pr3+ Co-Doped Fluoride Phosphate Glasses. Chemistry of Materials 2023, 35 (17) , 7229-7238. https://doi.org/10.1021/acs.chemmater.3c01508
    5. Sander J. W. Vonk, Thomas P. van Swieten, Ario Cocina, Freddy T. Rabouw. Photonic Artifacts in Ratiometric Luminescence Nanothermometry. Nano Letters 2023, 23 (14) , 6560-6566. https://doi.org/10.1021/acs.nanolett.3c01602
    6. Chandra Choudhury, Courtney E. McAleese, Neville J. Butcher, Rodney F. Minchin. Contrasting Effects of Temperature on Human Arylamine N-Acetyltransferase and Acetyl Coenzyme A Hydrolase Activities. Biochemistry 2023, 62 (14) , 2093-2097. https://doi.org/10.1021/acs.biochem.3c00113
    7. Beatriz Torres-Herrero, Ilaria Armenia, Maria Alleva, Laura Asín, Sonali Correa, Cecilia Ortiz, Yilian Fernández-Afonso, Lucía Gutiérrez, Jesús M. de la Fuente, Lorena Betancor, Valeria Grazú. Remote Activation of Enzyme Nanohybrids for Cancer Prodrug Therapy Controlled by Magnetic Heating. ACS Nano 2023, 17 (13) , 12358-12373. https://doi.org/10.1021/acsnano.3c01599
    8. Allison R. Pessoa, Jefferson A. O. Galindo, Luiz F. dos Santos, Rogéria R. Gonçalves, Stefan A. Maier, Leonardo de S. Menezes, Anderson M. Amaral. Correction Due to Nonthermally Coupled Emission Bands and Its Implications on the Performance of Y2O3:Yb3+ /Er3+ Single-Particle Thermometers. The Journal of Physical Chemistry C 2023, 127 (20) , 9673-9680. https://doi.org/10.1021/acs.jpcc.3c00522
    9. Yuanyu Gu, Rafael Piñol, Raquel Moreno-Loshuertos, Carlos D. S. Brites, Justyna Zeler, Abelardo Martínez, Guillaume Maurin-Pasturel, Patricio Fernández-Silva, Joaquín Marco-Brualla, Pedro Téllez, Rafael Cases, Rafael Navarro Belsué, Debora Bonvin, Luís D. Carlos, Angel Millán. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. ACS Nano 2023, 17 (7) , 6822-6832. https://doi.org/10.1021/acsnano.3c00388
    10. Weixu Feng, Yujuan Huang, Yan Zhao, Wei Tian, Hongxia Yan. Water-Soluble Cationic Eu3+-Metallopolymer with High Quantum Yield and Sensitivity for Intracellular Temperature Sensing. ACS Applied Materials & Interfaces 2023, 15 (13) , 17211-17221. https://doi.org/10.1021/acsami.3c00478
    11. Hanyu Liang, Kaidong Yang, Yating Yang, Zhongzhu Hong, Shihua Li, Qiushui Chen, Juan Li, Xiaorong Song, Huanghao Yang. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. Nano Letters 2022, 22 (22) , 9045-9053. https://doi.org/10.1021/acs.nanolett.2c03392
    12. Elvin V. Salerno, Albano N. Carneiro Neto, Svetlana V. Eliseeva, Miguel A. Hernández-Rodríguez, Jacob C. Lutter, Timothée Lathion, Jeff W. Kampf, Stéphane Petoud, Luis D. Carlos, Vincent L. Pecoraro. Tunable Optical Molecular Thermometers Based on Metallacrowns. Journal of the American Chemical Society 2022, 144 (40) , 18259-18271. https://doi.org/10.1021/jacs.2c04821
    13. Michele Back, Jian Xu, Jumpei Ueda, Alvise Benedetti, Setsuhisa Tanabe. Thermochromic Narrow Band Gap Phosphors for Multimodal Optical Thermometry: The Case of Y3+-Stabilized β-Bi2O3:Nd3+. Chemistry of Materials 2022, 34 (18) , 8198-8206. https://doi.org/10.1021/acs.chemmater.2c01262
    14. Jandeilson L. Moura, Israel F. Costa, Paulo R. S. Santos, Iran F. Silva, Renaldo T. Moura Jr., Albano N. Carneiro Neto, Wagner M. Faustino, Hermi F. Brito, José R. Sabino, Ercules E. S. Teotonio. Enhancing the Luminescence of Eu(III) Complexes with the Ruthenocene Organometallic Unit as Ancillary Ligand. Inorganic Chemistry 2022, 61 (34) , 13510-13524. https://doi.org/10.1021/acs.inorgchem.2c02115
    15. Kai Lu, Tetsuichi Wazawa, Joe Sakamoto, Cong Quang Vu, Masahiro Nakano, Yasuhiro Kamei, Takeharu Nagai. Intracellular Heat Transfer and Thermal Property Revealed by Kilohertz Temperature Imaging with a Genetically Encoded Nanothermometer. Nano Letters 2022, 22 (14) , 5698-5707. https://doi.org/10.1021/acs.nanolett.2c00608
    16. Thomas P. van Swieten, Tijn van Omme, Dave J. van den Heuvel, Sander J.W. Vonk, Ronald G. Spruit, Florian Meirer, H. Hugo Pérez Garza, Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw, Robin G. Geitenbeek. Mapping Elevated Temperatures with a Micrometer Resolution Using the Luminescence of Chemically Stable Upconversion Nanoparticles. ACS Applied Nano Materials 2021, 4 (4) , 4208-4215. https://doi.org/10.1021/acsanm.1c00657
    17. Ana Espinosa, German R. Castro, Javier Reguera, Carlo Castellano, Javier Castillo, Julio Camarero, Claire Wilhelm, Miguel Angel García, Álvaro Muñoz-Noval. Photoactivated Nanoscale Temperature Gradient Detection Using X-ray Absorption Spectroscopy as a Direct Nanothermometry Method. Nano Letters 2021, 21 (1) , 769-777. https://doi.org/10.1021/acs.nanolett.0c04477
    18. Yuan Liu, Gongxun Bai, Yongxin Lyu, Youjie Hua, Renguang Ye, Junjie Zhang, Liang Chen, Shiqing Xu, Jianhua Hao. Ultrabroadband Tuning and Fine Structure of Emission Spectra in Lanthanide Er-Doped ZnSe Nanosheets for Display and Temperature Sensing. ACS Nano 2020, 14 (11) , 16003-16012. https://doi.org/10.1021/acsnano.0c07547
    19. Aribam Rishikanta Sharma, Atom Rajiv Singh, Anju Ajayan Kongasseri, Swadhin Garain, Ann Mariella Babu, Rajkumari Lonibala, Raju Laishram. A ratiometric luminescence thermometer based on lanthanide encapsulated complexes. Dalton Transactions 2025, 11 https://doi.org/10.1039/D4DT02639J
    20. Anna A. Ivanova, Trofim A. Polikovskiy, Victoria E. Gontcharenko, Vladislav M. Korshunov, Mikhail A. Kiskin, Ilya V. Taydakov, Yury A. Belousov. Precision across temperatures: Eu/Tb luminescent thermometer with exceptionally high and stable sensitivity from 180 to 320 K. Sensors and Actuators A: Physical 2024, 379 , 115969. https://doi.org/10.1016/j.sna.2024.115969
    21. Pavel Alekseevskiy, Roman Pototskiy, Anastasia Efimova, Alena Kulakova, Valentin A. Milichko. Ambivalent photoluminescence thermometer based on Rhodium cationic complex. Photonics and Nanostructures - Fundamentals and Applications 2024, 12 , 101341. https://doi.org/10.1016/j.photonics.2024.101341
    22. Peijiang Wang, Rafael Morales-Márquez, Gabriel Cervás, Alejandro Hernández Medel, Marina Paris Ogayar, D. Jimenez de Aberasturi, Ana Ines de Isidro-Gomez, Almudena Torres-Pardo, Francisco Javier Palomares, Saül Garcia-Orrit, Célia T. Sousa, Ana Espinosa, Helmut H. Telle, Dirk H. Ortgies, Víctor Vega-Mayoral, Juan Cabanillas-González, Emma Martín Rodríguez, Ute Resch-Genger, K. David Wegner, Beatriz H. Juárez. The role of temperature in the photoluminescence quantum yield (PLQY) of Ag 2 S-based nanocrystals. Materials Horizons 2024, 11 (23) , 6158-6168. https://doi.org/10.1039/D4MH01016G
    23. Matthew P. Leighton, Jannik Ehrich, David A. Sivak. Information Arbitrage in Bipartite Heat Engines. Physical Review X 2024, 14 (4) https://doi.org/10.1103/PhysRevX.14.041038
    24. Garoé Medina-Aguilar, Antonio D. Lozano-Gorrín, Víctor Lavín, Miguel A. Hernández-Rodríguez. Expanding the Toolbox for Industrial Luminescent Primary Thermometry: Er3+-doped SrMoO4. Journal of Alloys and Compounds 2024, 1002 , 175303. https://doi.org/10.1016/j.jallcom.2024.175303
    25. Daqing Yang, Huimin Li, Huanrong Li. Recent advances in the luminescent polymers containing lanthanide complexes. Coordination Chemistry Reviews 2024, 514 , 215875. https://doi.org/10.1016/j.ccr.2024.215875
    26. Ziyang Ye, Benjamin Harrington, Andrea D. Pickel. Optical super-resolution nanothermometry via stimulated emission depletion imaging of upconverting nanoparticles. Science Advances 2024, 10 (29) https://doi.org/10.1126/sciadv.ado6268
    27. Allison R. Pessoa, Jefferson A.O. Galindo, Thomas Possmayer, Anderson M. Amaral, Marc Verelst, Stefan A. Maier, Leonardo de S. Menezes. Luminescence thermometry with Gd 2 O 2 S: Yb 3 + /Er 3 + nanoparticles under different excitation pathways. Optical Materials 2024, 153 , 115574. https://doi.org/10.1016/j.optmat.2024.115574
    28. Nana Yin, Yahua Yu, Xiaojuan Wang, Yang Shu, Jianhua Wang. Dual lanthanide Complexes-Loaded ratiometric nanothermometer for elucidating intracellular variations of temperature and calcium transport. Chemical Engineering Journal 2024, 490 , 151645. https://doi.org/10.1016/j.cej.2024.151645
    29. Meilin Liu, Yaru Sun, Daniel Boon Loong Teh, Yi Zhang, Donglin Cao, Qingsong Mei. Nanothermometry for cellular temperature monitoring and disease diagnostics. Interdisciplinary Medicine 2024, 2 (2) https://doi.org/10.1002/INMD.20230059
    30. . Intracellular Thermometry with Fluorescent Molecular Thermometers. 2024, 109-181. https://doi.org/10.1002/9783527836840.ch3
    31. Dan Li, Mochen Jia, Tao Jia, Guanying Chen. Ultrasensitive NIR‐II Ratiometric Nanothermometers for 3D In Vivo Thermal Imaging. Advanced Materials 2024, 36 (11) https://doi.org/10.1002/adma.202309452
    32. Mathis Grelier, David A. Sivak, Jannik Ehrich. Unlocking the potential of information flow: Maximizing free-energy transduction in a model of an autonomous rotary molecular motor. Physical Review E 2024, 109 (3) https://doi.org/10.1103/PhysRevE.109.034115
    33. Paulo R. S. Santos, Ashley A. S. S. Jesus, William B. Lima, Joaldo G. Arruda, Wagner M. Faustino, Maria C. F. C. Felinto, José R. Sabino, Hermi F. Brito, Israel F. Costa, Renaldo T. Moura, Albano N. Carneiro Neto, Oscar L. Malta, Huayna Terraschke, Ercules E. S. Teotonio. Shedding Light on Eu(III) β‐Diketonate Compounds with 1,2‐Bis(diphenylphosphino)ethane Oxide Ligand: an Optical Study. European Journal of Inorganic Chemistry 2024, 27 (4) https://doi.org/10.1002/ejic.202300660
    34. Patrick S. Barber, Ana de Bettencourt-Dias, Katherine R. Johnson, Jorge H.S.K. Monteiro. Ligand design in lanthanide complexes for luminescence, therapy, and sensing. 2024, 213-274. https://doi.org/10.1016/bs.hpcre.2024.04.002
    35. Yiwei Zhou, Christian Dirk Buch, Steen Hansgaard Hansen, Stergios Piligkos. Derivatives of trigonal lanthanide complexes by reaction with long aliphatic chain amines. Comptes Rendus. Chimie 2024, 27 (S1) , 5-16. https://doi.org/10.5802/crchim.282
    36. Mügen Terzioglu, Kristo Veeroja, Toni Montonen, Teemu O Ihalainen, Tiina S Salminen, Paule Bénit, Pierre Rustin, Young-Tae Chang, Takeharu Nagai, Howard T Jacobs. Mitochondrial temperature homeostasis resists external metabolic stresses. eLife 2023, 12 https://doi.org/10.7554/eLife.89232
    37. Mügen Terzioglu, Kristo Veeroja, Toni Montonen, Teemu O Ihalainen, Tiina S Salminen, Paule Bénit, Pierre Rustin, Young-Tae Chang, Takeharu Nagai, Howard T Jacobs. Mitochondrial temperature homeostasis resists external metabolic stresses. eLife 2023, 12 https://doi.org/10.7554/eLife.89232.3
    38. Shengbin Cheng, Dong Cheng, Xin Su, Yi Zeng, Guozheng Nie, Shiping Zhan, Xiaofeng Wu. Manipulation phonon energy for improved thermometric sensitivity of only-core nanoparticles. Journal of Alloys and Compounds 2023, 969 , 172367. https://doi.org/10.1016/j.jallcom.2023.172367
    39. Rosalía López‐Méndez, Javier Reguera, Alexandre Fromain, Esraa Samy Abu Serea, Eva Céspedes, Francisco Jose Teran, Fangyuan Zheng, Ana Parente, Miguel Ángel García, Emiliano Fonda, Julio Camarero, Claire Wilhelm, Álvaro Muñoz‐Noval, Ana Espinosa. X‐Ray Nanothermometry of Nanoparticles in Tumor‐Mimicking Tissues under Photothermia. Advanced Healthcare Materials 2023, 12 (31) https://doi.org/10.1002/adhm.202301863
    40. Xiaoyue Zhang, Yi Hu. Mitochondrial thermogenesis in cancer cells. Oncologie 2023, 25 (6) , 591-603. https://doi.org/10.1515/oncologie-2023-0298
    41. Mügen Terzioglu, Kristo Veeroja, Toni Montonen, Teemu O. Ihalainen, Tiina S. Salminen, Paule Bénit, Pierre Rustin, Young-Tae Chang, Takeharu Nagai, Howard T. Jacobs. Mitochondrial temperature homeostasis resists external metabolic stresses. 2023https://doi.org/10.7554/eLife.89232.2
    42. Ljubica Đačanin Far, Miroslav Dramićanin. Luminescence Thermometry with Nanoparticles: A Review. Nanomaterials 2023, 13 (21) , 2904. https://doi.org/10.3390/nano13212904
    43. Emanuel P. Santos, Roberta S. Pugina, Eloísa G. Hilário, Alyson J.A. Carvalho, Carlos Jacinto, Francisco A.M.G. Rego-Filho, Askery Canabarro, Anderson S.L. Gomes, José Maurício A. Caiut, André L. Moura. Towards accurate real-time luminescence thermometry: An automated machine learning approach. Sensors and Actuators A: Physical 2023, 362 , 114666. https://doi.org/10.1016/j.sna.2023.114666
    44. Dnyandeo Pawar, Daniela Lo Presti, Sergio Silvestri, Emiliano Schena, Carlo Massaroni. Current and future technologies for monitoring cultured meat: A review. Food Research International 2023, 173 , 113464. https://doi.org/10.1016/j.foodres.2023.113464
    45. Tristan Pelluau, Saad Sene, Lamiaa M. A. Ali, Gautier Félix, Faustine Manhes, Albano N. Carneiro Neto, Luis D. Carlos, Belén Albela, Laurent Bonneviot, Erwan Oliviero, Magali Gary-Bobo, Yannick Guari, Joulia Larionova. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb 3+ /Eu 3+ complexes as efficient ratiometric emissive thermometers working in water. Nanoscale 2023, 15 (35) , 14409-14422. https://doi.org/10.1039/D3NR01851B
    46. Carlos D. S. Brites, Riccardo Marin, Markus Suta, Albano N. Carneiro Neto, Erving Ximendes, Daniel Jaque, Luís D. Carlos. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting‐Edge Applications. Advanced Materials 2023, 35 (36) https://doi.org/10.1002/adma.202302749
    47. Yufei Wu, Tao Wang, Huili Zhou, Jian Zhang, Linhua Ye, Yang Li, Zhitai Jia, Xutang Tao. Ultra-high melting point Ho3+, Yb3+ co-doped HfO2 single-crystal fibers for high-precision and robust ratiometric thermometry towards harsh environments. Ceramics International 2023, 49 (18) , 30365-30374. https://doi.org/10.1016/j.ceramint.2023.06.297
    48. Sofia Zanella, Maxime Aragon‐Alberti, Carlos D. S. Brite, Fabrice Salles, Luís D. Carlos, Jérôme Long. Luminescent Single‐Molecule Magnets as Dual Magneto‐Optical Molecular Thermometers. Angewandte Chemie 2023, 135 (35) https://doi.org/10.1002/ange.202306970
    49. Sofia Zanella, Maxime Aragon‐Alberti, Carlos D. S. Brite, Fabrice Salles, Luís D. Carlos, Jérôme Long. Luminescent Single‐Molecule Magnets as Dual Magneto‐Optical Molecular Thermometers. Angewandte Chemie International Edition 2023, 62 (35) https://doi.org/10.1002/anie.202306970
    50. Mügen Terzioglu, Kristo Veeroja, Toni Montonen, Teemu O. Ihalainen, Tiina S. Salminen, Paule Bénit, Pierre Rustin, Young-Tae Chang, Takeharu Nagai, Howard T. Jacobs. Mitochondrial temperature homeostasis resists external metabolic stresses. 2023https://doi.org/10.7554/eLife.89232.1
    51. Yiwei Zhou, Christian D. Buch, Steen H. Hansen, Stergios Piligkos. Long aliphatic chain derivatives of trigonal lanthanide complexes. Dalton Transactions 2023, 52 (25) , 8792-8799. https://doi.org/10.1039/D3DT01191G
    52. Seonik Lee, Mengchi Jiao, Zihan Zhang, Yan Yu. Nanoparticles for Interrogation of Cell Signaling. Annual Review of Analytical Chemistry 2023, 16 (1) , 333-351. https://doi.org/10.1146/annurev-anchem-092822-085852
    53. Qi Fan, Chao Sun, Bingliang Hu, Quan Wang. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Materials Today Bio 2023, 20 , 100646. https://doi.org/10.1016/j.mtbio.2023.100646
    54. Nataliia S. Kariaka, Aneta Lipa, Albano N. Carneiro Neto, Oscar L. Malta, Paula Gawryszewska, Volodymyr M. Amirkhanov. Eu3+ and Tb3+ coordination compounds with phenyl-containing carbacylamidophosphates: comparison with selected Ln3+ β-diketonates. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1188314
    55. João Antonio Oliveira Santos, Lorrane Davi Brito, Paulo Inácio da Costa, Ana Maria Pires, Sergio Antonio Marques Lima. Development of red-luminescent hybrids as contrast agents for cell imaging: A correlation among surface, luminescence, and biological properties. Optical Materials 2023, 139 , 113759. https://doi.org/10.1016/j.optmat.2023.113759
    56. Mochen Jia, Xu Chen, Ranran Sun, Di Wu, Xinjian Li, Zhifeng Shi, Guanying Chen, Chongxin Shan. Lanthanide-based ratiometric luminescence nanothermometry. Nano Research 2023, 16 (2) , 2949-2967. https://doi.org/10.1007/s12274-022-4882-7
    57. Joana C. Martins, Carlos D. S. Brites, Albano N. Carneiro Neto, Rute A. S. Ferreira, Luís D. Carlos. An Overview of Luminescent Primary Thermometers. 2023, 105-152. https://doi.org/10.1007/978-3-031-28516-5_3
    58. Christian Brosseau. Analytical Approaches of EMB at Multiple Scales. 2023, 101-177. https://doi.org/10.1007/978-3-031-37981-9_4
    59. Jorge A. A. Coelho, Renaldo T. Moura, Ricardo L. Longo, Oscar L. Malta, Albano N. Carneiro Neto. Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes. Inorganics 2023, 11 (1) , 38. https://doi.org/10.3390/inorganics11010038
    60. Yasuhisa Mizutani, Misao Mizuno. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. The Journal of Chemical Physics 2022, 157 (24) https://doi.org/10.1063/5.0116734
    61. Zhi Li, Yongguang Xiao, Fu Liu, Xiangyu Yan, Daotong You, Kaiwei Li, Lixi Zeng, Mingshan Zhu, Gaozhi Xiao, Jacques Albert, Tuan Guo. Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00914-5
    62. Erving Ximendes, Riccardo Marin, Luis Dias Carlos, Daniel Jaque. Less is more: dimensionality reduction as a general strategy for more precise luminescence thermometry. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00932-3
    63. Andreas Kourtellaris, William Lafargue‐Dit‐Hauret, Florian Massuyeau, Camille Latouche, Anastasios J. Tasiopoulos, Hélène Serier‐Brault. Tuning of Thermometric Performances of Mixed Eu–Tb Metal–Organic Frameworks through Single‐Crystal Coordinating Solvent Exchange Reactions. Advanced Optical Materials 2022, 10 (21) https://doi.org/10.1002/adom.202200484
    64. Zhiwei Deng, Jiacheng Li, Hui Liu, Tong Luo, Yanjing Yang, Minghui Yang, Xiang Chen. A light-controlled DNA nanothermometer for temperature sensing in the cellular membrane microenvironment. Biosensors and Bioelectronics 2022, 216 , 114627. https://doi.org/10.1016/j.bios.2022.114627
    65. Joana Costa Martins, Artiom Skripka, Carlos D. S. Brites, Antonio Benayas, Rute A. S. Ferreira, Fiorenzo Vetrone, Luís D. Carlos. Upconverting nanoparticles as primary thermometers and power sensors. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.1037473
    66. Keyla M. N. de Souza, Rodolfo N. Silva, Juliana A. B. Silva, Carlos D. S. Brites, Biju Francis, Rute A. S. Ferreira, Luís D. Carlos, Ricardo L. Longo. Novel and High‐Sensitive Primary and Self‐Referencing Thermometers Based on the Excitation Spectra of Lanthanide Ions. Advanced Optical Materials 2022, 10 (19) https://doi.org/10.1002/adom.202200770
    67. Benedikt Bendel, Markus Suta. How to calibrate luminescent crossover thermometers: a note on “quasi”-Boltzmann systems. Journal of Materials Chemistry C 2022, 10 (37) , 13805-13814. https://doi.org/10.1039/D2TC01152B
    68. W. Milestone, Q. Hu, A. M. Loveless, A. L. Garner, R. P. Joshi. Modeling coupled single cell electroporation and thermal effects from nanosecond electric pulse trains. Journal of Applied Physics 2022, 132 (9) https://doi.org/10.1063/5.0107544
    69. Albano N. Carneiro Neto, Ewa Kasprzycka, Adelmo S. Souza, Paula Gawryszewska, Markus Suta, Luís D. Carlos, Oscar L. Malta. On the long decay time of the 7F5 level of Tb3+. Journal of Luminescence 2022, 248 , 118933. https://doi.org/10.1016/j.jlumin.2022.118933
    70. Paloma Rodríguez-Sevilla, Riccardo Marin, Erving Ximendes, Blanca del Rosal, Antonio Benayas, Daniel Jaque. Luminescence Thermometry for Brain Activity Monitoring: A Perspective. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.941861
    71. Lucca Blois, Albano N. Carneiro Neto, Oscar L. Malta, Hermi F. Brito. The role of the Eu3+ 7F1 level in the direct sensitization of the 5D0 emitting level through intramolecular energy transfer. Journal of Luminescence 2022, 247 , 118862. https://doi.org/10.1016/j.jlumin.2022.118862
    72. Konstantinos Karachousos-Spiliotakopoulos, Vassilis Tangoulis, Nikos Panagiotou, Anastasios Tasiopoulos, Eufemio Moreno-Pineda, Wolfgang Wernsdorfer, Michael Schulze, Alexandre M. P. Botas, Luis D. Carlos. Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex. Dalton Transactions 2022, 51 (21) , 8208-8216. https://doi.org/10.1039/D2DT00936F
    73. Na Wu, Yishuo Sun, Mengya Kong, Xue Lin, Cong Cao, Zhanxian Li, Wei Feng, Fuyou Li. Er‐Based Luminescent Nanothermometer to Explore the Real‐Time Temperature of Cells under External Stimuli. Small 2022, 18 (14) https://doi.org/10.1002/smll.202107963
    74. Guixian Li, Yu Xue, Qinan Mao, Lang Pei, Hong He, Meijiao Liu, Liang Chu, Jiasong Zhong. Synergistic luminescent thermometer using co-doped Ca 2 GdSbO 6 :Mn 4+ /(Eu 3+ or Sm 3+ ) phosphors. Dalton Transactions 2022, 51 (12) , 4685-4694. https://doi.org/10.1039/D2DT00005A
    75. Albano N. Carneiro Neto, Ekaterina Mamontova, Alexandre M. P. Botas, Carlos D. S. Brites, Rute A. S. Ferreira, Jérôme Rouquette, Yannick Guari, Joulia Larionova, Jérôme Long, Luís D. Carlos. Rationalizing the Thermal Response of Dual‐Center Molecular Thermometers: The Example of an Eu/Tb Coordination Complex. Advanced Optical Materials 2022, 10 (5) https://doi.org/10.1002/adom.202101870
    76. Riccardo Marin, Natalie C. Millan, Laura Kelly, Nan Liu, Emille Martinazzo Rodrigues, Muralee Murugesu, Eva Hemmer. Luminescence thermometry using sprayed films of metal complexes. Journal of Materials Chemistry C 2022, 10 (5) , 1767-1775. https://doi.org/10.1039/D1TC05484H
    77. Rodolfo N. Silva, Alexandre M.P. Botas, David Brandão, Verónica Bastos, Helena Oliveira, Mengistie L. Debasu, Rute A.S. Ferreira, Carlos D.S. Brites, Luís D. Carlos. 3D sub-cellular localization of upconverting nanoparticles through hyperspectral microscopy. Physica B: Condensed Matter 2022, 626 , 413470. https://doi.org/10.1016/j.physb.2021.413470
    78. Peyman Fahimi, Chérif F. Matta. The hot mitochondrion paradox: reconciling theory and experiment. Trends in Chemistry 2022, 4 (2) , 96-110. https://doi.org/10.1016/j.trechm.2021.10.005
    79. L.F. Dos Santos, J.C. Martins, K.O. Lima, L.F.T. Gomes, M.T. De Melo, A.C. Tedesco, L.D. Carlos, R.A.S. Ferreira, R.R. Gonçalves. In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter 2022, 624 , 413447. https://doi.org/10.1016/j.physb.2021.413447
    80. Dechao Yu, Huaiyong Li, Dawei Zhang, Qinyuan Zhang, Andries Meijerink, Markus Suta. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00677-5
    81. Kohki Okabe, Seiichi Uchiyama. Intracellular thermometry uncovers spontaneous thermogenesis and associated thermal signaling. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02908-2
    82. Fernando E. Maturi, Carlos D. S. Brites, Erving C. Ximendes, Carolyn Mills, Bradley Olsen, Daniel Jaque, Sidney J. L. Ribeiro, Luís D. Carlos. Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression. Laser & Photonics Reviews 2021, 15 (11) https://doi.org/10.1002/lpor.202100301
    83. Jiating Xu, Jun Wang, Jin Ye, Jiao Jiao, Zhiguo Liu, Chunjian Zhao, Bin Li, Yujie Fu. Metal‐Coordinated Supramolecular Self‐Assemblies for Cancer Theranostics. Advanced Science 2021, 8 (16) https://doi.org/10.1002/advs.202101101
    84. Renaldo T. Moura Jr., Albano N. Carneiro Neto, Eduardo C. Aguiar, Carlos V. Santos-Jr., Ewerton M. de Lima, Wagner M. Faustino, Ercules E.S. Teotonio, Hermi F. Brito, Maria C.F.C. Felinto, Rute A.S. Ferreira, Luís D. Carlos, Ricardo L. Longo, Oscar L. Malta. (INVITED) JOYSpectra: A web platform for luminescence of lanthanides. Optical Materials: X 2021, 11 , 100080. https://doi.org/10.1016/j.omx.2021.100080
    85. Hang Gao, Peng Zhang, Tianyong Guan, Yingjie Yang, Mingmao Chen, Jiaojiao Wei, Siyuan Han, Yan Liu, Xueyuan Chen. Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence. Talanta 2021, 231 , 122243. https://doi.org/10.1016/j.talanta.2021.122243
    86. Pei Song, He Gao, Zhaoshuai Gao, Jiaxing Liu, Ruiping Zhang, Bin Kang, Jing-Juan Xu, Hong-Yuan Chen. Heat transfer and thermoregulation within single cells revealed by transient plasmonic imaging. Chem 2021, 7 (6) , 1569-1587. https://doi.org/10.1016/j.chempr.2021.02.027
    87. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak. Luminescence based temperature bio-imaging: Status, challenges, and perspectives. Applied Physics Reviews 2021, 8 (1) https://doi.org/10.1063/5.0030295
    88. Rui Shi, Eduardo D. Martinez, Carlos D. S. Brites, Luís D. Carlos. Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary. Physical Chemistry Chemical Physics 2021, 23 (1) , 20-42. https://doi.org/10.1039/D0CP05069E
    89. Hao Suo, Xiaoqi Zhao, Zhiyu Zhang, Yu Wang, Jiashu Sun, Minkun Jin, Chongfeng Guo. Rational Design of Ratiometric Luminescence Thermometry Based on Thermally Coupled Levels for Bioapplications. Laser & Photonics Reviews 2021, 15 (1) https://doi.org/10.1002/lpor.202000319
    90. Markus Suta, Andries Meijerink. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Advanced Theory and Simulations 2020, 3 (12) https://doi.org/10.1002/adts.202000176

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 9, 6466–6472
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c02163
    Published July 30, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2925

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.