ACS Publications. Most Trusted. Most Cited. Most Read
Cathodoluminescence Nanoscopy of 3D Plasmonic Networks
My Activity
  • Open Access
Letter

Cathodoluminescence Nanoscopy of 3D Plasmonic Networks
Click to copy article linkArticle link copied!

  • Racheli Ron
    Racheli Ron
    Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
    More by Racheli Ron
  • Marcin Stefan Zielinski
    Marcin Stefan Zielinski
    Attolight AG, EPFL Innovation Park, Building D, 1015 Lausanne, Switzerland
  • Adi Salomon*
    Adi Salomon
    Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
    Saints-Pères Paris Institute for the Neurosciences, Universite de Paris, CNRS, 75270 Paris, France
    *Email: [email protected]
    More by Adi Salomon
Open PDFSupporting Information (2)

Nano Letters

Cite this: Nano Lett. 2020, 20, 11, 8205–8211
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.nanolett.0c03317
Published October 15, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

Nanoporous metallic networks are endowed with the distinctive optical properties of strong field enhancement and spatial localization, raising the necessity to map the optical eigenmodes with high spatial resolution. In this work, we used cathodoluminescence (CL) to map the local electric fields of a three-dimensional (3D) silver network made of nanosized ligaments and holes over a broad spectral range. A multitude of neighboring hotspots at different frequencies and intensities are observed at subwavelength distances over the network. In contrast to well-defined plasmonic structures, the hotspots do not necessarily correlate with the network morphology, emphasizing the complexity and energy dissipation through the network. In addition, we show that the inherent connectivity of the networked structure plays a key optical role because a ligament with a single connected linker shows localized modes whereas an octopus-like ligament with multiple connections permits energy propagation through the network.

Copyright © 2020 American Chemical Society

Introduction

Click to copy section linkSection link copied!

Nanoporous metallic networks constitute a new class of advanced materials comprising multimodal nanosized blobs connected to each other to form a disordered 3D structure. Their distinct structural properties, including high surface-to-volume ratio, ability to host guest materials, pure solid connectivity, and high surface curvature, endow them with optical properties that can be found neither in conventional (well-defined) plasmonic structures nor in bulk metals. (1−14)
It has been previously shown by us (15−17) and others (18−33) that this class of connected metallic nanomaterials (two-dimensional (2D) networks as well) exhibit strong local fields over a broad optical range. These fields are confined to subwavelength volumes and are termed hotspots. The associated strong electric fields that exist in these hotspots lead to exceptional enhancement of the nonlinear optical properties of the network (13,16,20−23,33−38) and even to the occurrence of photochemical processes and reactions inside and on the network. (1,2,15,39−41) Both phenomena are outcomes of the high local density of optical states (LDOS) expected on the basis of the strong field enhancement and spatial localization, (18,31,38,42−44) raising the necessity to map the optical eigenmodes with high spatial resolution.
Diffraction-limited far-field optical measurements are not adapted for characterizing these local effects, as field fluctuations and spectral resonances are averaged and result in a broad spectral response. (4,15,45−47) Even near-field techniques, like near-field optical microscopy, are limited in their ability to retrieve spatial confinement in these highly topographic networks at a broad range of frequencies. (45,46,48)
On the other hand, electron microscopy techniques such as electron energy loss spectroscopy (EELS) and CL can meet those challenges because in these techniques the excitation results from an interaction with a highly localized (subnanometer) electron beam. (29,45,46,48−54) Additionally, the beam is considered as a “white source” comprising a broad range of frequencies and is therefore able to excite all available modes in the sample.
In a raster-scanning geometry, it is possible to retrieve the full spectrum from each pixel of the entire scanned sample with nanometer resolution. In EELS, one measures the energy transfer from electrons to plasmons by calculating the energy loss of electrons that have passed through the sample. In CL, on the other hand, photons scattered by the sample are directly collected, reflecting the efficiency of the decay of plasmons into radiation. Thus, in either technique it is possible to map the local electric fields with nanoscale resolution (for further information, see the Supporting Information). (29,50,52,53,55) As EELS is measured in transmission, it is not suitable for thick 3D samples such as those studied here (with a thickness of a few micrometers).
In this work, we used CL to map the local electric fields of a nanoporous silver network over a broad spectral range spanning the ultraviolet (UV), visible (VIS), and near-infrared (NIR) regions. A multitude of hotspots at different frequencies and intensities were observed at subwavelength scales. In contrast to well-defined plasmonic structures, the hotspots do not necessarily correlate with the network morphology, reflecting the complexity of the network and possible interactions between the building blocks as well as energy dissipation through the network. (9−13,35) However, accidental large cracks in the studied network could be distinguished by collecting CL emission in the NIR. (24) In addition, we show that silver ligaments that are multiply connected (“hubs”) permit energy flow through the network and therefore show different optical behavior compared with ligaments that are linked to the network presumably via a single string.

Results and Discussion

Click to copy section linkSection link copied!

The polychromatic optical response of the nanoporous silver network and its corresponding scanning electron microscopy (SEM) image are shown in Figure 1a,b, respectively. The CL emission is due to excitation of surface plasmon (SP) modes of the 3D silver network. The emission pattern is rich in localized spots spanning the VIS–NIR regime (Figure 1c) demonstrating the functional potential of the network and in agreement with its reported transmission spectrum. (15−17) The observed hotspots are mixed modes of different frequencies, reflecting energy dissipation as well as coupling through the 3D network. (18,28,30,32,47,56,57) Furthermore, modes with different energies and intensities over subwavelength distances are observed, a possible indication of light localization. (24)

Figure 1

Figure 1. Polychromatic CL emission from a 3D nanoporous silver network. (a) Overlay of three monochromatic CL maps of the network in (b) at λCL = 460 ± 10, 600 ± 10, and 775 ± 10 nm, color-coded in blue, green, and red, respectively (see Figure S1). (b) SEM image (1.8 μm × 1.6 μm) of the studied 3D silver network taken simultaneity with CL acquisition. (c) Point CL spectra extracted from various probe positions on the silver network, which are indicated by the corresponding colored crosses in (b). (d) Panchromatic CL (PanCL) map of the network in (b) over the range of 250–790 nm. (e) Monochromatic CL map of the network in (b) at 4.13 eV (λ = 330 ± 10 nm). The mode at 330 nm is attributed to the bulk plasmon frequency of silver. (f) Red-color-coded monochromatic CL image and (g) quantified intensity map of the network in (b) at λCL = 775 ± 10 nm. A comparison of the intensities of the monochromatic CL maps is shown in Figure S1. The identical white contour lines in (a), (e), and (f) indicate the rim of the structural crack shown in the SEM image in (b).

Modes appear from both metal ligaments and hole regions (see Figure 1b,c), and no clear correspondence between the network morphology and hotspot locations is observed (see Figure 1d for the panchromatic CL image and Movie S1). This observation is in agreement with previous studies on 2D metallic networks, (4,18,20−23,26,29,34) wherein it was attributed to the topological complexity of the 2D network. The network topography is revealed by the selection of a spectral range of 330 ± 10 nm, the silver bulk plasmon wavelength (Figure 1e).
Additional interesting features are detectable in Figure 1a. For example, the rim of a large crack (see the white curved contour line) is characterized by red-shifted emission that can be distinguished upon selection of the 775 ± 10 nm band from the hyperspectral CL map (see Figure 1f,g). Plasmon coupling between nearby ligaments and particles along the crack lowers the mode energy and is therefore expressed as a red-shifted CL emission area. (24,56) Coupling between plasmonic modes is an inherent property of this type of solid interconnected 3D network that contributes to the complex multimodal CL emission observed from the studied network.
To better understand the optical outcome of the inherent structural connectivity of the network and its optical robustness, we studied in detail the CL emission from two prototypical network structural elements (see Figure 2). One structural element is characterized by single connectivity, as it is linked at its bottom to the rest of the network (Figure 2a). Contrarily, the second prototypical element is an octopus-like fragment that is characterized by high-connectivity, with at least seven connection points to the whole network structure (Figure 2b). The SEM image in Figure 2c shows such prototypical network features at the same scan.

Figure 2

Figure 2. Effects of the network’s building block connectivity on the CL response. (a, b) Illustration of (a) low- and (b) high-connectivity network ligaments (marked in yellow). The low-connectivity ligament in (a) possesses one bottom connection point to rest of the network and has two disconnected ∼250 nm wings. Contrarily, the high-connectivity ligament in (b) is a nodal ligament with an octopus-like shape having at least seven connection points to the whole 3D network structure. (c) SEM image in which both low- and high-connectivity network ligaments appear (see the upper and lower dotted-line squares, respectively), as illustrated in (a) and (b), respectively. (d, e) Polychromatic CL images of the ligaments marked in (c). The polychromatic CL images are made of overlapped monochromatic CL maps at λCL= 460 ± 10, 500 ± 15, and 620 ± 15 nm. The discrete monochromatic CL maps color-coded according to the emitted color (blue, green, and red, respectively) are shown in Figure S2. (f, g) Local CL spectra corresponding to the probe positions indicated in (c) and in the insets in (f) and (g). The difference in the CL intensity scale bars in (f) and (g) should be noted.

Differences between the two prototypical optical elements are demonstrated by their overlaid polychromatic CL images at λCL= 460 ± 15, 500 ± 15, and 620 ± 15 nm. Whereas localized modes can be assigned at the low-connectivity ligament (Figure 2d), the CL emission detected from the octopus-like fragment is relatively weak and diffuse (Figure 2e).
CL spectra extracted from the low-connectivity ligament quantitatively reflect the ample number of localized modes owned by this single network ligament (Figure 2f); intense CL emissions at different wavelengths (e.g., 400, 420, and 500 nm) are observed from three spots located at subwavelength distances from each other on the ligament. On the other hand, similar spectra are observed from spots located on the octopus-like ligament with about a half order of magnitude less intensity (Figure 2g).
Next, we studied the spatial distribution of plasmonic modes of the two prototype ligaments mentioned above. Six monochromatic CL emission maps over the range of 400–650 nm are presented in Figure 3 for both the singly connected ligament and the octopus-like ligament.

Figure 3

Figure 3. CL emission patterns of low- and high-connectivity network ligaments. All scale bars denote 200 nm. (a) Monochromatic CL emission patterns of a ligament characterized by low-connectivity to the 3D silver network at λ = 400, 450, 470, 500, 600, and 650 nm (all ±5 nm). (b) 3D presentation of the CL maps in (a). (c) Overlaid SEM and CL images of the low-connectivity ligament. (d) Overlaid SEM and CL images of the multiply connected nodal network ligament at the same center wavelengths and bandwidth as in (a–c). The monochromatic CL maps of the nodal ligament and their 3D representation are shown in Figure S3. The black contour lines in (a), (c), and (d) mark the position of the ligaments as retrieved from the SEM image (see Figure 2c).

For the singly connected ligament, a clear spatial confinement of the modes located on the ligament is revealed within the range of 400–500 nm, indicating energy localization. At relatively high mode energies (400–500 nm), the CL emission patterns are spatially localized, and the localized modes fluctuate in energy and intensity. At lower mode energies (600 and 650 nm), the CL emission is delocalized along the ligament and is less intense. In all of the maps, the emission is lowest at the ligament center, where the metallic morphology is narrower and thinner. Such ligaments of low-connectivity support high-intensity modes that are spatially confined to deep subwavelength volumes. In addition, intense CL emission is observed from the gap between the upper neighboring tip and the low-connectivity ligament (Figure 3). The emission peak is observed at about 500 nm and is probably related to coupling of this neighboring tip to the ligament coming into expression by green light emission (see Figure 2d).
Figure 3d maps the CL emission of the octopus-like ligament. Here, unlike the low-connectivity ligament, little emission is observed, and it is diffused around the “hub” (also see Figure S3).

Hotspot Fluctuations

Enhancements of local fields at different frequencies are observed, as shown in Figure 4. Monochromatic CL maps extracted from two different locations are presented in Figure 4a,b. The observed hotspots (high CL intensities) are wavelength-dependent, and their intensities fluctuate, in agreement with our former studies on nonlinear responses of nanoporous 3D metallic networks. (16)Figure 4c shows three sets of point CL spectra from proximate network locations (∼150 nm). The observed spectra of the plasmonic modes fluctuate in both energy and intensity at subwavelength distances. Modes fluctuate from about 420 to 580 nm at a distance of about 100 nm. Figure S4 shows three additional sets of point CL spectra from locations on the network in Figure 1b that are distanced by ∼50 nm. However, at far field the different resonances are averaged out, giving rise to a very broad spectrum as was reported previously. (15,16)

Figure 4

Figure 4. Fluctuations of network hotspots. (a) Monochromatic CL emission patterns from two different network locations (415 nm diameter) indicated on the SEM image in (b) at the noted center wavelengths (20 nm bandwidth). The CL response of each location is strongly wavelength-dependent. (c) Point CL spectra extracted from close spatial positions (∼100 nm apart) on the silver network in (b) demonstrating strong variations in energy and intensity at proximal locations. The probe positions are indicated by the corresponding colored crosses and capital letters on the SEM image in (b). Figure S5 shows the panchromatic CL image of (b).

In the context of strong coupling photochemistry, molecules deposited in and on such a metallic network will experience very strong fields, which may alter their emission rates and directionality as well as their physical and chemical properties. (58−63) Such localized hotspots can lead to modification of the surface potential energy along a given reaction coordinate and open new pathways for energy redistribution that are not accessible through homogeneous catalysis, for example. In addition, the excited plasmonic modes of the network may induce crosstalk between remote molecules deposited on and inside the network, resulting in a supramolecular hybrid system with outstanding optical and chemical properties. We think that the metallic network offers a broadband spectral range for strong interactions and the possibility to host molecules in the large pores, forming a large-scale 3D molecular plasmonic network. Strong coupling between molecules and the network plasmonic modes should result in hybrid states with longer dephasing times and therefore should lead to enhancement of nonlinear optical phenomena such as Raman and second harmonic generation. (15,16) Raman spectra of C60 deposited on the 3D silver network and their reduction process with up to five or six electrons have been shown previously. (15)

Conclusion

Click to copy section linkSection link copied!

We have experimentally mapped local fields of a 3D silver network by CL nanoscopy. The disorder in such materials is characterized by mixed eigenmodes with fluctuating frequencies and intensities at subwavelength distances, reflecting the topological complexity of the network. A correspondence between the network morphology and the hotspots was found only in the presence of a large crack, where the observed hotspots at the rim of the crack are intense and in the IR regime. The network connectivity prominently affects the LDOS, such that high-connectivity leads to energy propagation through the network. To the best of our knowledge, this is the first experimental demonstration of CL properties of a 3D metallic networked system with a thickness of a few micrometers.
The large-scale lateral dimensions of the networks together with the random localized hotspots suggest that 3D plasmonic networks can exhibit superior performance in a range of technological fields including photonics, optoelectronic devices, photocatalysis, sensing, bioimaging, and quantum information. They can as well be used as fruitful systems for fundamental science endeavors.

Experimental Methods

Click to copy section linkSection link copied!

3D Silver Network Preparation

Samples of 3D nanoporous silver networks were prepared by sputtering on a silica aerogel substrate as detailed elsewhere. (15) In brief, sample preparation comprises two steps: (1) aerogel substrate synthesis and (2) physical vapor deposition. Silica aerogels were synthesized by a one-step base-catalyzed sol–gel process followed by drying with supercritical CO2 (K850, Quorum). Metals were sputtered (682, Gatan) from pure targets (99.99%, Kurt J. Lesker).

CL Measurements

CL studies were performed on an Attolight Rosa 4634 CL microscope (Attolight AG, Switzerland), which tightly integrates a high numerical aperture (N.A. = 0.72) achromatic reflective lens within the objective lens of a field-emission-gun scanning electron microscope (FEG-SEM). The focal plane of the light lens matches the FEG-SEM optimum working distance. CL was spectrally resolved with a Czerny–Turner spectrometer (320 mm focal length, 150 grooves/mm grating) and measured with a high quantum-efficiency CCD camera (Andor Newton 920) suitable for UV–VIS and NIR spectroscopy. The acceleration voltage and emission current of the electron beam were 7 kV and 20 nA, respectively. The CL data were analyzed using Mountains v.8 (Digital Surf) and MATLAB.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03317.

  • Monochromatic components of the polychromatic CL image in Figure 1a (Figure S1); monochromatic components of the polychromatic CL images in Figure 2d,e shown at a higher magnification and presenting both low- and high-connectivity structural elements of the 3D silver network (Figure S2); CL response of a highly connected nodal network ligament (Figure S3); demonstration of hotspot fluctuations at an additional 3D silver network scan (Figure 1b) by point CL spectra extracted from proximal probe positions (∼50 nm apart) (Figure S4); panchromatic CL map of the network in Figure 4b over the range of 250–790 nm (Figure S5); resolution of CL imaging (PDF)

  • Monochromatic CL images (250–790 nm) of the network in Figure 1b (MP4)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Adi Salomon - Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, IsraelSaints-Pères Paris Institute for the Neurosciences, Universite de Paris, CNRS, 75270 Paris, FranceOrcidhttp://orcid.org/0000-0002-5643-0478 Email: [email protected]
  • Authors
    • Racheli Ron - Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, IsraelOrcidhttp://orcid.org/0000-0001-7133-3660
    • Marcin Stefan Zielinski - Attolight AG, EPFL Innovation Park, Building D, 1015 Lausanne, Switzerland
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

R.R. thanks the Charles Clore Foundation for a fellowship for Ph.D students. This work was supported by the Energy and Water Resources Ministry of Israel (Grant 016-11-216) and the Israel Science Foundation (ISF) (Grant 1231/19).

Abbreviations

Click to copy section linkSection link copied!

CL

cathodoluminescence

2D

two-dimensional

LDOS

local density of optical states

EELS

energy electron loss spectroscopy

UV

ultraviolet

VIS

visible

NIR

near-infrared

SEM

scanning electron microscope

SP

surface plasmon

PanCL

Panchromatic CL

FEG-SEM

field-emission-gun scanning electron microscope

References

Click to copy section linkSection link copied!

This article references 63 other publications.

  1. 1
    Ding, Y.; Zhang, Z. Nanoporous Metals. In Springer Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin, 2013; pp 779818.
  2. 2
    Juarez, T.; Biener, J.; Weissmüller, J.; Hodge, A. M. Nanoporous Metals with Structural Hierarchy: A Review. Adv. Eng. Mater. 2017, 19 (12), 1700389,  DOI: 10.1002/adem.201700389
  3. 3
    Shalaev, V. M. Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films; Springer Tracts in Modern Physics, Vol. 158; Springer: Berlin, 2000.
  4. 4
    Reilly, T. H.; Tenent, R. C.; Barnes, T. M.; Rowlen, K. L.; Van De Lagemaat, J. Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films. ACS Nano 2010, 4 (2), 615624,  DOI: 10.1021/nn901734d
  5. 5
    Zielinski, M. S.; Choi, J. W.; La Grange, T.; Modestino, M.; Hashemi, S. M. H.; Pu, Y.; Birkhold, S.; Hubbell, J. A.; Psaltis, D. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation. Nano Lett. 2016, 16 (4), 21592167,  DOI: 10.1021/acs.nanolett.5b03901
  6. 6
    Wiersma, D. S. Disordered Photonics. Nat. Photonics 2013, 7 (3), 188196,  DOI: 10.1038/nphoton.2013.29
  7. 7
    Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111 (6), 39133961,  DOI: 10.1021/cr200061k
  8. 8
    Guo, S.; Talebi, N.; Campos, A.; Sigle, W.; Esmann, M.; Becker, S. F.; Lienau, C.; Kociak, M.; Van Aken, P. A. Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics 2019, 6 (10), 25092516,  DOI: 10.1021/acsphotonics.9b00838
  9. 9
    Galanty, M.; Shavit, O.; Weissman, A.; Aharon, H.; Gachet, D.; Segal, E.; Salomon, A. Second Harmonic Generation Hotspot on a Centrosymmetric Smooth Silver Surface. Light: Sci. Appl. 2018, 7 (1), 49,  DOI: 10.1038/s41377-018-0053-6
  10. 10
    Weissman, A.; Galanty, M.; Gachet, D.; Segal, E.; Shavit, O.; Salomon, A. Spatial Confinement of Light onto a Flat Metallic Surface Using Hybridization between Two Cavities. Adv. Opt. Mater. 2017, 5 (10), 1700097,  DOI: 10.1002/adom.201700097
  11. 11
    Segal, E.; Weissman, A.; Gachet, D.; Salomon, A. Hybridization between Nanocavities for a Polarimetric Color Sorter at the Sub-Micron Scale. Nanoscale 2016, 8 (33), 1529615302,  DOI: 10.1039/C6NR03528K
  12. 12
    Segal, E.; Galanty, M.; Aharon, H.; Salomon, A. Visualization of Plasmon-Induced Hot Electrons by Scanning Electron Microscopy. J. Phys. Chem. C 2019, 123 (50), 3052830535,  DOI: 10.1021/acs.jpcc.9b08202
  13. 13
    Salomon, A.; Zielinski, M.; Kolkowski, R.; Zyss, J.; Prior, Y. Size and Shape Resonances in Second Harmonic Generation from Silver Nanocavities. J. Phys. Chem. C 2013, 117 (43), 2237722382,  DOI: 10.1021/jp403010q
  14. 14
    Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous Plasmonic Metamaterials. Adv. Mater. 2008, 20 (6), 12111217,  DOI: 10.1002/adma.200701899
  15. 15
    Ron, R.; Gachet, D.; Rechav, K.; Salomon, A. Direct Fabrication of 3D Metallic Networks and Their Performance. Adv. Mater. 2017, 29 (7), 1604018,  DOI: 10.1002/adma.201604018
  16. 16
    Ron, R.; Shavit, O.; Aharon, H.; Zielinski, M.; Galanty, M.; Salomon, A. Nanoporous Metallic Network as a Large-Scale 3D Source of Second Harmonic Light. J. Phys. Chem. C 2019, 123 (41), 2533125340,  DOI: 10.1021/acs.jpcc.9b06300
  17. 17
    Ron, R.; Haleva, E.; Salomon, A. Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications. Adv. Mater. 2018, 30 (41), 1706755,  DOI: 10.1002/adma.201706755
  18. 18
    Losquin, A.; Camelio, S.; Rossouw, D.; Besbes, M.; Pailloux, F.; Babonneau, D.; Botton, G. A.; Greffet, J.-J. J.; Stéphan, O.; Kociak, M. Experimental Evidence of Nanometer-Scale Confinement of Plasmonic Eigenmodes Responsible for Hot Spots in Random Metallic Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 115427,  DOI: 10.1103/PhysRevB.88.115427
  19. 19
    Li, C.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.; Terasaki, O.; Yamauchi, Y. Electrochemical Synthesis of Mesoporous Gold Films toward Mesospace-Stimulated Optical Properties. Nat. Commun. 2015, 6 (1), 6608,  DOI: 10.1038/ncomms7608
  20. 20
    Zayats, a V; Smolyaninov, I. I.; Davis, C. C. Observation of Localized Plasmonic Excitations in Thin Metal Films with Near-Field Second-Harmonic Microscopy. Opt. Commun. 1999, 169 (1–6), 9396,  DOI: 10.1016/S0030-4018(99)00420-4
  21. 21
    Beermann, J.; Bozhevolnyi, S. I. Microscopy of Localized Second-Harmonic Enhancement in Random Metal Nanostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69 (15), 155429,  DOI: 10.1103/PhysRevB.69.155429
  22. 22
    Breit, M.; Podolskiy, V. A.; Grésillon, S.; von Plessen, G.; Feldmann, J.; Rivoal, J. C.; Gadenne, P.; Sarychev, A. K.; Shalaev, V. M. Experimental Observation of Percolation-Enhanced Nonlinear Light Scattering from Semicontinuous Metal Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64 (12), 125106,  DOI: 10.1103/PhysRevB.64.125106
  23. 23
    Stockman, M. I.; Bergman, D. J.; Anceau, C.; Brasselet, S.; Zyss, J. Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations. Phys. Rev. Lett. 2004, 92 (5), 057402,  DOI: 10.1103/PhysRevLett.92.057402
  24. 24
    Shalaev, V. M.; Safonov, V. P.; Poliakov, E. Y.; Markel, V. A.; Sarychev, A. K. Fractal-Surface-Enhanced Optical Nonlinearities. ACS Symp. Ser. 1997, 679, 88107,  DOI: 10.1021/bk-1997-0679.ch008
  25. 25
    Lee, W. K.; Yu, S.; Engel, C. J.; Reese, T.; Rhee, D.; Chen, W.; Odom, T. W. Concurrent Design of Quasi-Random Photonic Nanostructures. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (33), 87348739,  DOI: 10.1073/pnas.1704711114
  26. 26
    Galinski, H.; Fratalocchi, A.; Döbeli, M.; Capasso, F. Light Manipulation in Metallic Nanowire Networks with Functional Connectivity. Adv. Opt. Mater. 2017, 5 (5), 1600580,  DOI: 10.1002/adom.201600580
  27. 27
    Galinski, H.; Favraud, G.; Dong, H.; Gongora, J. S. T.; Favaro, G.; Döbeli, M.; Spolenak, R.; Fratalocchi, A.; Capasso, F. Scalable, Ultra-Resistant Structural Colors Based on Network Metamaterials. Light: Sci. Appl. 2017, 6 (5), e16233  DOI: 10.1038/lsa.2016.233
  28. 28
    Gaio, M.; Castro-Lopez, M.; Renger, J.; van Hulst, N.; Sapienza, R. Percolating Plasmonic Networks for Light Emission Control. Faraday Discuss. 2015, 178 (0), 237252,  DOI: 10.1039/C4FD00187G
  29. 29
    Bosman, M.; Anstis, G. R.; Keast, V. J.; Clarke, J. D.; Cortie, M. B. Light Splitting in Nanoporous Gold and Silver. ACS Nano 2012, 6 (1), 319326,  DOI: 10.1021/nn203600n
  30. 30
    Teulle, A.; Bosman, M.; Girard, C.; Gurunatha, K. L.; Li, M.; Mann, S.; Dujardin, E. Multimodal Plasmonics in Fused Colloidal Networks. Nat. Mater. 2015, 14 (1), 8794,  DOI: 10.1038/nmat4114
  31. 31
    Krachmalnicoff, V.; Castanié, E.; De Wilde, Y.; Carminati, R. Fluctuations of the Local Density of States Probe Localized Surface Plasmons on Disordered Metal Films. Phys. Rev. Lett. 2010, 105 (18), 183901,  DOI: 10.1103/PhysRevLett.105.183901
  32. 32
    Detsi, E.; Salverda, M.; Onck, P. R.; De Hosson, J. T. M. On the Localized Surface Plasmon Resonance Modes in Nanoporous Gold Films. J. Appl. Phys. 2014, 115 (4), 044308,  DOI: 10.1063/1.4862440
  33. 33
    Wokaun, A.; Bergman, J. G.; Heritage, J. P.; Glass, A. M.; Liao, P. F.; Olson, D. H. Surface Second-Harmonic Generation from Metal Island Films and Microlithographic Structures. Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 24 (2), 849856,  DOI: 10.1103/PhysRevB.24.849
  34. 34
    Smolyaninov, I.; Zayats, A.; Davis, C. Near-Field Second Harmonic Generation from a Rough Metal Surface. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56 (15), 92909293,  DOI: 10.1103/PhysRevB.56.9290
  35. 35
    Salomon, A.; Prior, Y.; Fedoruk, M.; Feldmann, J.; Kolkowski, R.; Zyss, J. Plasmonic Coupling between Metallic Nanocavities. J. Opt. 2014, 16 (11), 114012,  DOI: 10.1088/2040-8978/16/11/114012
  36. 36
    Wang, D.; Schaaf, P. Plasmonic Nanosponges. Adv. Phys. X 2018, 3 (1), 1456361,  DOI: 10.1080/23746149.2018.1456361
  37. 37
    Bozhevolnyi, S. I.; Beermann, J.; Coello, V. Direct Observation of Localized Second-Harmonic Enhancement in Random Metal Nanostructures. Phys. Rev. Lett. 2003, 90 (19), 197403,  DOI: 10.1103/PhysRevLett.90.197403
  38. 38
    Mascheck, M.; Schmidt, S.; Silies, M.; Yatsui, T.; Kitamura, K.; Ohtsu, M.; Leipold, D.; Runge, E.; Lienau, C. Observing the Localization of Light in Space and Time by Ultrafast Second-Harmonic Microscopy. Nat. Photonics 2012, 6 (5), 293298,  DOI: 10.1038/nphoton.2012.69
  39. 39
    Ding, Y.; Zhang, Z. Nanoporous Metals for Advanced Energy Technologies; Springer International Publishing: Cham, Switzerland, 2016.
  40. 40
    Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9 (3), 205213,  DOI: 10.1038/nmat2629
  41. 41
    Favraud, G.; Gongora, J. S. T.; Fratalocchi, A. Evolutionary Photonics for Renewable Energy, Nanomedicine, and Advanced Material Engineering. Laser Photonics Rev. 2018, 12 (11), 1700028,  DOI: 10.1002/lpor.201700028
  42. 42
    Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9 (3), 193204,  DOI: 10.1038/nmat2630
  43. 43
    Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Liz-Marzán, L. M.; García De Abajo, F. J. Toward Ultimate Nanoplasmonics Modeling. ACS Nano 2014, 8 (8), 75597570,  DOI: 10.1021/nn5037703
  44. 44
    Wolf, P. E.; Maret, G. Weak Localization and Coherent Backscattering of Photons in Disordered Media. Phys. Rev. Lett. 1985, 55 (24), 26962699,  DOI: 10.1103/PhysRevLett.55.2696
  45. 45
    Vesseur, E. J. R.; Aizpurua, J.; Coenen, T.; Reyes-Coronado, A.; Batson, P. E.; Polman, A. Plasmonic Excitation and Manipulation with an Electron Beam. MRS Bull. 2012, 37 (8), 752760,  DOI: 10.1557/mrs.2012.174
  46. 46
    Kneipp, K.; Kneipp, H.; Kneipp, J. Probing Plasmonic Nanostructures by Photons and Electrons. Chem. Sci. 2015, 6 (5), 27212726,  DOI: 10.1039/C4SC03508A
  47. 47
    Esteban, R.; Taylor, R. W.; Baumberg, J. J.; Aizpurua, J. How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assembled Metallic Clusters of Nanoparticles. Langmuir 2012, 28 (24), 88818890,  DOI: 10.1021/la300198r
  48. 48
    Ye, F.; Merlo, J. M.; Burns, M. J.; Naughton, M. J. Optical and Electrical Mappings of Surface Plasmon Cavity Modes. Nanophotonics 2014, 3 (1–2), 3349,  DOI: 10.1515/nanoph-2013-0038
  49. 49
    Polman, A.; Kociak, M.; García de Abajo, F. J. Electron-Beam Spectroscopy for Nanophotonics. Nat. Mater. 2019, 18 (11), 11581171,  DOI: 10.1038/s41563-019-0409-1
  50. 50
    Coenen, T.; Haegel, N. M. Cathodoluminescence for the 21st Century: Learning More from Light. Appl. Phys. Rev. 2017, 4 (3), 031103,  DOI: 10.1063/1.4985767
  51. 51
    García De Abajo, F. J. Optical Excitations in Electron Microscopy. Rev. Mod. Phys. 2010, 82 (1), 209275,  DOI: 10.1103/RevModPhys.82.209
  52. 52
    Coenen, T.; Brenny, B. J. M.; Vesseur, E. J.; Polman, A. Cathodoluminescence Microscopy: Optical Imaging and Spectroscopy with Deep-Subwavelength Resolution. MRS Bull. 2015, 40 (04), 359365,  DOI: 10.1557/mrs.2015.64
  53. 53
    Nelayah, J.; Kociak, M.; Stéphan, O.; García De Abajo, F. J.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Colliex, C. Mapping Surface Plasmons on a Single Metallic Nanoparticle. Nat. Phys. 2007, 3 (5), 348353,  DOI: 10.1038/nphys575
  54. 54
    Atre, A. C.; Brenny, B. J. M.; Coenen, T.; García-Etxarri, A.; Polman, A.; Dionne, J. A. Nanoscale Optical Tomography with Cathodoluminescence Spectroscopy. Nat. Nanotechnol. 2015, 10 (5), 429436,  DOI: 10.1038/nnano.2015.39
  55. 55
    Zielinski, M. S.; Vardar, E.; Vythilingam, G.; Engelhardt, E.-M.; Hubbell, J. A.; Frey, P.; Larsson, H. M. Quantitative Intrinsic Auto-Cathodoluminescence Can Resolve Spectral Signatures of Tissue-Isolated Collagen Extracellular Matrix. Commun. Biol. 2019, 2 (1), 69,  DOI: 10.1038/s42003-019-0313-x
  56. 56
    Chen, T.; Pourmand, M.; Feizpour, A.; Cushman, B.; Reinhard, B. M. Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation. J. Phys. Chem. Lett. 2013, 4 (13), 21472152,  DOI: 10.1021/jz401066g
  57. 57
    Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S. One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater. 2005, 17 (21), 25532559,  DOI: 10.1002/adma.200500828
  58. 58
    Salomon, A.; Genet, C.; Ebbesen, T. W. Molecule-Light Complex: Dynamics of Hybrid Molecule-Surface Plasmon States. Angew. Chem., Int. Ed. 2009, 48 (46), 87488751,  DOI: 10.1002/anie.200903191
  59. 59
    Salomon, A.; Gordon, R. J.; Prior, Y.; Seideman, T.; Sukharev, M. Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film. Phys. Rev. Lett. 2012, 109 (7), 073002,  DOI: 10.1103/PhysRevLett.109.073002
  60. 60
    Vasa, P.; Pomraenke, R.; Cirmi, G.; De Re, E.; Wang, W.; Schwieger, S.; Leipold, D.; Runge, E.; Cerullo, G.; Lienau, C. Ultrafast Manipulation of Strong Coupling in Metal-Molecular Aggregate Hybrid Nanostructures. ACS Nano 2010, 4 (12), 75597565,  DOI: 10.1021/nn101973p
  61. 61
    Ebbesen, T. W. Hybrid Light-Matter States in a Molecular and Material Science Perspective. Acc. Chem. Res. 2016, 49 (11), 24032412,  DOI: 10.1021/acs.accounts.6b00295
  62. 62
    Pustovit, V. N.; Shahbazyan, T. V. Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83 (8), 085427,  DOI: 10.1103/PhysRevB.83.085427
  63. 63
    Mao, P.; Liu, C.; Favraud, G.; Chen, Q.; Han, M.; Fratalocchi, A.; Zhang, S. Broadband Single Molecule SERS Detection Designed by Warped Optical Spaces. Nat. Commun. 2018, 9 (1), 5428,  DOI: 10.1038/s41467-018-07869-5

Cited By

Click to copy section linkSection link copied!

This article is cited by 11 publications.

  1. Mohamed Hamode, Racheli Ron, Alon Krause, Hodaya Klimovsky, Emir Haleva, Tchiya Zar, Adi Salomon. 3D Nanoporous Metallic Networks for SERS-Based Detection of Water Contaminants. ACS Applied Nano Materials 2024, 7 (15) , 18056-18064. https://doi.org/10.1021/acsanm.4c03899
  2. Ken-ichi Saitow. 1D, 2D, and 3D Mapping of Plasmon and Mie Resonances: A Review of Field Enhancement Imaging Based on Electron or Photon Spectromicroscopy. The Journal of Physical Chemistry C 2024, 128 (13) , 5367-5393. https://doi.org/10.1021/acs.jpcc.3c07393
  3. Vincenzo Caligiuri, Hyunah Kwon, Andrea Griesi, Yurii P. Ivanov, Andrea Schirato, Alessandro Alabastri, Massimo Cuscunà, Gianluca Balestra, Antonio De Luca, Tlek Tapani, Haifeng Lin, Nicolò Maccaferri, Roman Krahne, Giorgio Divitini, Peer Fischer, Denis Garoli. Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterial. Nanophotonics 2024, 13 (7) , 1159-1167. https://doi.org/10.1515/nanoph-2023-0942
  4. Sebastian Bohm, Malte Grunert, Felix Schwarz, Erich Runge, Dong Wang, Peter Schaaf, Abbas Chimeh, Christoph Lienau. Gold nanosponges: fascinating optical properties of a unique disorder-dominated system. Journal of the Optical Society of America B 2023, 40 (6) , 1491. https://doi.org/10.1364/JOSAB.479739
  5. Racheli Ron, Tchiya Zar, Adi Salomon. Linear and Nonlinear Optical Properties of Well‐Defined and Disordered Plasmonic Systems: A Review. Advanced Optical Materials 2023, 11 (5) https://doi.org/10.1002/adom.202201475
  6. Charles Roques-Carmes, Steven E. Kooi, Yi Yang, Nicholas Rivera, Phillip D. Keathley, John D. Joannopoulos, Steven G. Johnson, Ido Kaminer, Karl K. Berggren, Marin Soljačić. Free-electron–light interactions in nanophotonics. Applied Physics Reviews 2023, 10 (1) https://doi.org/10.1063/5.0118096
  7. Zelio Fusco, Asim Riaz, Christin David, Fiona J. Beck. Cathodoluminescence Spectroscopy of Complex Dendritic Au Architectures for Application in Plasmon‐Mediated Photocatalysis and as SERS Substrates. Advanced Materials Interfaces 2023, 10 (3) https://doi.org/10.1002/admi.202202236
  8. Mohamed Hamode, Racheli Ron, Alon Krause, Adi Salomon, , , . Nanoporous metallic networks: Growth process and optical properties. EPJ Web of Conferences 2023, 287 , 05033. https://doi.org/10.1051/epjconf/202328705033
  9. Racheli Ron, Adi Salomon. Aerogel-Like Metals Produced Through Physical Vapor Deposition. 2023, 1189-1210. https://doi.org/10.1007/978-3-030-27322-4_45
  10. Tchiya Zar, Racheli Ron, Omer Shavit, Alon Krause, David Gachet, Adi Salomon. Nanoscopy of Aluminum Plasmonic Cavities by Cathodoluminescence and Second Harmonic Generation. Advanced Photonics Research 2022, 3 (11) https://doi.org/10.1002/adpr.202200126
  11. M. Wełna, K. Żelazna, A. Létoublon, C. Cornet, Ł. Janicki, M.S. Zieliński, R. Kudrawiec. Radiative and nonradiative recombination processes in GaNP(As) alloys. Materials Science and Engineering: B 2022, 276 , 115567. https://doi.org/10.1016/j.mseb.2021.115567

Nano Letters

Cite this: Nano Lett. 2020, 20, 11, 8205–8211
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.nanolett.0c03317
Published October 15, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY.

Article Views

2217

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Polychromatic CL emission from a 3D nanoporous silver network. (a) Overlay of three monochromatic CL maps of the network in (b) at λCL = 460 ± 10, 600 ± 10, and 775 ± 10 nm, color-coded in blue, green, and red, respectively (see Figure S1). (b) SEM image (1.8 μm × 1.6 μm) of the studied 3D silver network taken simultaneity with CL acquisition. (c) Point CL spectra extracted from various probe positions on the silver network, which are indicated by the corresponding colored crosses in (b). (d) Panchromatic CL (PanCL) map of the network in (b) over the range of 250–790 nm. (e) Monochromatic CL map of the network in (b) at 4.13 eV (λ = 330 ± 10 nm). The mode at 330 nm is attributed to the bulk plasmon frequency of silver. (f) Red-color-coded monochromatic CL image and (g) quantified intensity map of the network in (b) at λCL = 775 ± 10 nm. A comparison of the intensities of the monochromatic CL maps is shown in Figure S1. The identical white contour lines in (a), (e), and (f) indicate the rim of the structural crack shown in the SEM image in (b).

    Figure 2

    Figure 2. Effects of the network’s building block connectivity on the CL response. (a, b) Illustration of (a) low- and (b) high-connectivity network ligaments (marked in yellow). The low-connectivity ligament in (a) possesses one bottom connection point to rest of the network and has two disconnected ∼250 nm wings. Contrarily, the high-connectivity ligament in (b) is a nodal ligament with an octopus-like shape having at least seven connection points to the whole 3D network structure. (c) SEM image in which both low- and high-connectivity network ligaments appear (see the upper and lower dotted-line squares, respectively), as illustrated in (a) and (b), respectively. (d, e) Polychromatic CL images of the ligaments marked in (c). The polychromatic CL images are made of overlapped monochromatic CL maps at λCL= 460 ± 10, 500 ± 15, and 620 ± 15 nm. The discrete monochromatic CL maps color-coded according to the emitted color (blue, green, and red, respectively) are shown in Figure S2. (f, g) Local CL spectra corresponding to the probe positions indicated in (c) and in the insets in (f) and (g). The difference in the CL intensity scale bars in (f) and (g) should be noted.

    Figure 3

    Figure 3. CL emission patterns of low- and high-connectivity network ligaments. All scale bars denote 200 nm. (a) Monochromatic CL emission patterns of a ligament characterized by low-connectivity to the 3D silver network at λ = 400, 450, 470, 500, 600, and 650 nm (all ±5 nm). (b) 3D presentation of the CL maps in (a). (c) Overlaid SEM and CL images of the low-connectivity ligament. (d) Overlaid SEM and CL images of the multiply connected nodal network ligament at the same center wavelengths and bandwidth as in (a–c). The monochromatic CL maps of the nodal ligament and their 3D representation are shown in Figure S3. The black contour lines in (a), (c), and (d) mark the position of the ligaments as retrieved from the SEM image (see Figure 2c).

    Figure 4

    Figure 4. Fluctuations of network hotspots. (a) Monochromatic CL emission patterns from two different network locations (415 nm diameter) indicated on the SEM image in (b) at the noted center wavelengths (20 nm bandwidth). The CL response of each location is strongly wavelength-dependent. (c) Point CL spectra extracted from close spatial positions (∼100 nm apart) on the silver network in (b) demonstrating strong variations in energy and intensity at proximal locations. The probe positions are indicated by the corresponding colored crosses and capital letters on the SEM image in (b). Figure S5 shows the panchromatic CL image of (b).

  • References


    This article references 63 other publications.

    1. 1
      Ding, Y.; Zhang, Z. Nanoporous Metals. In Springer Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin, 2013; pp 779818.
    2. 2
      Juarez, T.; Biener, J.; Weissmüller, J.; Hodge, A. M. Nanoporous Metals with Structural Hierarchy: A Review. Adv. Eng. Mater. 2017, 19 (12), 1700389,  DOI: 10.1002/adem.201700389
    3. 3
      Shalaev, V. M. Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films; Springer Tracts in Modern Physics, Vol. 158; Springer: Berlin, 2000.
    4. 4
      Reilly, T. H.; Tenent, R. C.; Barnes, T. M.; Rowlen, K. L.; Van De Lagemaat, J. Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films. ACS Nano 2010, 4 (2), 615624,  DOI: 10.1021/nn901734d
    5. 5
      Zielinski, M. S.; Choi, J. W.; La Grange, T.; Modestino, M.; Hashemi, S. M. H.; Pu, Y.; Birkhold, S.; Hubbell, J. A.; Psaltis, D. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation. Nano Lett. 2016, 16 (4), 21592167,  DOI: 10.1021/acs.nanolett.5b03901
    6. 6
      Wiersma, D. S. Disordered Photonics. Nat. Photonics 2013, 7 (3), 188196,  DOI: 10.1038/nphoton.2013.29
    7. 7
      Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111 (6), 39133961,  DOI: 10.1021/cr200061k
    8. 8
      Guo, S.; Talebi, N.; Campos, A.; Sigle, W.; Esmann, M.; Becker, S. F.; Lienau, C.; Kociak, M.; Van Aken, P. A. Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics 2019, 6 (10), 25092516,  DOI: 10.1021/acsphotonics.9b00838
    9. 9
      Galanty, M.; Shavit, O.; Weissman, A.; Aharon, H.; Gachet, D.; Segal, E.; Salomon, A. Second Harmonic Generation Hotspot on a Centrosymmetric Smooth Silver Surface. Light: Sci. Appl. 2018, 7 (1), 49,  DOI: 10.1038/s41377-018-0053-6
    10. 10
      Weissman, A.; Galanty, M.; Gachet, D.; Segal, E.; Shavit, O.; Salomon, A. Spatial Confinement of Light onto a Flat Metallic Surface Using Hybridization between Two Cavities. Adv. Opt. Mater. 2017, 5 (10), 1700097,  DOI: 10.1002/adom.201700097
    11. 11
      Segal, E.; Weissman, A.; Gachet, D.; Salomon, A. Hybridization between Nanocavities for a Polarimetric Color Sorter at the Sub-Micron Scale. Nanoscale 2016, 8 (33), 1529615302,  DOI: 10.1039/C6NR03528K
    12. 12
      Segal, E.; Galanty, M.; Aharon, H.; Salomon, A. Visualization of Plasmon-Induced Hot Electrons by Scanning Electron Microscopy. J. Phys. Chem. C 2019, 123 (50), 3052830535,  DOI: 10.1021/acs.jpcc.9b08202
    13. 13
      Salomon, A.; Zielinski, M.; Kolkowski, R.; Zyss, J.; Prior, Y. Size and Shape Resonances in Second Harmonic Generation from Silver Nanocavities. J. Phys. Chem. C 2013, 117 (43), 2237722382,  DOI: 10.1021/jp403010q
    14. 14
      Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous Plasmonic Metamaterials. Adv. Mater. 2008, 20 (6), 12111217,  DOI: 10.1002/adma.200701899
    15. 15
      Ron, R.; Gachet, D.; Rechav, K.; Salomon, A. Direct Fabrication of 3D Metallic Networks and Their Performance. Adv. Mater. 2017, 29 (7), 1604018,  DOI: 10.1002/adma.201604018
    16. 16
      Ron, R.; Shavit, O.; Aharon, H.; Zielinski, M.; Galanty, M.; Salomon, A. Nanoporous Metallic Network as a Large-Scale 3D Source of Second Harmonic Light. J. Phys. Chem. C 2019, 123 (41), 2533125340,  DOI: 10.1021/acs.jpcc.9b06300
    17. 17
      Ron, R.; Haleva, E.; Salomon, A. Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications. Adv. Mater. 2018, 30 (41), 1706755,  DOI: 10.1002/adma.201706755
    18. 18
      Losquin, A.; Camelio, S.; Rossouw, D.; Besbes, M.; Pailloux, F.; Babonneau, D.; Botton, G. A.; Greffet, J.-J. J.; Stéphan, O.; Kociak, M. Experimental Evidence of Nanometer-Scale Confinement of Plasmonic Eigenmodes Responsible for Hot Spots in Random Metallic Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 115427,  DOI: 10.1103/PhysRevB.88.115427
    19. 19
      Li, C.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.; Terasaki, O.; Yamauchi, Y. Electrochemical Synthesis of Mesoporous Gold Films toward Mesospace-Stimulated Optical Properties. Nat. Commun. 2015, 6 (1), 6608,  DOI: 10.1038/ncomms7608
    20. 20
      Zayats, a V; Smolyaninov, I. I.; Davis, C. C. Observation of Localized Plasmonic Excitations in Thin Metal Films with Near-Field Second-Harmonic Microscopy. Opt. Commun. 1999, 169 (1–6), 9396,  DOI: 10.1016/S0030-4018(99)00420-4
    21. 21
      Beermann, J.; Bozhevolnyi, S. I. Microscopy of Localized Second-Harmonic Enhancement in Random Metal Nanostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69 (15), 155429,  DOI: 10.1103/PhysRevB.69.155429
    22. 22
      Breit, M.; Podolskiy, V. A.; Grésillon, S.; von Plessen, G.; Feldmann, J.; Rivoal, J. C.; Gadenne, P.; Sarychev, A. K.; Shalaev, V. M. Experimental Observation of Percolation-Enhanced Nonlinear Light Scattering from Semicontinuous Metal Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64 (12), 125106,  DOI: 10.1103/PhysRevB.64.125106
    23. 23
      Stockman, M. I.; Bergman, D. J.; Anceau, C.; Brasselet, S.; Zyss, J. Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations. Phys. Rev. Lett. 2004, 92 (5), 057402,  DOI: 10.1103/PhysRevLett.92.057402
    24. 24
      Shalaev, V. M.; Safonov, V. P.; Poliakov, E. Y.; Markel, V. A.; Sarychev, A. K. Fractal-Surface-Enhanced Optical Nonlinearities. ACS Symp. Ser. 1997, 679, 88107,  DOI: 10.1021/bk-1997-0679.ch008
    25. 25
      Lee, W. K.; Yu, S.; Engel, C. J.; Reese, T.; Rhee, D.; Chen, W.; Odom, T. W. Concurrent Design of Quasi-Random Photonic Nanostructures. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (33), 87348739,  DOI: 10.1073/pnas.1704711114
    26. 26
      Galinski, H.; Fratalocchi, A.; Döbeli, M.; Capasso, F. Light Manipulation in Metallic Nanowire Networks with Functional Connectivity. Adv. Opt. Mater. 2017, 5 (5), 1600580,  DOI: 10.1002/adom.201600580
    27. 27
      Galinski, H.; Favraud, G.; Dong, H.; Gongora, J. S. T.; Favaro, G.; Döbeli, M.; Spolenak, R.; Fratalocchi, A.; Capasso, F. Scalable, Ultra-Resistant Structural Colors Based on Network Metamaterials. Light: Sci. Appl. 2017, 6 (5), e16233  DOI: 10.1038/lsa.2016.233
    28. 28
      Gaio, M.; Castro-Lopez, M.; Renger, J.; van Hulst, N.; Sapienza, R. Percolating Plasmonic Networks for Light Emission Control. Faraday Discuss. 2015, 178 (0), 237252,  DOI: 10.1039/C4FD00187G
    29. 29
      Bosman, M.; Anstis, G. R.; Keast, V. J.; Clarke, J. D.; Cortie, M. B. Light Splitting in Nanoporous Gold and Silver. ACS Nano 2012, 6 (1), 319326,  DOI: 10.1021/nn203600n
    30. 30
      Teulle, A.; Bosman, M.; Girard, C.; Gurunatha, K. L.; Li, M.; Mann, S.; Dujardin, E. Multimodal Plasmonics in Fused Colloidal Networks. Nat. Mater. 2015, 14 (1), 8794,  DOI: 10.1038/nmat4114
    31. 31
      Krachmalnicoff, V.; Castanié, E.; De Wilde, Y.; Carminati, R. Fluctuations of the Local Density of States Probe Localized Surface Plasmons on Disordered Metal Films. Phys. Rev. Lett. 2010, 105 (18), 183901,  DOI: 10.1103/PhysRevLett.105.183901
    32. 32
      Detsi, E.; Salverda, M.; Onck, P. R.; De Hosson, J. T. M. On the Localized Surface Plasmon Resonance Modes in Nanoporous Gold Films. J. Appl. Phys. 2014, 115 (4), 044308,  DOI: 10.1063/1.4862440
    33. 33
      Wokaun, A.; Bergman, J. G.; Heritage, J. P.; Glass, A. M.; Liao, P. F.; Olson, D. H. Surface Second-Harmonic Generation from Metal Island Films and Microlithographic Structures. Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 24 (2), 849856,  DOI: 10.1103/PhysRevB.24.849
    34. 34
      Smolyaninov, I.; Zayats, A.; Davis, C. Near-Field Second Harmonic Generation from a Rough Metal Surface. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56 (15), 92909293,  DOI: 10.1103/PhysRevB.56.9290
    35. 35
      Salomon, A.; Prior, Y.; Fedoruk, M.; Feldmann, J.; Kolkowski, R.; Zyss, J. Plasmonic Coupling between Metallic Nanocavities. J. Opt. 2014, 16 (11), 114012,  DOI: 10.1088/2040-8978/16/11/114012
    36. 36
      Wang, D.; Schaaf, P. Plasmonic Nanosponges. Adv. Phys. X 2018, 3 (1), 1456361,  DOI: 10.1080/23746149.2018.1456361
    37. 37
      Bozhevolnyi, S. I.; Beermann, J.; Coello, V. Direct Observation of Localized Second-Harmonic Enhancement in Random Metal Nanostructures. Phys. Rev. Lett. 2003, 90 (19), 197403,  DOI: 10.1103/PhysRevLett.90.197403
    38. 38
      Mascheck, M.; Schmidt, S.; Silies, M.; Yatsui, T.; Kitamura, K.; Ohtsu, M.; Leipold, D.; Runge, E.; Lienau, C. Observing the Localization of Light in Space and Time by Ultrafast Second-Harmonic Microscopy. Nat. Photonics 2012, 6 (5), 293298,  DOI: 10.1038/nphoton.2012.69
    39. 39
      Ding, Y.; Zhang, Z. Nanoporous Metals for Advanced Energy Technologies; Springer International Publishing: Cham, Switzerland, 2016.
    40. 40
      Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9 (3), 205213,  DOI: 10.1038/nmat2629
    41. 41
      Favraud, G.; Gongora, J. S. T.; Fratalocchi, A. Evolutionary Photonics for Renewable Energy, Nanomedicine, and Advanced Material Engineering. Laser Photonics Rev. 2018, 12 (11), 1700028,  DOI: 10.1002/lpor.201700028
    42. 42
      Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9 (3), 193204,  DOI: 10.1038/nmat2630
    43. 43
      Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Liz-Marzán, L. M.; García De Abajo, F. J. Toward Ultimate Nanoplasmonics Modeling. ACS Nano 2014, 8 (8), 75597570,  DOI: 10.1021/nn5037703
    44. 44
      Wolf, P. E.; Maret, G. Weak Localization and Coherent Backscattering of Photons in Disordered Media. Phys. Rev. Lett. 1985, 55 (24), 26962699,  DOI: 10.1103/PhysRevLett.55.2696
    45. 45
      Vesseur, E. J. R.; Aizpurua, J.; Coenen, T.; Reyes-Coronado, A.; Batson, P. E.; Polman, A. Plasmonic Excitation and Manipulation with an Electron Beam. MRS Bull. 2012, 37 (8), 752760,  DOI: 10.1557/mrs.2012.174
    46. 46
      Kneipp, K.; Kneipp, H.; Kneipp, J. Probing Plasmonic Nanostructures by Photons and Electrons. Chem. Sci. 2015, 6 (5), 27212726,  DOI: 10.1039/C4SC03508A
    47. 47
      Esteban, R.; Taylor, R. W.; Baumberg, J. J.; Aizpurua, J. How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assembled Metallic Clusters of Nanoparticles. Langmuir 2012, 28 (24), 88818890,  DOI: 10.1021/la300198r
    48. 48
      Ye, F.; Merlo, J. M.; Burns, M. J.; Naughton, M. J. Optical and Electrical Mappings of Surface Plasmon Cavity Modes. Nanophotonics 2014, 3 (1–2), 3349,  DOI: 10.1515/nanoph-2013-0038
    49. 49
      Polman, A.; Kociak, M.; García de Abajo, F. J. Electron-Beam Spectroscopy for Nanophotonics. Nat. Mater. 2019, 18 (11), 11581171,  DOI: 10.1038/s41563-019-0409-1
    50. 50
      Coenen, T.; Haegel, N. M. Cathodoluminescence for the 21st Century: Learning More from Light. Appl. Phys. Rev. 2017, 4 (3), 031103,  DOI: 10.1063/1.4985767
    51. 51
      García De Abajo, F. J. Optical Excitations in Electron Microscopy. Rev. Mod. Phys. 2010, 82 (1), 209275,  DOI: 10.1103/RevModPhys.82.209
    52. 52
      Coenen, T.; Brenny, B. J. M.; Vesseur, E. J.; Polman, A. Cathodoluminescence Microscopy: Optical Imaging and Spectroscopy with Deep-Subwavelength Resolution. MRS Bull. 2015, 40 (04), 359365,  DOI: 10.1557/mrs.2015.64
    53. 53
      Nelayah, J.; Kociak, M.; Stéphan, O.; García De Abajo, F. J.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Colliex, C. Mapping Surface Plasmons on a Single Metallic Nanoparticle. Nat. Phys. 2007, 3 (5), 348353,  DOI: 10.1038/nphys575
    54. 54
      Atre, A. C.; Brenny, B. J. M.; Coenen, T.; García-Etxarri, A.; Polman, A.; Dionne, J. A. Nanoscale Optical Tomography with Cathodoluminescence Spectroscopy. Nat. Nanotechnol. 2015, 10 (5), 429436,  DOI: 10.1038/nnano.2015.39
    55. 55
      Zielinski, M. S.; Vardar, E.; Vythilingam, G.; Engelhardt, E.-M.; Hubbell, J. A.; Frey, P.; Larsson, H. M. Quantitative Intrinsic Auto-Cathodoluminescence Can Resolve Spectral Signatures of Tissue-Isolated Collagen Extracellular Matrix. Commun. Biol. 2019, 2 (1), 69,  DOI: 10.1038/s42003-019-0313-x
    56. 56
      Chen, T.; Pourmand, M.; Feizpour, A.; Cushman, B.; Reinhard, B. M. Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation. J. Phys. Chem. Lett. 2013, 4 (13), 21472152,  DOI: 10.1021/jz401066g
    57. 57
      Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S. One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater. 2005, 17 (21), 25532559,  DOI: 10.1002/adma.200500828
    58. 58
      Salomon, A.; Genet, C.; Ebbesen, T. W. Molecule-Light Complex: Dynamics of Hybrid Molecule-Surface Plasmon States. Angew. Chem., Int. Ed. 2009, 48 (46), 87488751,  DOI: 10.1002/anie.200903191
    59. 59
      Salomon, A.; Gordon, R. J.; Prior, Y.; Seideman, T.; Sukharev, M. Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film. Phys. Rev. Lett. 2012, 109 (7), 073002,  DOI: 10.1103/PhysRevLett.109.073002
    60. 60
      Vasa, P.; Pomraenke, R.; Cirmi, G.; De Re, E.; Wang, W.; Schwieger, S.; Leipold, D.; Runge, E.; Cerullo, G.; Lienau, C. Ultrafast Manipulation of Strong Coupling in Metal-Molecular Aggregate Hybrid Nanostructures. ACS Nano 2010, 4 (12), 75597565,  DOI: 10.1021/nn101973p
    61. 61
      Ebbesen, T. W. Hybrid Light-Matter States in a Molecular and Material Science Perspective. Acc. Chem. Res. 2016, 49 (11), 24032412,  DOI: 10.1021/acs.accounts.6b00295
    62. 62
      Pustovit, V. N.; Shahbazyan, T. V. Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83 (8), 085427,  DOI: 10.1103/PhysRevB.83.085427
    63. 63
      Mao, P.; Liu, C.; Favraud, G.; Chen, Q.; Han, M.; Fratalocchi, A.; Zhang, S. Broadband Single Molecule SERS Detection Designed by Warped Optical Spaces. Nat. Commun. 2018, 9 (1), 5428,  DOI: 10.1038/s41467-018-07869-5
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03317.

    • Monochromatic components of the polychromatic CL image in Figure 1a (Figure S1); monochromatic components of the polychromatic CL images in Figure 2d,e shown at a higher magnification and presenting both low- and high-connectivity structural elements of the 3D silver network (Figure S2); CL response of a highly connected nodal network ligament (Figure S3); demonstration of hotspot fluctuations at an additional 3D silver network scan (Figure 1b) by point CL spectra extracted from proximal probe positions (∼50 nm apart) (Figure S4); panchromatic CL map of the network in Figure 4b over the range of 250–790 nm (Figure S5); resolution of CL imaging (PDF)

    • Monochromatic CL images (250–790 nm) of the network in Figure 1b (MP4)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.