ACS Publications. Most Trusted. Most Cited. Most Read
Excitonic Dynamics in Janus MoSSe and WSSe Monolayers
My Activity
    Letter

    Excitonic Dynamics in Janus MoSSe and WSSe Monolayers
    Click to copy article linkArticle link copied!

    • Ting Zheng
      Ting Zheng
      School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
      Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
      More by Ting Zheng
    • Yu-Chuan Lin*
      Yu-Chuan Lin
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
      *Email: [email protected]
      More by Yu-Chuan Lin
    • Yiling Yu
      Yiling Yu
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      More by Yiling Yu
    • Pavel Valencia-Acuna
      Pavel Valencia-Acuna
      Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
    • Alexander A. Puretzky
      Alexander A. Puretzky
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Riccardo Torsi
      Riccardo Torsi
      Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
    • Chenze Liu
      Chenze Liu
      Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
      More by Chenze Liu
    • Ilia N. Ivanov
      Ilia N. Ivanov
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Gerd Duscher
      Gerd Duscher
      Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
      More by Gerd Duscher
    • David B. Geohegan
      David B. Geohegan
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Zhenhua Ni*
      Zhenhua Ni
      School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
      *Email: [email protected]
      More by Zhenhua Ni
    • Kai Xiao
      Kai Xiao
      Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      More by Kai Xiao
    • Hui Zhao*
      Hui Zhao
      Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
      *Email: [email protected]
      More by Hui Zhao
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 2, 931–937
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c03412
    Published January 6, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report here details of steady-state and time-resolved spectroscopy of excitonic dynamics for Janus transition metal dichalcogenide monolayers, including MoSSe and WSSe, which were synthesized by low-energy implantation of Se into transition metal disulfides. Absorbance and photoluminescence spectroscopic measurements determined the room-temperature exciton resonances for MoSSe and WSSe monolayers. Transient absorption measurements revealed that the excitons in Janus structures form faster than those in pristine transition metal dichalcogenides by about 30% due to their enhanced electron–phonon interaction by the built-in dipole moment. By combining steady-state photoluminescence quantum yield and time-resolved transient absorption measurements, we find that the exciton radiative recombination lifetime in Janus structures is significantly longer than in their pristine samples, supporting the predicted spatial separation of the electron and hole wave functions due to the built-in dipole moment. These results provide fundamental insight in the optical properties of Janus transition metal dichalcogenides.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03412.

    • Experimental methods (CVD synthesis, pulsed laser deposition, absorbance, photoluminescence, and differential reflectance spectroscopy), structural characterization of Janus MoSSe and WSSe samples (high-angle annular dark-field scanning transmission electron microscopy, Raman mapping, X-ray photoelectronspectroscopy, and atomic force microscopy), power-dependent measurements, second-harmonic generation measurements, and additional pump–probe data on exciton formation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 112 publications.

    1. Yuanshuang Liu, Zhe Yang, Zhuo Jiang, Qingkai Qian, Shuxing Zhou, Wenyu Cao, Huan Liu, Kun Qian, Lei Han, Ruyue Cao. Electronic Properties of Janus TMD WSSe/WX2 (X = S, Se) Heterostructure by External Strain: A Hybrid Functional Study. ACS Applied Energy Materials 2024, 7 (21) , 9986-9995. https://doi.org/10.1021/acsaem.4c02060
    2. Shunhui Zhang, Hang Liu, Fen Zhang, Xiaoming Zheng, Xiangzhe Zhang, Baihui Zhang, Tian Zhang, Zhikang Ao, Xuyang Zhang, Xiang Lan, Xiangdong Yang, Mianzeng Zhong, Jia Li, Bo Li, Huifang Ma, Xidong Duan, Jun He, Zhengwei Zhang. Controllable Synthesis of WSe2–WS2 Lateral Heterostructures via Atomic Substitution. ACS Nano 2024, 18 (44) , 30321-30331. https://doi.org/10.1021/acsnano.4c06597
    3. Qiyi Zhao, Shuangxiong Ma, Yanhan Yang, Ze Xue, Yani Ren, Feng Zhao, Chuan He, Yunguang Zhang. High Solar Energy Utilization and Second-Order Nonlinear Optical Response of the Janus MoSTe/WSeTe vdW Heterostructure. The Journal of Physical Chemistry C 2024, 128 (30) , 12511-12524. https://doi.org/10.1021/acs.jpcc.4c01931
    4. Shasha Guo, Mingyu Ma, Yuqing Wang, Jinbo Wang, Yubin Jiang, Ruihuan Duan, Zhendong Lei, Shuangyin Wang, Yongmin He, Zheng Liu. Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chemical Reviews 2024, 124 (11) , 6952-7006. https://doi.org/10.1021/acs.chemrev.3c00711
    5. Cen-Feng Fu, Qijing Zheng, Xingxing Li, Jinlong Yang. Vertical Dipole Dominates Charge Carrier Lifetime in Monolayer Janus MoSSe. Nano Letters 2024, 24 (21) , 6425-6432. https://doi.org/10.1021/acs.nanolett.4c01577
    6. Ting Zheng, Xinwei Zhao, Fang Yang, Junming Song, Weiwei Zhao, Hui Zhao, Zhenhua Ni. Effective Modulation of Interlayer Excitons in WSe2/WS2 Heterostructures by Plasmon–Exciton Interaction. ACS Photonics 2024, 11 (2) , 580-585. https://doi.org/10.1021/acsphotonics.3c01447
    7. Mandira Das, Subhradip Ghosh. Improved Charge Storage Capacity of Supercapacitor Electrodes by Engineering Surfaces: The Case of Janus MXenes. The Journal of Physical Chemistry C 2024, 128 (3) , 1014-1023. https://doi.org/10.1021/acs.jpcc.3c07443
    8. Baohu Dai, Yueqi Su, Yuqiao Guo, Changzheng Wu, Yi Xie. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T′ Transition Metal Dichalcogenide Nanosheets. Chemical Reviews 2024, 124 (2) , 420-454. https://doi.org/10.1021/acs.chemrev.3c00422
    9. Guo-Dong Zhao, Weida Fu, Yongchang Li, Xingen Liu, Fanhao Jia, Tao Hu, Wei Ren. Hidden Valley Polarization, Piezoelectricity, and Dzyaloshinskii–Moriya Interactions of Janus Vanadium Dichalcogenides. ACS Applied Materials & Interfaces 2024, 16 (1) , 1268-1275. https://doi.org/10.1021/acsami.3c09270
    10. Zhihui Yan, Yaning Li, Shudong Wang. Spin Mixing Control of Interlayer Excitons in ZrS2/ZrNCl Heterostructures. The Journal of Physical Chemistry C 2023, 127 (42) , 20939-20944. https://doi.org/10.1021/acs.jpcc.3c05380
    11. Ruchao Gao, S. Mohsen Beladi-Mousavi, Gerardo Salinas, Patrick Garrigue, Lin Zhang, Alexander Kuhn. Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. Nano Letters 2023, 23 (17) , 8180-8185. https://doi.org/10.1021/acs.nanolett.3c02314
    12. Jianshi Sun, Ge Chen, Shouhang Li, Xiangjun Liu. Light Atomic Mass Induces Low Lattice Thermal Conductivity in Janus Transition-Metal Dichalcogenides MSSe (M═Mo, W). The Journal of Physical Chemistry C 2023, 127 (35) , 17567-17574. https://doi.org/10.1021/acs.jpcc.3c03201
    13. Chuan He, Hongxiao Chao, Ruowei Wu, Shili Li, Qiang Lei, Xin Cao, Zhiyuan Cao, Lipeng Zhu, Huan Wang, Qiyi Zhao, Xinlong Xu. Structural Symmetry-Breaking-Driven Giant Optical Second Harmonic Generation in Janus Monolayer ReSSe. The Journal of Physical Chemistry C 2023, 127 (30) , 14991-14998. https://doi.org/10.1021/acs.jpcc.3c03458
    14. Du Chen, Matthieu Fortin-Deschênes, Yuchen Lou, Huiju Lee, Joy Xu, Abrar A. Sheikh, Kenji Watanabe, Takashi Taniguchi, Yi Xia, Fengnian Xia, Peijun Guo. Direct Spectroscopic Observation of Cross-Plane Heat Transfer in a Two-Dimensional Van der Waals Heterostructure. The Journal of Physical Chemistry C 2023, 127 (19) , 9121-9128. https://doi.org/10.1021/acs.jpcc.3c01144
    15. Matthew S. G. Feuer, Alejandro R.-P. Montblanch, Mohammed Y. Sayyad, Carola M. Purser, Ying Qin, Evgeny M. Alexeev, Alisson R. Cadore, Barbara L. T. Rosa, James Kerfoot, Elaheh Mostaani, Radosław Kalȩba, Pranvera Kolari, Jan Kopaczek, Kenji Watanabe, Takashi Taniguchi, Andrea C. Ferrari, Dhiren M. Kara, Sefaattin Tongay, Mete Atatüre. Identification of Exciton Complexes in Charge-Tunable Janus WSeS Monolayers. ACS Nano 2023, 17 (8) , 7326-7334. https://doi.org/10.1021/acsnano.2c10697
    16. Tianqi Bao, Xueke Yu, Xiaolong Wang, Jijun Zhao, Yan Su. Photoinduced Carrier Transfer Dynamics in MoSSe/WSSe Vertical and Lateral Heterostructures. The Journal of Physical Chemistry C 2023, 127 (4) , 2078-2087. https://doi.org/10.1021/acs.jpcc.2c08378
    17. Jing Zhang, Xiao Tang, Mingyan Chen, Dongwei Ma, Lin Ju. Tunable Photocatalytic Water Splitting Performance of Armchair MoSSe Nanotubes Realized by Polarization Engineering. Inorganic Chemistry 2022, 61 (43) , 17353-17361. https://doi.org/10.1021/acs.inorgchem.2c03075
    18. Nicholas A. Pike, Ruth Pachter. Angular Dependence of the Second-Order Nonlinear Optical Response in Janus Transition Metal Dichalcogenide Monolayers. The Journal of Physical Chemistry C 2022, 126 (38) , 16243-16252. https://doi.org/10.1021/acs.jpcc.2c03792
    19. Alex Strasser, Hua Wang, Xiaofeng Qian. Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS2–MoSSe van der Waals Heterostructure. Nano Letters 2022, 22 (10) , 4145-4152. https://doi.org/10.1021/acs.nanolett.2c00898
    20. David Lam, Dmitry Lebedev, Mark C. Hersam. Morphotaxy of Layered van der Waals Materials. ACS Nano 2022, 16 (5) , 7144-7167. https://doi.org/10.1021/acsnano.2c00243
    21. Ting Zheng, Yu-Chuan Lin, Neema Rafizadeh, David B. Geohegan, Zhenhua Ni, Kai Xiao, Hui Zhao. Janus Monolayers for Ultrafast and Directional Charge Transfer in Transition Metal Dichalcogenide Heterostructures. ACS Nano 2022, 16 (3) , 4197-4205. https://doi.org/10.1021/acsnano.1c10082
    22. Pengzhi Wang, Dawei He, Yongsheng Wang, Xiaoxian Zhang, Xiaoyue He, Jiaqi He, Hui Zhao. Ultrafast Interlayer Charge Transfer between Bilayer PtSe2 and Monolayer WS2. ACS Applied Materials & Interfaces 2021, 13 (48) , 57822-57830. https://doi.org/10.1021/acsami.1c18189
    23. Kunyan Zhang, Yunfan Guo, Daniel T. Larson, Ziyan Zhu, Shiang Fang, Efthimios Kaxiras, Jing Kong, Shengxi Huang. Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS2 Heterostructures. ACS Nano 2021, 15 (9) , 14394-14403. https://doi.org/10.1021/acsnano.1c03779
    24. Qixin Deng, Guoyang Chen, Zhuojun Duan, Song Liu, Da Zhan, Jiaxu Yan, Pengtao Jing, Yang Bao, Jilian Xu, Hai Xu, Binghui Li, Jilei Liu, Ligong Zhang, Kewei Liu, Lei Liu, Dezhen Shen. Synthesis of Janus MoSSe on Ti-Au and its application for One-Step lithography fabrication of electrochemical micro-reactors. Applied Surface Science 2025, 688 , 162356. https://doi.org/10.1016/j.apsusc.2025.162356
    25. Zhen Cui, Hanxiao Wang, Yi Luo, Enling Li, Yang Shen, Ke Qin, Pei Yuan. Mxenes/WSSe heterojunction photodetector with ultrahigh sensitivity and accuracy. Applied Surface Science 2025, 684 , 161853. https://doi.org/10.1016/j.apsusc.2024.161853
    26. Jo Hyun Yun, Minki Sung, Minhyuk Choi, Kyoo Kim, Wooin Yang, Dowook Kim, Min Joong Kim, Sung‐Hyuk Her, Si‐Young Choi, Tae‐Hwan Kim, Jae Young Kim, Han Woong Yeom, Jun Sung Kim. Flat‐Band Electronic Bipolarity in a Janus and Kagome van der Waals Semiconductor Nb 3 TeI 7. Advanced Materials 2025, 13 https://doi.org/10.1002/adma.202415045
    27. Chaowen Xue, Long Lin, Kun Xie, Chao Zhang, Pengtao Wang. First-principles study on the gas sensing properties of precious metal modified(Ag, Au) Janus MoSeTe for lithium ion thermal runaway gas. Separation and Purification Technology 2025, 352 , 128260. https://doi.org/10.1016/j.seppur.2024.128260
    28. Qiaohui Wang, Hong Li, Kang An, Fengbin Liu, Jing Lu. Effective self-power photodetector based on photogalvanic effect: A case study for Janus MoSSe-CrSSe lateral heterojunction. Modern Physics Letters B 2024, 38 (35) https://doi.org/10.1142/S0217984924503573
    29. Zhaosu Liu, Si Yin Tee, Guijian Guan, Ming-Yong Han. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications. Nano-Micro Letters 2024, 16 (1) https://doi.org/10.1007/s40820-023-01315-y
    30. Waqas Ahmad, Ye Wang, Jamal Kazmi, Umer Younis, Nabisab Mujawar Mubarak, Shrouq H. Aleithan, Ali Imran Channa, Wen Lei, Zhiming Wang. Janus 2D Transition Metal Dichalcogenides: Research Progress, Optical Mechanism and Future Prospects for Optoelectronic Devices. Laser & Photonics Reviews 2024, 7 https://doi.org/10.1002/lpor.202400341
    31. Qing Zhu, Enzi Chen, Kezhou Fan, Junhao Tang, Runze Zhan, Kam Sing Wong, Zefeng Chen, Xi Wan, Kun Chen. Robust Plasma‐Assisted Growth of 2D Janus Transition Metal Dichalcogenides and Their Enhanced Photoluminescent Properties. Small Methods 2024, 109 https://doi.org/10.1002/smtd.202401310
    32. Diwei Shi, Zhengwei Yan, Shiyu Du. First principles design of two dimensional TiSSe Janus drug delivery system for nitrosourea. RSC Advances 2024, 14 (43) , 31433-31438. https://doi.org/10.1039/D4RA05119J
    33. Yingchao Wang, Yi Wang, Tengteng Chen, Lei Li, Guang Wang, Zhengli Zhang, Zhao Ding, Xiang Guo, Zijiang Luo, Xuefei Liu. Construction of a Z-scheme heterojunction based on two-dimensional Janus materials XWSiN2 (X=S; Se; Te) for effective photocatalytic water splitting by DFT. Surfaces and Interfaces 2024, 53 , 105079. https://doi.org/10.1016/j.surfin.2024.105079
    34. Sili Huang, Guolin Qian, Luyu Zhou, Xiangyan Luo, Quan Xie. Schottky-barrier-free contacts with Janus WSSe 2D semiconductor using surface-engineered MXenes. Surfaces and Interfaces 2024, 53 , 105015. https://doi.org/10.1016/j.surfin.2024.105015
    35. Wenhua Lou, Jingming Gao, Gang Liu, Asad Ali, Baonan Jia, Xiaoning Guan, Xiaoguang Ma. Enhancing hydrogen evolution reaction performance through defect engineering in WTeX (X= S, Se) monolayers: A first-principles study. International Journal of Hydrogen Energy 2024, 87 , 620-629. https://doi.org/10.1016/j.ijhydene.2024.09.069
    36. Wentao Yue, Jun Shan, Runxian Jiao, Lichuan Zhang, Yuanping Chen, Dong Hao. Strain-Controlled Electronic and Magnetic Properties of Janus Nitride MXene Monolayer MnCrNO2. Applied Sciences 2024, 14 (18) , 8427. https://doi.org/10.3390/app14188427
    37. S.I. Rey, L. Monin, M.J. Cross, M.L. Welsch, F. Schröder, B. Zhou, N. Stenger, W. Albrecht, P.U. Jepsen, E.J.R. Kelleher. Multipulse Activation and Control of a GHz Coherent Acoustic Phonon in WSSe. 2024, 1-2. https://doi.org/10.1109/CLEO-PR60912.2024.10676777
    38. Jia Liu, Tao Shen, Linghui Wang, Ji‐Chang Ren, Wei Liu, Shuang Li. An Efficient Descriptor for Rapid Determination of Dipole Moments and Band Alignments of 2D Janus Transition‐Metal Dichalcogenides. Advanced Functional Materials 2024, 34 (33) https://doi.org/10.1002/adfm.202401737
    39. M. F. C. Martins Quintela, N. M. R. Peres, T. Garm Pedersen. Tunable nonlinear excitonic optical response in biased bilayer graphene. Physical Review B 2024, 110 (8) https://doi.org/10.1103/PhysRevB.110.085433
    40. Jingxian Chen, Zhiwan Hu, Zhaoru Xie, Jie Huang, Lili Tao. Generation of stable femtosecond pulses using MoS2−xSex as the saturable absorber in Er-doped fiber laser. Functional Materials Letters 2024, 17 (05) https://doi.org/10.1142/S1793604724510160
    41. Mohammed Sayyad, Jan Kopaczek, Carmem M. Gilardoni, Weiru Chen, Yihuang Xiong, Shize Yang, Kenji Watanabe, Takashi Taniguchi, Robert Kudrawiec, Geoffroy Hautier, Mete Atatüre, Seth Ariel Tongay. The Defects Genome of Janus Transition Metal Dichalcogenides. Advanced Materials 2024, 36 (30) https://doi.org/10.1002/adma.202403583
    42. Yanlin Gao, Masahiko Kaneda, Takahiko Endo, Hiroshi Nakajo, Soma Aoki, Toshiaki Kato, Yasumitsu Miyata, Susumu Okada. Strain-induced scrolling of Janus WSSe. Physical Review B 2024, 110 (3) https://doi.org/10.1103/PhysRevB.110.035414
    43. Huating Liu, Zongyu Huang, Hui Qiao, Xiang Qi. Characteristics and performance of layered two-dimensional materials under doping engineering. Physical Chemistry Chemical Physics 2024, 26 (25) , 17423-17442. https://doi.org/10.1039/D4CP01261E
    44. Yanlin Gao, Mina Maruyama, Susumu Okada. Energetics and electronic structure of Janus WSSe formation by continuous chalcogen substitutions. Japanese Journal of Applied Physics 2024, 63 (6) , 065001. https://doi.org/10.35848/1347-4065/ad45cf
    45. Abdul Jalil, Hafsah Ashraf, Simeon Agathopoulos, Arooba Kanwal, Waqar Mahmood, Syed Raza Ali Raza. Computational insight on CsPbX3 (X = Cl, Br, I) and two-dimensional MYZ (M = Mo, W; YZ = Se, S) heterostructures. Materials Science in Semiconductor Processing 2024, 175 , 108262. https://doi.org/10.1016/j.mssp.2024.108262
    46. Farah B H Pritu, Md Rasidul Islam, Nusrat Jahan, Nourin Arobi, M Mahbubur Rahman. A holistic approach of strain-induced and spin-orbit coupling governed structural, optical, electrical and phonon properties of Janus MoSSe heterostructure via DFT theory. Physica Scripta 2024, 99 (6) , 065904. https://doi.org/10.1088/1402-4896/ad3ca0
    47. Wenjin Zhang, Zheng Liu, Hiroshi Nakajo, Soma Aoki, Haonan Wang, Yanlin Wang, Yanlin Gao, Mina Maruyama, Takuto Kawakami, Yasuyuki Makino, Masahiko Kaneda, Tongmin Chen, Kohei Aso, Tomoya Ogawa, Takahiko Endo, Yusuke Nakanishi, Kenji Watanabe, Takashi Taniguchi, Yoshifumi Oshima, Yukiko Yamada‐Takamura, Mikito Koshino, Susumu Okada, Kazunari Matsuda, Toshiaki Kato, Yasumitsu Miyata. Chemically Tailored Semiconductor Moiré Superlattices of Janus Heterobilayers. Small Structures 2024, 5 (5) https://doi.org/10.1002/sstr.202300514
    48. Renan Narciso Pedrosa, Cesar E. P. Villegas, A. R. Rocha, Rodrigo G. Amorim, Wanderlã L. Scopel. Optical properties enhancement via WSSe/silicene solar cell junctions. Energy Advances 2024, 3 (4) , 821-828. https://doi.org/10.1039/D3YA00529A
    49. Shida Pei, Rufeng Cao, Yan-Hong Zhou, Xiaohong Zheng, Caiyun Wang. Tunable band alignment and optical properties in van der Waals heterostructures based on two-dimensional materials Janus-MoSSe and C 3 N 4. New Journal of Physics 2024, 26 (4) , 043014. https://doi.org/10.1088/1367-2630/ad3c65
    50. M. Vallinayagam, J. Karthikeyan, M. Posselt, D. Murali, M. Zschornak. Metalloid-doping in SMoSe Janus layers: first-principles study on efficient catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2024, 12 (13) , 7742-7753. https://doi.org/10.1039/D3TA07243F
    51. Yi Wang, YingChao Wang, Tengteng Chen, Lei Li, Guang Wang, Zhengli Zhang, Zhao Ding, Xiang Guo, Zijiang Luo, Xuefei Liu. Janus MSiSnN4(M= Mo; W):High efficiently overall water splitting photocatalyst triggered by the intrinsic electric field. Molecular Catalysis 2024, 557 , 113964. https://doi.org/10.1016/j.mcat.2024.113964
    52. Tong Yang, Zishen Wang, Jiaren Yuan, Jun Zhou, Ming Yang. Emerging Electronic Properties of Polymorphic 2D‐TMDs. 2024, 127-179. https://doi.org/10.1002/9783527838752.ch4
    53. Sun Woo Kim, Seon Yeon Choi, Si Heon Lim, Eun Bee Ko, Seunghyun Kim, Yun Chang Park, Sunghun Lee, Hyun Ho Kim. Understanding Solvent‐Induced Delamination and Intense Water Adsorption in Janus Transition Metal Dichalcogenides for Enhanced Device Performance. Advanced Functional Materials 2024, 34 (8) https://doi.org/10.1002/adfm.202308709
    54. Huabing Shu, Jiyuan Guo. Strain effects of stability, transport, and electro-optical properties of novel Ga2TeS monolayer. Journal of Materials Science 2024, 59 (6) , 2403-2415. https://doi.org/10.1007/s10853-024-09348-3
    55. L. R. P. Bittencourt, W. O. Santos, F. M. O. Moucherek, E. Moreira, L. S. Barbosa, D. L. Azevedo. First-principles calculations to investigate optoelectronic and thermodynamic properties of new 1T’-RuOsSe 2 hybrid monolayer. International Journal of Modern Physics C 2024, 35 (01) https://doi.org/10.1142/S0129183124500013
    56. Yashasvi Naik, Disha Mehta, P.R. Parmar, P.B. Thakor. First-principles calculations to investigate structural and electronic properties of novel halides ZrIX (X = Cl, Br) for photovoltaic application. Physica B: Condensed Matter 2024, 673 , 415499. https://doi.org/10.1016/j.physb.2023.415499
    57. Jinqin Ye, Yi Li, Jun Ding, Heng Yu, Xianqi Dai. Modulation of electronic and optical properties of BlueP/MoSSe heterostructures via biaxial strain and vertical electric field. Results in Physics 2024, 56 , 107193. https://doi.org/10.1016/j.rinp.2023.107193
    58. Yaning Li, Zhihui Yan, Shudong Wang. Spin character of interlayer excitons in tungsten dichalcogenide heterostructures: GW-BSE calculations. Physical Review B 2024, 109 (4) https://doi.org/10.1103/PhysRevB.109.045422
    59. Gbenga Agunbiade, Neema Rafizadeh, Ryan J. Scott, Hui Zhao. Transient absorption measurements of excitonic dynamics in 3 R − MoS 2 . Physical Review B 2024, 109 (3) https://doi.org/10.1103/PhysRevB.109.035410
    60. Shaohua Li, Decai Ouyang, Na Zhang, Yi Zhang, Akshay Murthy, Yuan Li, Shiyuan Liu, Tianyou Zhai. Substrate Engineering for Chemical Vapor Deposition Growth of Large‐Scale 2D Transition Metal Dichalcogenides. Advanced Materials 2023, 35 (52) https://doi.org/10.1002/adma.202211855
    61. Yanan Meng, Ting-Ting Wang, Jing Chen, Shi-Bo Cheng. Single-atom W anchored Janus transition metal dichalcogenides as a promising catalyst for the ammonia synthesis. Applied Surface Science 2023, 640 , 158470. https://doi.org/10.1016/j.apsusc.2023.158470
    62. Qibo Deng, Zhiwei Li, Rui Huang, Pengfei Li, Hassanien Gomaa, Shuai Wu, Cuihua An, Ning Hu. Research progress of transition-metal dichalcogenides for the hydrogen evolution reaction. Journal of Materials Chemistry A 2023, 11 (45) , 24434-24453. https://doi.org/10.1039/D3TA04475K
    63. Huabing Shu, Xiaomei Liu. Electronic and optical properties of Janus Ga 2 STe bilayer: a promising candidate for excitonic solar cell. Journal of Materials Chemistry C 2023, 11 (43) , 15074-15083. https://doi.org/10.1039/D3TC02811A
    64. Zhen Gao, Yao He, Kai Xiong. Strain and electric field induced electronic property modifications in two-dimensional Janus SZrAZ 2 (A = Si, Ge; Z = P, As) monolayers. Dalton Transactions 2023, 52 (43) , 15918-15927. https://doi.org/10.1039/D3DT02904B
    65. Z. L. Han, Y. Zhou. Plasmonic responses in Janus bAsP with elliptic-to-hyperbolic transition: an ab-initio study. Optics Express 2023, 31 (23) , 39063. https://doi.org/10.1364/OE.501333
    66. Elie A. Moujaes, Alexandre C. Dias. On the excitonic effects of the 1T and 1O T phases of PdS2, PdSe2, and PdSSe monolayers. Journal of Physics and Chemistry of Solids 2023, 182 , 111573. https://doi.org/10.1016/j.jpcs.2023.111573
    67. Bindiya Babariya, Sanjeev K. Gupta, P.N. Gajjar. Theoretical designing of TMDs Janus heterostructures toward efficient photovoltaic and electronic applications. Surfaces and Interfaces 2023, 42 , 103409. https://doi.org/10.1016/j.surfin.2023.103409
    68. Bhuvan Upadhyay, Rahul Sharma, Dipak Maity, Tharangattu N. Narayan, Suman Kalyan Pal. Ultrafast carrier dynamics in vanadium-doped MoS 2 alloys. Nanoscale 2023, 15 (40) , 16344-16353. https://doi.org/10.1039/D3NR03337F
    69. Nidhi Modi, Yashasvi Naik, S.J. Khengar, P.H. Jariwala, D.B. Shah, P.B. Thakor. Theoretical investigations of asymmetric functionalized Y2C-based MXene monolayers. Solid State Communications 2023, 372 , 115303. https://doi.org/10.1016/j.ssc.2023.115303
    70. Marko M. Petrić, Viviana Villafañe, Paul Herrmann, Amine Ben Mhenni, Ying Qin, Yasir Sayyad, Yuxia Shen, Sefaattin Tongay, Kai Müller, Giancarlo Soavi, Jonathan J. Finley, Matteo Barbone. Nonlinear Dispersion Relation and Out‐of‐Plane Second Harmonic Generation in MoSSe and WSSe Janus Monolayers. Advanced Optical Materials 2023, 11 (19) https://doi.org/10.1002/adom.202300958
    71. Huating Liu, Zongyu Huang, Chaobo Luo, Gencai Guo, Xiangyang Peng, Xiang Qi, Jianxin Zhong. Spin-induced valley polarization in heterobilayer Janus transition-metal dichalcogenides. Journal of Physics D: Applied Physics 2023, 56 (32) , 325302. https://doi.org/10.1088/1361-6463/accd03
    72. Meng Chen, Sheng-Bin Yu, Dong Zhang, Jun Li. Nonlinear Photocurrent Responses in Janus WSSe Monolayer. Chinese Physics Letters 2023, 40 (8) , 087201. https://doi.org/10.1088/0256-307X/40/8/087201
    73. Qin An, Teyang Zhang, Fei Chen, Weitao Su. Recent progress in the synthesis and physical properties of 2D ternary TMDC-based vertical heterostructures. CrystEngComm 2023, 25 (30) , 4256-4271. https://doi.org/10.1039/D3CE00562C
    74. Yanlin Gao, Susumu Okada. Energetics and electronic structure of bilayer Janus WSSe. Applied Physics Express 2023, 16 (7) , 075004. https://doi.org/10.35848/1882-0786/ace33d
    75. Jennifer Schmeink, Vladislav Musytschuk, Erik Pollmann, Stephan Sleziona, André Maas, Peter Kratzer, Marika Schleberger. Evaluating strain and doping of Janus MoSSe from phonon mode shifts supported by ab initio DFT calculations. Nanoscale 2023, 15 (25) , 10834-10841. https://doi.org/10.1039/D3NR01978K
    76. M. F. C. Martins Quintela, T. Garm Pedersen. Anisotropic linear and nonlinear excitonic optical properties of buckled monolayer semiconductors. Physical Review B 2023, 107 (23) https://doi.org/10.1103/PhysRevB.107.235416
    77. Dong Wei, Yi Li, Gaofu Guo, Heng Yu, Yaqiang Ma, Yanan Tang, Xianqi Dai. Reconfigurable band alignment of SWSe/h-BP heterostructures for photoelectric applications. Physical Chemistry Chemical Physics 2023, 25 (21) , 14969-14980. https://doi.org/10.1039/D3CP00952A
    78. Xuefei Yan, Xiangyue Cui, Bowen Wang, Hejin Yan, Yongqing Cai, Qingqing Ke. Surface asymmetry induced turn-overed lifetime of acoustic phonons in monolayer MoSSe. iScience 2023, 26 (5) , 106731. https://doi.org/10.1016/j.isci.2023.106731
    79. Yaxuan Wu, Qingquan Liu, Puyuan Shi, Jingjuan Su, Yungeng Zhang, Bing Wang. High temperature ferromagnetic metal: a Janus CrSSe monolayer. Physical Chemistry Chemical Physics 2023, 25 (14) , 9958-9964. https://doi.org/10.1039/D3CP00537B
    80. Huabing Shu. Two Janus Ga 2 STe monolayers and their electronic, optical, and photocatalytic properties. Physical Chemistry Chemical Physics 2023, 25 (11) , 7937-7945. https://doi.org/10.1039/D3CP00070B
    81. Sheng-Bin Yu, Shu-Han Sun, Ma Zhou, Dong Zhang, Kai Chang. Current-induced spin polarization in Janus WSSe monolayer. Physical Review B 2023, 107 (12) https://doi.org/10.1103/PhysRevB.107.125426
    82. Yue-Xin Huang, Xiaolong Feng, Hui Wang, Cong Xiao, Shengyuan A. Yang. Intrinsic Nonlinear Planar Hall Effect. Physical Review Letters 2023, 130 (12) https://doi.org/10.1103/PhysRevLett.130.126303
    83. Xiaoshan Xiong, Han Yang, Jun Zhang, Jiacen Lin, Shuai Yang, Chao Chen, Junhua Xi, Zhe Kong, Lihui Song, Jinghui Zeng. Novel MoSSe/Bi2WO6 S-scheme heterojunction photocatalysts for significantly improved photoelectrochemical and photocatalytic performance. Journal of Alloys and Compounds 2023, 933 , 167784. https://doi.org/10.1016/j.jallcom.2022.167784
    84. Rafael Barbosa, Danilo Kuritza, Gabriel Perin, R. H. Miwa, R. B. Pontes, J. E. Padilha. Electronic and optical properties of Janus-like hexagonal monolayer materials of group IV-VI. Physical Review Materials 2023, 7 (1) https://doi.org/10.1103/PhysRevMaterials.7.014001
    85. Chan Wook Jang, Won Jun Lee, Jae Kuk Kim, Sang Minh Park, Sung Kim, Suk-Ho Choi. Growth of two-dimensional Janus MoSSe by a single in situ process without initial or follow-up treatments. NPG Asia Materials 2022, 14 (1) https://doi.org/10.1038/s41427-022-00363-x
    86. Dorian Beret, Ioannis Paradisanos, Hassan Lamsaadi, Ziyang Gan, Emad Najafidehaghani, Antony George, Tibor Lehnert, Johannes Biskupek, Ute Kaiser, Shivangi Shree, Ana Estrada-Real, Delphine Lagarde, Xavier Marie, Pierre Renucci, Kenji Watanabe, Takashi Taniguchi, Sébastien Weber, Vincent Paillard, Laurent Lombez, Jean-Marie Poumirol, Andrey Turchanin, Bernhard Urbaszek. Exciton spectroscopy and unidirectional transport in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00354-0
    87. Hamid Mehdipour, Peter Kratzer. Structural defects in a Janus MoSSe monolayer: A density functional theory study. Physical Review B 2022, 106 (23) https://doi.org/10.1103/PhysRevB.106.235414
    88. Hong Li, YunFeng Zhang, Wei Du, Jiang Da, Shiyu Ji, Shuai Sun, Fengbin Liu, Jing Lu. Point-defect improved photogalvanic effect in Janus WSSe monolayer. Materials Today Communications 2022, 33 , 104680. https://doi.org/10.1016/j.mtcomm.2022.104680
    89. Shulin Bai, Yuxin Ma, Mengxiu Wu, Jingyi Zhang, Dongming Luo, Da Wan, Shuwei Tang. Unravelling the regulating role of stacking pattern on the tunable dipole, mechanical behavior and carrier mobility for asymmetric Janus SnSSe bilayer. Materials Today Communications 2022, 33 , 104191. https://doi.org/10.1016/j.mtcomm.2022.104191
    90. Huabing Shu, Xiaomei Liu. Interfacial electronic characteristics and tunable contact types in novel silicene/Janus Ga2STe heterobilayers. Surfaces and Interfaces 2022, 35 , 102451. https://doi.org/10.1016/j.surfin.2022.102451
    91. Xian-Dong Li, Zuo-Dong Yu, Wei-Peng Chen, Chang-De Gong. Topological superconductivity in Janus monolayer transition metal dichalcogenides. Chinese Physics B 2022, 31 (11) , 110304. https://doi.org/10.1088/1674-1056/ac8739
    92. Aman kassaye Sibhatu, Tamiru Teshome, Omololu Akin-Ojo, Abubeker Yimam, Georgies Alene Asres. DFT investigation of the electronic and optical properties of hexagonal MX 2 /ZrXO (M = W, Mo and X = S, Se) van der Waals heterostructures for photovoltaic solar cell application. RSC Advances 2022, 12 (47) , 30838-30845. https://doi.org/10.1039/D2RA05310A
    93. Adil Marjaoui, Mohamed Ait Tamerd, Mohamed Zanouni, Mustapha Diani. Strain enhanced electronic and optical properties in Janus monolayers AsMC3 (M: Sb, Bi). Physica B: Condensed Matter 2022, 642 , 414143. https://doi.org/10.1016/j.physb.2022.414143
    94. Adil Marjaoui, Mohamed Ait Tamerd, Brahim Abraime, Achraf El Kasmi, Mustapha Diani, Mohamed Zanouni. The electronic, thermoelectric and optical properties of Janus In2STe monolayer: A first-principles investigation. Thin Solid Films 2022, 759 , 139471. https://doi.org/10.1016/j.tsf.2022.139471
    95. Junhao Peng, Chuyu Li, Huafeng Dong, Fugen Wu. Intrinsic type-II van der Waals heterostructures based on graphdiyne and XSSe (X = Mo, W): a first-principles study. Physical Chemistry Chemical Physics 2022, 24 (35) , 21331-21336. https://doi.org/10.1039/D2CP02801H
    96. Ufuk Erkılıç, Shengnan Wang, Yoshiaki Sekine, Yoshitaka Taniyasu. Stacking-order-dependent interlayer coupling in Janus WSSe/WS2 heterostructures. Applied Physics Letters 2022, 121 (11) https://doi.org/10.1063/5.0114685
    97. Ziyang Gan, Ioannis Paradisanos, Ana Estrada‐Real, Julian Picker, Emad Najafidehaghani, Francis Davies, Christof Neumann, Cedric Robert, Peter Wiecha, Kenji Watanabe, Takashi Taniguchi, Xavier Marie, Johannes Biskupek, Manuel Mundszinger, Robert Leiter, Ute Kaiser, Arkady V. Krasheninnikov, Bernhard Urbaszek, Antony George, Andrey Turchanin. Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides. Advanced Materials 2022, 34 (38) https://doi.org/10.1002/adma.202205226
    98. Huasong Qin, Kai Ren, Guoqiang Zhang, Ying Dai, Gang Zhang. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers. Physical Chemistry Chemical Physics 2022, 24 (34) , 20437-20444. https://doi.org/10.1039/D2CP01692C
    99. Xiaobo Li, Xin Chen, Ning Wei, Chenduan Chen, Zhan Yang, Haijiao Xie, Jiajing He, Ningning Dong, Yaping Dan, Jun Wang. Nonlinear absorption and integrated photonics applications of MoSSe. Optics Express 2022, 30 (18) , 32924. https://doi.org/10.1364/OE.465566
    100. Ce Bian, Jianwei Shi, Xinfeng Liu, Yang Yang, Haitao Yang, Hongjun Gao. Optical second-harmonic generation of Janus MoSSe monolayer. Chinese Physics B 2022, 31 (9) , 097304. https://doi.org/10.1088/1674-1056/ac6db4
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 2, 931–937
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.0c03412
    Published January 6, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    7587

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.