ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Pulsed Interleaved MINFLUX

  • Luciano A. Masullo
    Luciano A. Masullo
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
    Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
  • Florian Steiner
    Florian Steiner
    Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
  • Jonas Zähringer
    Jonas Zähringer
    Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
  • Lucía F. Lopez
    Lucía F. Lopez
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
  • Johann Bohlen
    Johann Bohlen
    Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
  • Lars Richter
    Lars Richter
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
    Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
    More by Lars Richter
  • Fiona Cole
    Fiona Cole
    Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
    More by Fiona Cole
  • Philip Tinnefeld*
    Philip Tinnefeld
    Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
    *E-mail: [email protected]
  • , and 
  • Fernando D. Stefani*
    Fernando D. Stefani
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
    Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
    *E-mail: [email protected]
Cite this: Nano Lett. 2021, 21, 1, 840–846
Publication Date (Web):December 18, 2020
https://doi.org/10.1021/acs.nanolett.0c04600
Copyright © 2020 American Chemical Society

    Article Views

    3486

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    We introduce p-MINFLUX, a new implementation of the highly photon-efficient single-molecule localization method with a simplified experimental setup and additional fluorescence lifetime information. In contrast to the original MINFLUX implementation, p-MINFLUX uses interleaved laser pulses to deliver the doughnut-shaped excitation foci at a maximum repetition rate. Using both static and dynamic DNA origami model systems, we demonstrate the performance of p-MINFLUX for single-molecule localization nanoscopy and tracking, respectively. p-MINFLUX delivers 1–2 nm localization precision with 2000–1000 photon counts. In addition, p-MINFLUX gives access to the fluorescence lifetime enabling multiplexing and super-resolved lifetime imaging. p-MINFLUX should help to unlock the full potential of innovative single-molecule localization schemes.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04600.

    • Details about the optical setups, the system for drift correction, the preparation of DNA origami samples, measurement of the excitation beam pattern and the point-spread functions, p-MINFLUX measurement protocol, position estimator and Cramér-Rao bound, p-MINFLUX simulations, effect of misalignment of the excitation beam pattern, crosstalk between detection time windows, and simulations of time traces of the pointer origami. Also, it contains a list of oligonucleotides used for each DNA origami used (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 47 publications.

    1. Piotr Zdańkowski, Lucía F. Lopez, Guillermo P. Acuna, Fernando D. Stefani. Nanometer Resolution Imaging and Tracking of Single Fluorophores by Sequential Structured Illumination. ACS Photonics 2022, 9 (12) , 3777-3785. https://doi.org/10.1021/acsphotonics.2c01391
    2. Alexey N. Butkevich, Michael Weber, Angel R. Cereceda Delgado, Lynn M. Ostersehlt, Elisa D’Este, Stefan W. Hell. Photoactivatable Fluorescent Dyes with Hydrophilic Caging Groups and Their Use in Multicolor Nanoscopy. Journal of the American Chemical Society 2021, 143 (44) , 18388-18393. https://doi.org/10.1021/jacs.1c09999
    3. Alexey N. Butkevich. Modular Synthetic Approach to Silicon-Rhodamine Homologues and Analogues via Bis-aryllanthanum Reagents. Organic Letters 2021, 23 (7) , 2604-2609. https://doi.org/10.1021/acs.orglett.1c00512
    4. Alan M. Szalai, Bruno Siarry, Jerónimo Lukin, Sebastián Giusti, Nicolás Unsain, Alfredo Cáceres, Florian Steiner, Philip Tinnefeld, Damián Refojo, Thomas M. Jovin, Fernando D. Stefani. Super-resolution Imaging of Energy Transfer by Intensity-Based STED-FRET. Nano Letters 2021, 21 (5) , 2296-2303. https://doi.org/10.1021/acs.nanolett.1c00158
    5. Jonas Zähringer, Fiona Cole, Johann Bohlen, Florian Steiner, Izabela Kamińska, Philip Tinnefeld. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. Light: Science & Applications 2023, 12 (1) https://doi.org/10.1038/s41377-023-01111-8
    6. Elias Amselem, Bo Broadwater, Tora Hävermark, Magnus Johansson, Johan Elf. Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36879-1
    7. Yucheng Sun, Zengnan Wu, Yuting Shang, Seong Ho Kang, Jin-Ming Lin. Single-molecule detection-based super-resolution imaging in single-cell analysis: Inspiring progress and future prospects. TrAC Trends in Analytical Chemistry 2023, 167 , 117255. https://doi.org/10.1016/j.trac.2023.117255
    8. Lars Richter, Alan M. Szalai, C. Lorena Manzanares‐Palenzuela, Izabela Kamińska, Philip Tinnefeld. Exploring the Synergies of Single‐Molecule Fluorescence and 2D Materials Coupled by DNA. Advanced Materials 2023, 306 https://doi.org/10.1002/adma.202303152
    9. Joshua Robert Prindle, Olivia Isabella Christiane de Cuba, Andreas Gahlmann. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: Past applications and future prospects. The Journal of Chemical Physics 2023, 159 (7) https://doi.org/10.1063/5.0155638
    10. Megan K Dunlap, Duncan P Ryan, Peter M Goodwin, Chris J Sheehan, James H Werner, Somak Majumder, Jennifer A Hollingsworth, Martin P Gelfand, Alan Van Orden. Nanoscale imaging of quantum dot dimers using time-resolved super-resolution microscopy combined with scanning electron microscopy. Nanotechnology 2023, 34 (27) , 275202. https://doi.org/10.1088/1361-6528/acc9c9
    11. Fernando D. Stefani. Tracking nanoscopic motion with minima of light. Nature Photonics 2023, 17 (7) , 552-553. https://doi.org/10.1038/s41566-023-01239-4
    12. Cecilia Zaza, Germán Chiarelli, Ludovit P. Zweifel, Mauricio Pilo‐Pais, Evangelos Sisamakis, Fabio Barachati, Fernando D. Stefani, Guillermo P. Acuna. Super‐Resolved FRET Imaging by Confocal Fluorescence‐Lifetime Single‐Molecule Localization Microscopy. Small Methods 2023, 7 (7) https://doi.org/10.1002/smtd.202201565
    13. Nicholas A. Vickers, Fatemeh Sharifi, Sean B. Andersson. Information optimization of laser scanning microscopes for real-time feedback-driven single particle tracking. Optics Express 2023, 31 (13) , 21434. https://doi.org/10.1364/OE.485357
    14. Trung Duc Nguyen, Yuan-I Chen, Limin H. Chen, Hsin-Chih Yeh. Recent Advances in Single-Molecule Tracking and Imaging Techniques. Annual Review of Analytical Chemistry 2023, 16 (1) , 253-284. https://doi.org/10.1146/annurev-anchem-091922-073057
    15. Lucía F. Lopez, Luciano A. Masullo, Alan M. Szalai, Florencia Edorna, Florencia D. Choque, Fernando Caprile, Fernando D. Stefani. Optimization and characterization of toroidal foci for super-resolution fluorescence microscopy: tutorial. Journal of the Optical Society of America B 2023, 40 (4) , C103. https://doi.org/10.1364/JOSAB.482413
    16. Eli Slenders, Giuseppe Vicidomini. ISM-FLUX: MINFLUX with an array detector. Physical Review Research 2023, 5 (2) https://doi.org/10.1103/PhysRevResearch.5.023033
    17. Frank Mieskes, Evelyn Ploetz, Fabian Wehnekamp, Virgile Rat, Don C. Lamb. Multicolor 3D Orbital Tracking. Small 2023, 19 (17) https://doi.org/10.1002/smll.202204726
    18. Megan K. Dunlap, Liam A. Koch, Duncan P. Ryan, Peter M. Goodwin, James H. Werner, Paul B. Bourdin, Jennifer A. Hollingsworth, Chris J. Sheehan, Martin P. Gelfand, Alan K. Van Orden, , , . Time-resolved super-resolution microscopy to image photoluminescence lifetimes and spatially resolve dual emitter semiconductor nanostructures. 2023, 25. https://doi.org/10.1117/12.2650337
    19. Silvia Galiani, Christian Eggeling, Katharina Reglinski. Super-resolution microscopy and studies of peroxisomes. Biological Chemistry 2023, 404 (2-3) , 87-106. https://doi.org/10.1515/hsz-2022-0314
    20. Tim Schröder, Johann Bohlen, Sarah E. Ochmann, Patrick Schüler, Stefan Krause, Don C. Lamb, Philip Tinnefeld. Shrinking gate fluorescence correlation spectroscopy yields equilibrium constants and separates photophysics from structural dynamics. Proceedings of the National Academy of Sciences 2023, 120 (4) https://doi.org/10.1073/pnas.2211896120
    21. 卫奥尼 Wei Aoni, 秦成兵 Qin Chengbing, 董帅 Dong Shuai, 孟新钦 Meng Xinqin, 宋蕴睿 Song Yunrui, 李向东 Li Xiangdong, 梁喜龙 Liang Xilong, 张国峰 Zhang Guofeng, 陈瑞云 Chen Ruiyun, 胡建勇 Hu Jianyong, 杨志春 Yang Zhichun, 霍建忠 Huo Jianzhong, 肖连团 Xiao Liantuan, 贾锁堂 Jia Suotang. 超分辨荧光显微成像的若干研究进展. Laser & Optoelectronics Progress 2023, 60 (11) , 1106012. https://doi.org/10.3788/LOP230749
    22. Sumit Kumar Pramanik, Sreejesh Sreedharan, Rajeshwari Tiwari, Sourav Dutta, Noufal Kandoth, Surajit Barman, Stephen O Aderinto, Samit Chattopadhyay, Amitava Das, Jim A Thomas. Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting. Chemical Society Reviews 2022, 51 (24) , 9882-9916. https://doi.org/10.1039/D1CS00605C
    23. Kun Zhao, Xinzhu Xu, Wei Ren, Dayong Jin, Peng Xi. Two-photon MINFLUX with doubled localization precision. eLight 2022, 2 (1) https://doi.org/10.1186/s43593-021-00011-x
    24. Xinzhu Xu, Shu Jia, Peng Xi. Raster-scanning Donut simplifies MINFLUX and provides alternative implement on other scanning-based microscopes. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00983-6
    25. Luciano A. Masullo, Alan M. Szalai, Lucía F. Lopez, Mauricio Pilo-Pais, Guillermo P. Acuna, Fernando D. Stefani. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00896-4
    26. Luciano A. Masullo, Fernando D. Stefani. Multiphoton single-molecule localization by sequential excitation with light minima. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00763-2
    27. Francisco J. Barrantes. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1014659
    28. Jing Wang, Zhen Zhang, Hongyu Shen, Qi Wu, Min Gu. Application and development of fluorescence probes in MINFLUX nanoscopy. Journal of Innovative Optical Health Sciences 2022, https://doi.org/10.1142/S1793545822300117
    29. Lynn M. Ostersehlt, Daniel C. Jans, Anna Wittek, Jan Keller-Findeisen, Kaushik Inamdar, Steffen J. Sahl, Stefan W. Hell, Stefan Jakobs. DNA-PAINT MINFLUX nanoscopy. Nature Methods 2022, 19 (9) , 1072-1075. https://doi.org/10.1038/s41592-022-01577-1
    30. Bertus van Heerden, Tjaart P. J. Krüger. Theoretical comparison of real-time feedback-driven single-particle tracking techniques. The Journal of Chemical Physics 2022, 157 (8) https://doi.org/10.1063/5.0096729
    31. Cecilia Zaza, Sabrina Simoncelli. Plasmonics for advance single-molecule fluorescence spectroscopy and imaging in biology. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.989570
    32. Dominic A. Helmerich, Gerti Beliu, Danush Taban, Mara Meub, Marcel Streit, Alexander Kuhlemann, Sören Doose, Markus Sauer. Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nature Methods 2022, 19 (8) , 986-994. https://doi.org/10.1038/s41592-022-01548-6
    33. Ning Jia, Xing-Dong Zhao, Wen-Rong Qi, Jing Qian. Ultraprecise Off-Axis Atom Localization With Hybrid Fields. Frontiers in Physics 2022, 10 https://doi.org/10.3389/fphy.2022.933285
    34. Bertus van Heerden, Nicholas A. Vickers, Tjaart P. J. Krüger, Sean B. Andersson. Real‐Time Feedback‐Driven Single‐Particle Tracking: A Survey and Perspective. Small 2022, 18 (29) https://doi.org/10.1002/smll.202107024
    35. Jan Christoph Thiele, Marvin Jungblut, Dominic A. Helmerich, Roman Tsukanov, Anna Chizhik, Alexey I. Chizhik, Martin J. Schnermann, Markus Sauer, Oleksii Nevskyi, Jörg Enderlein. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. Science Advances 2022, 8 (23) https://doi.org/10.1126/sciadv.abo2506
    36. Fernando Caprile, Luciano A. Masullo, Fernando D. Stefani. PyFocus – A Python package for vectorial calculations of focused optical fields under realistic conditions. Application to toroidal foci. Computer Physics Communications 2022, 275 , 108315. https://doi.org/10.1016/j.cpc.2022.108315
    37. Laura A. Garrison, Ivan Kolesar, Ivan Viola, Helwig Hauser, Stefan Bruckner. Trends & Opportunities in Visualization for Physiology: A Multiscale Overview. Computer Graphics Forum 2022, 41 (3) , 609-643. https://doi.org/10.1111/cgf.14575
    38. Kirti Prakash. At the molecular resolution with MINFLUX?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2022, 380 (2220) https://doi.org/10.1098/rsta.2020.0145
    39. Yile Sun, Lu Yin, Mingxuan Cai, Hanmeng Wu, Xiang Hao, Cuifang Kuang, Xu Liu. Modulated illumination localization microscopy-enabled sub-10 nm resolution. Journal of Innovative Optical Health Sciences 2022, 15 (02) https://doi.org/10.1142/S179354582230004X
    40. Luciano A. Masullo, Lucía F. Lopez, Fernando D. Stefani. A common framework for single-molecule localization using sequential structured illumination. Biophysical Reports 2022, 2 (1) , 100036. https://doi.org/10.1016/j.bpr.2021.100036
    41. Xuan Zhou, Fan Shi, Jiafeng Lu, Mengjun Xu, Mengdie Hou, Mischa Bonn, Xiaomin Liu, Xianglong Zeng. Generating femtosecond visible doughnut beams based on transverse-mode modulation. Journal of Lightwave Technology 2022, 10 , 1-8. https://doi.org/10.1109/JLT.2022.3194582
    42. Luciano A. Masullo, Alan M. Szalai, Lucía F. Lopez, Fernando D. Stefani. Fluorescence nanoscopy at the sub-10 nm scale. Biophysical Reviews 2021, 13 (6) , 1101-1112. https://doi.org/10.1007/s12551-021-00864-z
    43. Alan M. Szalai, Cecilia Zaza, Fernando D. Stefani. Super-resolution FRET measurements. Nanoscale 2021, 13 (44) , 18421-18433. https://doi.org/10.1039/D1NR05769C
    44. Jessica Valli, Adrian Garcia-Burgos, Liam M. Rooney, Beatriz Vale de Melo e Oliveira, Rory R. Duncan, Colin Rickman. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. Journal of Biological Chemistry 2021, 297 (1) , 100791. https://doi.org/10.1016/j.jbc.2021.100791
    45. Izabela Kamińska, Johann Bohlen, Renukka Yaadav, Patrick Schüler, Mario Raab, Tim Schröder, Jonas Zähringer, Karolina Zielonka, Stefan Krause, Philip Tinnefeld. Graphene Energy Transfer for Single‐Molecule Biophysics, Biosensing, and Super‐Resolution Microscopy. Advanced Materials 2021, 33 (24) , 2101099. https://doi.org/10.1002/adma.202101099
    46. Chen Zhang, Kevin Welsher. Information-Efficient, Off-Center Sampling Results in Improved Precision in 3D Single-Particle Tracking Microscopy. Entropy 2021, 23 (5) , 498. https://doi.org/10.3390/e23050498
    47. Ruslan I. Dmitriev, Xavier Intes, Margarida M. Barroso. Luminescence lifetime imaging of three-dimensional biological objects. Journal of Cell Science 2021, 134 (9) , 1-17. https://doi.org/10.1242/jcs.254763

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect