Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under Operando CO2 Electroreduction

  • Thanh Hai Phan
    Thanh Hai Phan
    Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
  • Karla Banjac
    Karla Banjac
    Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
    More by Karla Banjac
  • Fernando P. Cometto
    Fernando P. Cometto
    Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
  • Federico Dattila
    Federico Dattila
    Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
  • Rodrigo García-Muelas
    Rodrigo García-Muelas
    Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
  • Stefan J. Raaijman
    Stefan J. Raaijman
    Leiden Institute of Chemistry, Leiden University, 23000 RA Leiden, The Netherlands
  • Chunmiao Ye
    Chunmiao Ye
    Leiden Institute of Chemistry, Leiden University, 23000 RA Leiden, The Netherlands
    More by Chunmiao Ye
  • Marc T. M. Koper
    Marc T. M. Koper
    Leiden Institute of Chemistry, Leiden University, 23000 RA Leiden, The Netherlands
  • Núria López
    Núria López
    Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
  • , and 
  • Magalí Lingenfelder*
    Magalí Lingenfelder
    Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
    *Email: [email protected]
Cite this: Nano Lett. 2021, 21, 5, 2059–2065
Publication Date (Web):February 22, 2021
https://doi.org/10.1021/acs.nanolett.0c04703

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0.
  • Open Access

Article Views

7550

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (9 MB)
Supporting Info (1)»

Abstract

The electroreduction of CO2 (CO2RR) is a promising strategy toward sustainable fuels. Cu is the only Earth-abundant and pure metal capable of catalyzing CO2-to-hydrocarbons conversion with significant Faradaic efficiencies; yet, its dynamic structure under operando CO2RR conditions remains unknown. Here, we track the Cu structure operando by electrochemical scanning tunneling microscopy and Raman spectroscopy. Surprisingly, polycrystalline Cu surfaces reconstruct forming Cu nanocuboids whose size can be controlled by the polarization potential and the time employed in their in situ synthesis, without the assistance of organic surfactants and/or halide anions. If the Cu surface is covered by a graphene monolayer, smaller features with enhanced catalytic activity for CO2RR can be prepared. The graphene-protecting layer softens the 3D morphological changes that Cu-based catalysts suffer when exposed to aggressive electrochemical environments and allows us to track the kinetic roughening process. This novel strategy is promising for improving Cu long-term stability, and consequently, it could be used as a platform to ultimately control product selectivity.

This publication is licensed under

CC-BY-NC-ND 4.0.
  • cc licence
  • by licence
  • nc licence
  • nd licence

The electrochemical reduction of CO2 (CO2RR), via which carbon dioxide is converted to hydrocarbons, is a highly promising solution for the production of renewable fuels. (1) One of the drawbacks of this technology is that most catalysts are not selective toward energy-rich C2+ fuels, and therefore, their efficiencies are limited. Cu is the only Earth-abundant CO2RR catalyst capable of converting CO2 into hydrocarbons with significant Faradaic efficiencies. (2−4) Initial optimization toward enhanced ethylene production relies on a morphology-selectivity relationship highlighting (100) facets (5,6) as ideal geometry for C–C coupling. This reflects in an outstanding interest in the synthesis of Cu nanocuboids (CuNCs) through colloidal chemistry, (7) electrodeposition, (8) electrochemical cycling, (9) reduction of thermally grown, (10) or electrochemically grown Cu oxides and halides. (11)

However, this morphology-selectivity trend based on ex situ, post-mortem studies ignores the morphological evolution (12) of the catalysts during CO2RR. Cu-based catalysts are highly dynamic: nanostructured electrocatalysts undergo fragmentation (13) and coarsening, (14) while earlier studies report on surface reconstructions (15−17) at the atomic scale on polycrystalline Cu surfaces. These morphological changes greatly affect the catalysts’ long-term stability (in terms of their catalytic activity and product selectivity). (18,19) The goal of operando studies investigating surface dynamics is thus 3-fold: (i) to gain insight into the formation of CuNCs; (ii) to correlate operando surface dynamics with the trends reported in product evolution over time; (iii) to explore possible strategies for morphology conservation by, for example, covering the catalyst surface with 2D materials. (20)

In this Communication, we show the morphological transformation that polycrystalline Cu (p-Cu) and graphene-covered polycrystalline Cu (g-Cu) surfaces undergo during potentiostatic polarization at CO2RR potentials over, at least, 4 h (Figure 1a–c). In situ electrochemical scanning tunneling microscopy (EC-STM) experiments reveal the dynamics of morphological evolution. Because Cu catalysts are highly prone to poisoning and deactivation during the first 30 min working at CO2RR regimes, g-Cu represents an ideal substrate for these studies as graphene could act as a protective barrier. (21) Moreover, fresh g-Cu samples are oxide-free. (22) The thermal annealing of Cu foils under a reductive environment, performed as the pretreatment step to CVD graphene growth, results in smooth surfaces, (23) hence allowing high-resolution EC-STM imaging over an enlarged potential window.

Figure 1

Figure 1. (a–c) Scheme and ex situ AFM images with corresponding height profiles showing the CuNCs formed on a pristine polycrystalline Cu-foil (p-Cu) and a graphene-covered (g-Cu) after polarization at −1 V vs a Pt pseudoreference electrode in a 0.1 M CO2-saturated KHCO3 solution for 4 h. (d) Potential-dependent product analysis on g-Cu performed using gas chromatography and high-performance liquid chromatography after chronoamperometric polarization in 0.1 M CO2-saturated KHCO3.

To validate the choice of g-Cu as the model system for operando studies of Cu-based CO2RR catalysts, we first performed potential-dependent product analysis using gas chromatography and high-performance liquid chromatography (Figure 1d). In contrast with other graphitic-Cu electrodes, where oxygen and nitrogen defects affect the reaction pathways of CO2RR, (24,25) we found remarkably similar trends in product selectivity on g-Cu (Figure 1d) and p-Cu earlier reported by Kuhl et al., (4) suggesting similar CO2RR reaction pathways on the Cu surface. Furthermore, the resemblance in CO2RR product selectivity between g-Cu and p-Cu allows us to focus our studies on the morphological changes that both g-Cu and p-Cu undergo at CO2RR potentials (shown in Figure 1a–c).

CuNCs, reported earlier in the literature, were synthesized by electroreduction of Cu oxide or halide films, electrodeposition, or colloidal chemistry (protected by organic surfactants). (11,10,7,9,8) To the best of our knowledge, this is the first report on CuNCs preparation by the one-step massive reconstruction of a Cu surface to cuboids, that are up to 400 nm in width, upon 4 h potentiostatic polarization in a halide-free electrolyte. Here, CuNCs growth during CO2RR is related to a surface reconstruction mainly governed by the polarization of the substrate, in agreement with the reports on surface reconstructions of p-Cu to Cu(100). (15,17) In order to exclude the role of CO2 on the mechanism of CuNC formation, the same preparation protocol was conducted in an electrolyte saturated with N2: similar CuNCs were observed (Figure S2). This further supports that surface reconstruction leading to CuNC formation after prolonged exposure is mainly driven by interfacial polarization.

To gain knowledge on the surface reconstruction dynamics, we performed a series of in situ EC-STM experiments to follow the transformation of the p-Cu surface underneath graphene. STM offers the unique possibility to monitor preferentially either the graphene layer or the Cu surface underneath by changing the STM bias conditions (Figure 2a). The EC-polarization potential, located at a more negative value than the CuxO reduction potentials, is kept constant at the positive edge of CO2RR and the hydrogen evolution reaction (HER) regime to avoid bubble evolution and interference of the Faradaic currents (crucial for in situ EC-STM experiments). A dynamic observation of the different stages of the surface nanostructuring was followed by in situ EC-STM on g-Cu (Figures 2b–i and S3). The initial stages of this process (Figure 2b–d) show how the polycrystalline Cu underneath the graphene is initially reconstructed to Cu mesocrystals within the first hour. Then, further reconstruction leads to formation of a few nanometers-wide Cu(100) facets (Figure 2e, f). Figure 2f′ shows that the graphene layer is still present during this reconstruction.

Figure 2

Figure 2. (a) Schemes illustrating STM imaging of g-Cu: by changing the STM scanning parameters, we visualize either the Cu surface underneath graphene or the atomic lattice of the graphene overlayer. (b–i) Series of EC-STM images showing the morphological evolution of a g-Cu surface during CO2RR in 0.1 M CO2-saturated KHCO3: (b–f) from polycrystalline Cu to Cu(100) facets and (g–i) to nanocuboids. Ucell = −1.0 V vs Pt pseudo-RE, Ubias = 328 mV, I = 1.75 nA. (f′) Atomic lattice of the graphene overlayer recorded on top of Cu(100) facets confirming the presence of graphene during reconstruction. (j) Operando Raman spectra of g-Cu obtained during reconstruction, illustrated in EC-STM images from panels b–i, showing the immediate reduction of native CuxO to metallic Cu and the presence of graphene during CuNC formation on g-Cu.

Small cuboid-features gradually grow on top of the Cu(100) facets; their size is gradually reducing as a function of time (as seen in Figures 2g–i), reaching an average edge length of ca. 4 ± 1 nm after 4 h of polarization. The CuNCs size and the kinetics of formation can be tuned by changing the potentiostatic polarization time or applying more negative potential values (the more negative the potential value, the smaller the cuboids and the shorter the time employed to appear, Figure S5). Density functional theory (DFT) modeling supports that surface reconstruction is mostly driven by surface polarization, see Supporting Discussion 6. Open facets such as Cu(100) store electrostatic energy more effectively than Cu(111) due to the low coordination of surface Cu atoms (Figures S6 and S7); therefore, at very negative potentials, they are more stable than the closed-packed domains (Figure S8). By having a shorter principal radius of curvature, smaller structures experience a higher electric potential across them than flat surroundings; thus, they undergo further reconstruction toward nanocuboid features with even lower Cu coordination. The role of adsorbed species, in particular H, was not explored in this model; therefore, we cannot discard that they might play a synergetic role in this process. (26)

Operando Raman spectra (Figure 2j) show the absence of native copper oxides during the morphological evolution. The peaks attributed to CuxO species (27,28) (∼410–500 cm–1 for Cu2O and ∼621 cm–1 for CuO, respectively) disappear at the beginning of reconstruction, indicating that the native oxide layer present in air-exposed g-Cu surfaces was fully reduced (see more details in Supplementary Discussion 4). (29) This is in agreement with our EC-STM measurements showing smooth metallic Cu terraces (Figure 2b–i).

Interestingly, the graphene remains almost invariant on top of the as-prepared CuNCs (Figures 2j and S4). Figure 3a, b shows ex situ STM images of g-Cu surfaces before and after EC treatment, respectively. It can be observed that the hexagonal lattice of graphene is still present on top of the CuNCs. This suggests that the graphene layer remains intact during the in situ synthesis of the NCs. The persistence of the graphene layer was also confirmed by both operando (Figure 2j) and ex situ Raman spectroscopy (Figure 3c), where ex situ spectra were collected on the same g-Cu sample before and after CuNC formation. All spectra exhibit typical graphene peaks at ∼1591 cm–1 (the G band) and ∼2721 cm–1 (the 2D band). (30) The absence of the D band (∼1350 cm–1) on all spectra confirms the presence of a defect-free graphene layer before (i.e., on pristine g-Cu), during and after CuNC formation. This further confirms that the as-formed CuNCs are covered with graphene (g-CuNCs).

Figure 3

Figure 3. Ex situ STM images showing graphene (a) before and (b) after reconstruction to g-CuNCs. Ubias = 0.1 mV, I = 10.5 nA. (c) Ex situ Raman spectra of pristine g-Cu and g-CuNCs. The gray band highlights the wavenumber where the D band is usually observed. (d) ECSA-corrected linear sweep voltammograms obtained for pristine g-Cu, g-CuNCs, and HOPG.

Following the same procedure, similar scenarios were observed on p-Cu. That is, initially, polycrystalline Cu evolves gradually to mesocrystals, Cu(100) facets, and cuboids (Figure S9). These results indicate that different Cu surfaces form nanocuboids after prolonged exposition to CO2RR potentials (e.g., Cu foil, polished Cu, g-Cu, Cu functionalized with molecular additives, (31) etc.).

Even if the cuboid structures once formed conserve their morphology ex situ at least for several days (Figure 1b, c), a detailed analysis of the first steps in the formation of nanocuboid features points toward a kinetic roughening process, where multiterrace islands (five-layered mounds, Figure S10) arise as a consequence of step-edge (Ehrlich–Schwoebel or ES) barriers, (32,33) inhibiting downward transport of adatoms.

The fact that these are far-from-equilibrium structures is consistent with the sharp and straight step edges (Figure S10) along [010] and [001] Cu(001) directions, in contrast to the edge-rounded equilibrium structures seen after homoepitaxy of Cu on Cu(001). (34,35) Moreover, the absence of fuzzy g-CuNCs step edges points toward the absence of adsorbates at the Cu edges during the potential-driven roughening process (see Supplementary Discussion 5 for more details). The formation of g-CuNCs happens underneath graphene (as shown in Figure 1c and illustrated in Figures 1a and 2a) during CO2RR at negative potentials, at which no redeposition of electrochemically dissolved atoms is expected. (36) Therefore, the adatoms nucleating in the upper terraces might originate and diffuse from the grain boundaries. Further studies looking at the kinetics of the process under different electrolytes and pH conditions are underway to assess if potential-driven reconstructions (37) as a kinetic phenomenon might be a general explanation for surface transformations observed on Cu and other metals during HER/CO2RR. (38)

Finally, we performed a preliminary study comparing the CO2RR/HER performance of the g-CuNCs to a highly-oriented pyrolytic graphite (HOPG) substrate (as a representative model system of the graphene layer) and to a pristine g-Cu sample. Linear sweep voltammograms corrected for the electrochemically active surface area (ECSA) in a 0.1 M CO2-saturated KHCO3 are shown in Figure 3d. At negative potentials, cathodic current densities increase exponentially due to the CO2RR and the parasitic HER. This effect is especially pronounced for g-CuNCs, where the presence of CuNCs underneath graphene leads to a shift in the HER/CO2RR onset potentials to more positive values and increases the current density more than twice compared to the pristine g-Cu sample. These preliminary experiments hint that as-prepared g-CuNCs could show an enhanced HER/CO2RR performance due to the unique combination of the (100) facets and confinement effects (39,40) at the Cu/graphene interface.

In conclusion, we show that Cu surfaces suffer a drastic reconstruction under long exposure to negative potentials, evolving from polycrystalline Cu to nanocuboids, even in halide-free electrolytes. To prevent this massive reconstruction under operando conditions, we demonstrate the protective character of a single graphene layer on the Cu catalysts. The size of the nanocuboids can be tuned by the applied potential and/or the polarization time; e.g., 4 ±1 nm g-CuNCs can be prepared after 4 h of polarization at −1 V vs Pt pseudo-RE. A dynamic observation of the gradual surface reconstruction from polycrystalline Cu to nanocuboids is reported by in situ EC-STM. As STM measurements cannot be performed in massively reconstructed Cu, this model system is ideal for in situ studies. By both operando and ex situ Raman spectroscopy, we show that the graphene layer on g-Cu remains intact during this process. This study opens new avenues to reinterpret the mechanism of nanostructured Cu-based materials without the presence of oxidized Cu species nor halides. In particular, it sheds light on the fact that Cu catalysts, when normalized by the electrochemically active surface area, show similar intrinsic activity; (38) most likely because the surface morphology (although highly dynamic) and step density under operando conditions are very similar at the atomic scale: the scale where ultimately CO2RR occurs.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04703.

  • Experimental details and additional data, AFM images, EC-STM images, Raman spectra, electrostatic energy, modeled surface energies, capacitive scans, and supporting discussions (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Thanh Hai Phan - Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, SwitzerlandPresent Address: T.H.P.: Physics Department, Faculty of Natural Sciences, Quynhon University, 170 An Duong Vuong, Quynhon, Vietnam
    • Karla Banjac - Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, SwitzerlandOrcidhttp://orcid.org/0000-0001-7063-6213
    • Fernando P. Cometto - Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, SwitzerlandPresent Address: F.P.C.: Departamento de Fisicoquímica, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC–CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
    • Federico Dattila - Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, SpainOrcidhttp://orcid.org/0000-0001-8195-3951
    • Rodrigo García-Muelas - Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, SpainOrcidhttp://orcid.org/0000-0002-2219-5027
    • Stefan J. Raaijman - Leiden Institute of Chemistry, Leiden University, 23000 RA Leiden, The Netherlands
    • Chunmiao Ye - Leiden Institute of Chemistry, Leiden University, 23000 RA Leiden, The Netherlands
    • Marc T. M. Koper - Leiden Institute of Chemistry, Leiden University, 23000 RA Leiden, The NetherlandsOrcidhttp://orcid.org/0000-0001-6777-4594
    • Núria López - Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, SpainOrcidhttp://orcid.org/0000-0001-9150-5941
  • Notes
    The data sets generated are available in the ioChem-BD database(41) at DOI: 10.19061/iochem-bd-1-185.
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

We acknowledge EPFL technical and scientific support from Dr. Arnaud Magrez, Dr. Astrid Olaya Avendano, Dr. Gian Luca De Gregorio, Prof. Raffaella Buonsanti, Dr. Natalia Gasilova, and Dr. Daniel Ortiz during the initial setup of this project. This work has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 732840 A-LEAF. F.D., R.G.-M., and N.L. additionally acknowledge funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 722614 ELCOREL and from the Spanish Ministry of Science and Innovation (grant no. RTI2018-101394–B-I00) and BSC-RES for generous computational resources.

Abbreviations

ARTICLE SECTIONS
Jump To

AFM

atomic force microscopy

CO2RR

electrochemical reductive reaction of carbon dioxide

CuNCs

copper nanocuboids

CVD

chemical vapor deposition

ECSA

electrochemically active surface area

EC-STM

electrochemical scanning tunneling microscopy

g-Cu

graphene-covered copper

g-CuNCs

graphene-covered copper nanocuboids

HOPG

highly oriented pyrolytic graphite

p-Cu

polycrystalline copper

RE

reference electrode

STM

scanning tunneling microscopy

References

ARTICLE SECTIONS
Jump To

This article references 41 other publications.

  1. 1
    Lim, X. How to Make the Most of Carbon Dioxide. Nature 2015, 526 (7575), 628,  DOI: 10.1038/526628a
  2. 2
    Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Enhanced Formation of Ethylene and Alcohols at Ambient Temperature and Pressure in Electrochemical Reduction of Carbon Dioxide at a Copper Electrode. J. Chem. Soc., Chem. Commun. 1988, (1), 1719,  DOI: 10.1039/c39880000017
  3. 3
    Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3 (9), 13111315,  DOI: 10.1039/c0ee00071j
  4. 4
    Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. Energy Environ. Sci. 2012, 5 (5), 70507059,  DOI: 10.1039/c2ee21234j
  5. 5
    Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of Carbon Monoxide to Methane and Ethylene at a Copper Electrode in Aqueous Solutions at Ambient Temperature and Pressure. J. Am. Chem. Soc. 1987, 109 (16), 50225023,  DOI: 10.1021/ja00250a044
  6. 6
    Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 Reduction: Classifying Cu Facets. ACS Catal. 2019, 9 (9), 78947899,  DOI: 10.1021/acscatal.9b01899
  7. 7
    Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. Angew. Chem., Int. Ed. 2016, 55 (19), 57895792,  DOI: 10.1002/anie.201601582
  8. 8
    Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo, M.; Zhou, H.; Li, F.; Lum, Y.; McCallum, C.; Xu, Y.; Liu, M.; Proppe, A.; Johnston, A.; Todorovic, P.; Zhuang, T.-T.; Sinton, D.; Kelley, S. O.; Sargent, E. H. Catalyst Synthesis under CO2 Electroreduction Favours Faceting and Promotes Renewable Fuels Electrosynthesis. Nat. Catal. 2020, 3 (2), 98106,  DOI: 10.1038/s41929-019-0397-1
  9. 9
    Kwon, Y.; Lum, Y.; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper. ChemElectroChem 2016, 3 (6), 10121019,  DOI: 10.1002/celc.201600068
  10. 10
    Kas, R.; Kortlever, R.; Yılmaz, H.; Koper, M. T. M.; Mul, G. Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO2 Electroreduction by Process Conditions. ChemElectroChem 2015, 2 (3), 354358,  DOI: 10.1002/celc.201402373
  11. 11
    Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Stable and Selective Electrochemical Reduction of Carbon Dioxide to Ethylene on Copper Mesocrystals. Catal. Sci. Technol. 2015, 5 (1), 161168,  DOI: 10.1039/C4CY00906A
  12. 12
    Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2–C3 Products. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (40), 1056010565,  DOI: 10.1073/pnas.1711493114
  13. 13
    Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H.-S.; Min, B. K.; Hwang, Y. J. Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C-C Coupling from CO2 Reduction Reaction. J. Am. Chem. Soc. 2019, 141, 4624,  DOI: 10.1021/jacs.8b11237
  14. 14
    Huang, J.; Hormann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-Induced Nanoclustering of Metallic Catalysts during Electrochemical CO2 Reduction. Nat. Commun. 2018, 9 (1), 3117,  DOI: 10.1038/s41467-018-05544-3
  15. 15
    Kim, Y.-G.; Baricuatro, J. H.; Javier, A.; Gregoire, J. M.; Soriaga, M. P. The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO2RR Potential: A Study by Operando EC-STM. Langmuir 2014, 30 (50), 1505315056,  DOI: 10.1021/la504445g
  16. 16
    Gunathunge, C. M.; Li, X.; Li, J.; Hicks, R. P.; Ovalle, V. J.; Waegele, M. M. Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction. J. Phys. Chem. C 2017, 121 (22), 1233712344,  DOI: 10.1021/acs.jpcc.7b03910
  17. 17
    Kim, Y.-G.; Baricuatro, J. H.; Soriaga, M. P. Surface Reconstruction of Polycrystalline Cu Electrodes in Aqueous KHCO3 Electrolyte at Potentials in the Early Stages of CO2 Reduction. Electrocatalysis 2018, 9, 526530,  DOI: 10.1007/s12678-018-0469-z
  18. 18
    Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size and Support Effects. Angew. Chem., Int. Ed. 2018, 57 (21), 61926197,  DOI: 10.1002/anie.201802083
  19. 19
    Moller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A. S.; Strasser, P. Electrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity Using Operando Spectroscopy. Angew. Chem., Int. Ed. 2020, 59 (41), 1797417983,  DOI: 10.1002/anie.202007136
  20. 20
    Li, Y.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-Fold Twinned Copper Nanowires. Nano Lett. 2017, 17 (2), 13121317,  DOI: 10.1021/acs.nanolett.6b05287
  21. 21
    Hong, J.; Lee, S.; Lee, S.; Han, H.; Mahata, C.; Yeon, H.-W.; Koo, B.; Kim, S.-I.; Nam, T.; Byun, K.; Min, B.-W.; Kim, Y.-W.; Kim, H.; Joo, Y.-C.; Lee, T. Graphene as an Atomically Thin Barrier to Cu Diffusion into Si. Nanoscale 2014, 6 (13), 75037511,  DOI: 10.1039/C3NR06771H
  22. 22
    Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; LI, X.; Manguson, C. W.; Velamakanni, A.; Pinert, R. D.; Kang, J.; Park, J.; Ruoff, R. S. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5 (2), 13211327,  DOI: 10.1021/nn103028d
  23. 23
    Kim, S. M.; Hsu, A.; Lee, Y.-H.; Dresselhaus, M.; Palacios, T.; Kim, K. K.; Kong, J. The Effect of Copper Pre-Cleaning on Graphene Synthesis. Nanotechnology 2013, 24 (36), 365602,  DOI: 10.1088/0957-4484/24/36/365602
  24. 24
    Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer, H. M.; Chi, M.; Ma, C.; Sumpter, B. G.; Rondinone, A. J. High-Selectivity Electrochemical Conversion of CO2 to Ethanol Using a Copper Nanoparticle/N-Doped Graphene Electrode. ChemistrySelect 2016, 1 (19), 60556061,  DOI: 10.1002/slct.201601169
  25. 25
    Geioushy, R. A.; Khaled, M. M.; Hakeem, A. S.; Alhooshani, K.; Basheer, C. High Efficiency Graphene/Cu2O Electrode for the Electrochemical Reduction of Carbon Dioxide to Ethanol. J. Electroanal. Chem. 2017, 785, 138143,  DOI: 10.1016/j.jelechem.2016.12.029
  26. 26
    McCrum, I. T.; Bondue, C. J.; Koper, M. T. M. Hydrogen-Induced Step-Edge Roughening of Platinum Electrode Surfaces. J. Phys. Chem. Lett. 2019, 10 (21), 68426849,  DOI: 10.1021/acs.jpclett.9b02544
  27. 27
    Yin, X.; Li, Y.; Ke, F.; Lin, C.; Zhao, H.; Gan, L.; Luo, Z.; Zhao, R.; Heinz, T. F.; Hu, Z. Evolution of the Raman Spectrum of Graphene Grown on Copper upon Oxidation of the Substrate. Nano Res. 2014, 7 (11), 16131622,  DOI: 10.1007/s12274-014-0521-0
  28. 28
    Lee, U.; Han, Y.; Lee, S.; Kim, J. S.; Lee, Y. H.; Kim, U. J.; Son, H. Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS Nano 2020, 14 (1), 919926,  DOI: 10.1021/acsnano.9b08205
  29. 29
    Scott, S. B.; Hogg, T. V.; Landers, A. T.; Maagaard, T.; Bertheussen, E.; Lin, J. C.; Davis, R. C.; Beeman, J. W.; Higgins, D.; Drisdell, W. S.; Hahn, C.; Mehta, A.; Seger, B.; Jaramillo, T. F.; Chorkendorff, I. Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Lett. 2019, 4 (3), 803804,  DOI: 10.1021/acsenergylett.9b00172
  30. 30
    Costa, S. D.; Righi, A.; Fantini, C.; Hao, Y.; Magnuson, C.; Colombo, L.; Ruoff, R. S.; Pimenta, M. A. Resonant Raman Spectroscopy of Graphene Grown on Copper Substrates. Solid State Commun. 2012, 152 (15), 13171320,  DOI: 10.1016/j.ssc.2012.05.001
  31. 31
    Thevenon, A.; Rosas-Hernández, A.; Peters, J. C.; Agapie, T. In-Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO2 Reduction to Ethylene. Angew. Chem., Int. Ed. 2019, 58 (47), 1695216958,  DOI: 10.1002/anie.201907935
  32. 32
    Schwoebel, R. L.; Shipsey, E. J. Step Motion on Crystal Surfaces. J. Appl. Phys. 1966, 37, 36823686,  DOI: 10.1063/1.1707904
  33. 33
    Ehrlich, G.; Hudda, F. G. Atomic View of Surface Self-Diffusion: Tungsten on Tungsten. J. Chem. Phys. 1966, 44 (3), 10391049,  DOI: 10.1063/1.1726787
  34. 34
    Girard, J. C.; Samson, Y.; Gauthier, S.; Roussel, S.; Klein, J. STM Study of the Nucleation and Annealing of Ion Bombardment Induced Defects on Cu(100). Surf. Sci. 1994, 302 (1), 7380,  DOI: 10.1016/0039-6028(94)91098-7
  35. 35
    Hannon, J. B.; Klünker, C.; Giesen, M.; Ibach, H.; Bartelt, N. C.; Hamilton, J. C. Surface Self-Diffusion by Vacancy Motion: Island Ripening on Cu(001). Phys. Rev. Lett. 1997, 79 (13), 25062509,  DOI: 10.1103/PhysRevLett.79.2506
  36. 36
    Speck, F. D.; Cherevko, S. Electrochemical Copper Dissolution: A Benchmark for Stable CO2 Reduction on Copper Electrocatalysts. Electrochem. Commun. 2020, 115, 106739,  DOI: 10.1016/j.elecom.2020.106739
  37. 37
    Dakkouri, A. S.; Kolb, D. M. Reconstruction of Gold Surfaces. In Interfacial Electrochemistry: Theory, Experiments, and Applications; Wieckowski, A., Ed.; Marcel Dekker Inc.: New York, 1999; pp 151173.
  38. 38
    Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610,  DOI: 10.1021/acs.chemrev.8b00705
  39. 39
    Li, H.; Xiao, J.; Fu, Q.; Bao, X. Confined Catalysis under Two-Dimensional Materials. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (23), 59305934,  DOI: 10.1073/pnas.1701280114
  40. 40
    Wordsworth, J.; Benedetti, T. M.; Alinezhad, A.; Tilley, R. D.; Edwards, M. A.; Schuhmann, W.; Gooding, J. J. The Importance of Nanoscale Confinement to Electrocatalytic Performance. Chem. Sci. 2020, 11 (5), 12331240,  DOI: 10.1039/C9SC05611D
  41. 41
    Álvarez-Moreno, M.; de Graaf, C.; López, N.; Maseras, F.; Poblet, J. M.; Bo, C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55 (1), 95103,  DOI: 10.1021/ci500593j

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 57 publications.

  1. Cornelius A. Obasanjo, Guorui Gao, Behnam Nourmohammadi Khiarak, Trong Huy Pham, Jackson Crane, Cao-Thang Dinh. Progress and Perspectives of Pulse Electrolysis for Stable Electrochemical Carbon Dioxide Reduction. Energy & Fuels 2023, 37 (18) , 13601-13623. https://doi.org/10.1021/acs.energyfuels.3c02152
  2. Tianxiang Yan, Xiaoyi Chen, Lata Kumari, Jianlong Lin, Minglu Li, Qun Fan, Haoyuan Chi, Thomas J. Meyer, Sheng Zhang, Xinbin Ma. Multiscale CO2 Electrocatalysis to C2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chemical Reviews 2023, 123 (17) , 10530-10583. https://doi.org/10.1021/acs.chemrev.2c00514
  3. Javad Shirani, Hanh D. M. Pham, Shuaishuai Yuan, Alain B. Tchagang, Julio J. Valdés, Kirk H. Bevan. Machine Learning Based Electronic Structure Predictors in Single-Atom Alloys: A Model Study of CO Kink-Site Adsorption across Transition Metal Substrates. The Journal of Physical Chemistry C 2023, 127 (25) , 12055-12067. https://doi.org/10.1021/acs.jpcc.3c02705
  4. Carla Santana Santos, Bright Nsolebna Jaato, Ignacio Sanjuán, Wolfgang Schuhmann, Corina Andronescu. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chemical Reviews 2023, 123 (8) , 4972-5019. https://doi.org/10.1021/acs.chemrev.2c00766
  5. Minglu Li, Siyu Kuang, Hai Liu, Qun Fan, Sheng Zhang, Xinbin Ma. Stabilizing Cu Catalysts for Electrochemical CO2 Reduction Using a Carbon Overlayer. The Journal of Physical Chemistry C 2023, 127 (8) , 3952-3959. https://doi.org/10.1021/acs.jpcc.2c08305
  6. Nakkiran Arulmozhi, Selwyn Hanselman, Viorica Tudor, Xiaoting Chen, David van Velden, Grégory F. Schneider, Federico Calle-Vallejo, Marc T. M. Koper. Energetics and Kinetics of Hydrogen Electrosorption on a Graphene-Covered Pt(111) Electrode. JACS Au 2023, 3 (2) , 526-535. https://doi.org/10.1021/jacsau.2c00648
  7. Heng Zhang, Min Sun, Yuansong Zhao, Lei Xue, Yanxin Wu, Yang Liu, Shanghong Zeng. Creating Polycrystalline Cu Catalysts via Capping Agents and Electrochemical Treatment for CO2 Reduction to C2H4. Energy & Fuels 2023, 37 (1) , 529-538. https://doi.org/10.1021/acs.energyfuels.2c03497
  8. Hongjiao Li, Yunchang Liang, Wenbo Ju, Oliver Schneider, Ulrich Stimming. In Situ Monitoring of the Surface Evolution of a Silver Electrode from Polycrystalline to Well-Defined Structures. Langmuir 2022, 38 (48) , 14981-14987. https://doi.org/10.1021/acs.langmuir.2c02748
  9. Federico Dattila, Ranga Rohit Seemakurthi, Yecheng Zhou, Núria López. Modeling Operando Electrochemical CO2 Reduction. Chemical Reviews 2022, 122 (12) , 11085-11130. https://doi.org/10.1021/acs.chemrev.1c00690
  10. Michael T. Tang, Hong-Jie Peng, Joakim H. Stenlid, Frank Abild-Pedersen. Exploring Trends on Coupling Mechanisms toward C3 Product Formation in CO(2)R. The Journal of Physical Chemistry C 2021, 125 (48) , 26437-26447. https://doi.org/10.1021/acs.jpcc.1c07553
  11. Zhiyi Sun, Yaning Hu, Danni Zhou, Mengru Sun, Shuo Wang, Wenxing Chen. Factors Influencing the Performance of Copper-Bearing Catalysts in the CO2 Reduction System. ACS Energy Letters 2021, 6 (11) , 3992-4022. https://doi.org/10.1021/acsenergylett.1c01965
  12. Stefan J. Raaijman, Nakkiran Arulmozhi, Marc T. M. Koper. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS Applied Materials & Interfaces 2021, 13 (41) , 48730-48744. https://doi.org/10.1021/acsami.1c13989
  13. Jianfang Zhang, Shuai Xia, Yan Wang, Jingjie Wu, Yucheng Wu. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction. iScience 2024, 27 (6) , 110005. https://doi.org/10.1016/j.isci.2024.110005
  14. Mingrui Yang, Livia B. Pártay, Robert B. Wexler. Surface phase diagrams from nested sampling. Physical Chemistry Chemical Physics 2024, 26 (18) , 13862-13874. https://doi.org/10.1039/D4CP00050A
  15. Nicolás Arisnabarreta, Yansong Hao, Enquan Jin, Aude Salamé, Klaus Muellen, Marc Robert, Roberto Lazzaroni, Sandra Van Aert, Kunal S. Mali, Steven De Feyter. Single‐Layered Imine‐Linked Porphyrin‐Based Two‐Dimensional Covalent Organic Frameworks Targeting CO 2 Reduction. Advanced Energy Materials 2024, 14 (18) https://doi.org/10.1002/aenm.202304371
  16. Xin Li, Zhen Xu, Donglei Bu, Jinming Cai, Huamei Chen, Qi Chen, Ting Chen, Fang Cheng, Lifeng Chi, Wenjie Dong, Zhenchao Dong, Shixuan Du, Qitang Fan, Xing Fan, Qiang Fu, Song Gao, Jing Guo, Weijun Guo, Yang He, Shimin Hou, Ying Jiang, Huihui Kong, Baojun Li, Dengyuan Li, Jie Li, Qing Li, Ruoning Li, Shuying Li, Yuxuan Lin, Mengxi Liu, Peinian Liu, Yanyan Liu, Jingtao Lü, Chuanxu Ma, Haoyang Pan, JinLiang Pan, Minghu Pan, Xiaohui Qiu, Ziyong Shen, Shijing Tan, Bing Wang, Dong Wang, Li Wang, Lili Wang, Tao Wang, Xiang Wang, Xingyue Wang, Xueyan Wang, Yansong Wang, Yu Wang, Kai Wu, Wei Xu, Na Xue, Linghao Yan, Fan Yang, Zhiyong Yang, Chi Zhang, Xue Zhang, Yang Zhang, Yao Zhang, Xiong Zhou, Junfa Zhu, Yajie Zhang, Feixue Gao, Yongfeng Wang. Recent progress on surface chemistry I: Assembly and reaction. Chinese Chemical Letters 2024, 48 , 110055. https://doi.org/10.1016/j.cclet.2024.110055
  17. Daniel A. Lowy, Jesus R. Melendez, Bence Mátyás. Electroreduction of carbon dioxide to liquid fuels: A low-cost, sustainable technology. Renewable and Sustainable Energy Reviews 2024, 194 , 114300. https://doi.org/10.1016/j.rser.2024.114300
  18. Mokhtar Jasim Naser, Khalid Mujasam Batoo, Eyhab Ali, Sajjad Hussain, Shakir Mahmood Saeed, Usama S. Altimari, Alzahraa S. Abdulwahid, Murtadha Laftah Shaghnab, Ahmed Alawadi, Ali Ihsan. Formaldehyde (HCHO) oxidation to carbon dioxide (CO2) on carbon, aluminum nitride, boron phosphide and silicon nanocages (C50, C72, C82, Al36N36, B41P41 and Si50) as catalysts. Ionics 2024, 30 (3) , 1575-1586. https://doi.org/10.1007/s11581-024-05384-w
  19. Chaojie Chen, Huanyu Jin, Pengtang Wang, Xiaogang Sun, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao. Local reaction environment in electrocatalysis. Chemical Society Reviews 2024, 53 (4) , 2022-2055. https://doi.org/10.1039/D3CS00669G
  20. Afdhal Yuda, Parisa Ebrahimi, Josephine Selvaraj, Anand Kumar, Vaidyanathan (Ravi) Subramanian. Review of electrocatalytic reduction of CO2 on carbon supported films. International Journal of Hydrogen Energy 2024, 57 , 450-472. https://doi.org/10.1016/j.ijhydene.2024.01.022
  21. Xiaobin Hao, Chuyun Ma, Amirabbas Mosallanezhad, Junjie Xue, Cong Wei, Nana Sun, Yujie Wang, Jianhua Feng, Jun Liu, Gongming Wang. Evolution of catalyst structures and reaction intermediates during electroreduction CO2 toward C2+ product on Cu-based catalyst: An experimental and theoretical review. Materials Science in Semiconductor Processing 2024, 169 , 107906. https://doi.org/10.1016/j.mssp.2023.107906
  22. Jan Vavra, Gaétan P. L. Ramona, Federico Dattila, Attila Kormányos, Tatiana Priamushko, Petru P. Albertini, Anna Loiudice, Serhiy Cherevko, Núria Lopéz, Raffaella Buonsanti. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nature Catalysis 2024, 7 (1) , 89-97. https://doi.org/10.1038/s41929-023-01070-8
  23. Yongchan Jeong, Yongman Kim, Young Jae Kim, Jeong Young Park. In Situ Probing of CO 2 Reduction on Cu‐Phthalocyanine‐Derived Cu x O Complex. Advanced Science 2024, 11 (4) https://doi.org/10.1002/advs.202304735
  24. Hoang Nhat Hieu, Van Nghia Nguyen, Vuong Minh Nguyen, Thanh Hai Phan. 3D-ordered porous CdS/AgI/ZnO nanostructures for high-performance photoelectrochemical water splitting. Nanotechnology 2023, 34 (46) , 465401. https://doi.org/10.1088/1361-6528/acedb3
  25. Yue Gong, Tao He. Gaining Deep Understanding of Electrochemical CO 2 RR with In Situ/Operando Techniques. Small Methods 2023, 7 (11) https://doi.org/10.1002/smtd.202300702
  26. Yanzheng He, Sisi Liu, Mengfan Wang, Qiyang Cheng, Haoqing Ji, Tao Qian, Chenglin Yan. Advanced In Situ Characterization Techniques for Direct Observation of Gas‐Involved Electrochemical Reactions. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (6) https://doi.org/10.1002/eem2.12552
  27. Bashir Adegbemiga Yusuf, Waleed Yaseen, Suci Meng, Jimin Xie, Funmilayo O. Fapohunda, Rosalynn Nankya, Atika Ibrahim Muhammad, Meng Xie, Yuanguo Xu. Insights into the dynamic evolution of catalytic active centers of the electrocatalytic carbon dioxide reduction reaction. Coordination Chemistry Reviews 2023, 492 , 215273. https://doi.org/10.1016/j.ccr.2023.215273
  28. Shixian Xin, Ye Hu, Wenhui Fang, Jiaqi Dang, Ying Wu, Min Li, Wei Cui, Zengxi Li, Hong Zhao. Vitamin B12/carbon nanotubes composites for highly efficient CO2 electroreduction with in situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Electrochimica Acta 2023, 466 , 143024. https://doi.org/10.1016/j.electacta.2023.143024
  29. Reihaneh Amirbeigiarab, Jing Tian, Antonia Herzog, Canrong Qiu, Arno Bergmann, Beatriz Roldan Cuenya, Olaf M. Magnussen. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nature Catalysis 2023, 6 (9) , 837-846. https://doi.org/10.1038/s41929-023-01009-z
  30. Yongman Kim, Young Jae Kim, Jeong Young Park. Scanning tunneling microscopy under chemical reaction at solid–liquid and solid–gas interfaces. Chemical Physics Reviews 2023, 4 (3) https://doi.org/10.1063/5.0157597
  31. Xinyue Wang, Chenyan Guo, Bowen Zhu, Daizhen Xiao, Dunfeng Gao, Zhi Liu, Fan Yang. Reaction-induced iodine adsorption on Cu surfaces facilitates electrocatalytic CO2 reduction. The Journal of Chemical Physics 2023, 158 (20) https://doi.org/10.1063/5.0147300
  32. Mingpeng Chen, Di Liu, Lulu Qiao, Pengfei Zhou, Jinxian Feng, Kar Wei Ng, Qingju Liu, Shuangpeng Wang, Hui Pan. In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical Engineering Journal 2023, 461 , 141939. https://doi.org/10.1016/j.cej.2023.141939
  33. Panpan Feng, Dan Zhang, Peng Zhang, You Wang, Yang Gan. Nanoscale characterization of the heterogeneous interfacial oxidation layer of graphene/Cu based on a SEM electron beam induced reduction effect. Physical Chemistry Chemical Physics 2023, 25 (12) , 8816-8825. https://doi.org/10.1039/D2CP05809J
  34. Xinning Song, Liang Xu, Xiaofu Sun, Buxing Han. In situ/operando characterization techniques for electrochemical CO2 reduction. Science China Chemistry 2023, 66 (2) , 315-323. https://doi.org/10.1007/s11426-021-1463-6
  35. Bangwei Deng, Xueyang Zhao, Yizhao Li, Ming Huang, Shihan Zhang, Fan Dong. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Science China Chemistry 2023, 66 (1) , 78-95. https://doi.org/10.1007/s11426-022-1412-6
  36. Wenbin Wang, Junyuan Duan, Youwen Liu, Tianyou Zhai. Structural Reconstruction of Catalysts in Electroreduction Reaction: Identifying, Understanding, and Manipulating. Advanced Materials 2022, 34 (52) https://doi.org/10.1002/adma.202110699
  37. Yunchang Liang, Martina Lihter, Magalí Lingenfelder. Spin‐Control in Electrocatalysis for Clean Energy. Israel Journal of Chemistry 2022, 62 (11-12) https://doi.org/10.1002/ijch.202200052
  38. Xiaodeng Wang, Qi Hu, Guodong Li, Hengpan Yang, Chuanxin He. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. Electrochemical Energy Reviews 2022, 5 (S2) https://doi.org/10.1007/s41918-022-00171-5
  39. Shuaijie He, Mingjie Wu, Song Li, Zhiyi Jiang, Hanlie Hong, Sylvain G. Cloutier, Huaming Yang, Sasha Omanovic, Shuhui Sun, Gaixia Zhang. Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. Molecules 2022, 27 (24) , 8644. https://doi.org/10.3390/molecules27248644
  40. Chunyang Yin, Qing Li, Jun Zheng, Yaqiong Ni, Huiqiong Wu, Anna-Lena Kjøniksen, Chuntai Liu, Yongpeng Lei, Yi Zhang. Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Advanced Powder Materials 2022, 1 (4) , 100055. https://doi.org/10.1016/j.apmate.2022.100055
  41. Ifan E L Stephens, Karen Chan, Alexander Bagger, Shannon W Boettcher, Julien Bonin, Etienne Boutin, Aya K Buckley, Raffaella Buonsanti, Etosha R Cave, Xiaoxia Chang, See Wee Chee, Alisson H M da Silva, Phil de Luna, Oliver Einsle, Balázs Endrődi, Maria Escudero-Escribano, Jorge V Ferreira de Araujo, Marta C Figueiredo, Christopher Hahn, Kentaro U Hansen, Sophia Haussener, Sara Hunegnaw, Ziyang Huo, Yun Jeong Hwang, Csaba Janáky, Buddhinie S Jayathilake, Feng Jiao, Zarko P Jovanov, Parisa Karimi, Marc T M Koper, Kendra P Kuhl, Woong Hee Lee, Zhiqin Liang, Xuan Liu, Sichao Ma, Ming Ma, Hyung-Suk Oh, Marc Robert, Beatriz Roldan Cuenya, Jan Rossmeisl, Claudie Roy, Mary P Ryan, Edward H Sargent, Paula Sebastián-Pascual, Brian Seger, Ludmilla Steier, Peter Strasser, Ana Sofia Varela, Rafaël E Vos, Xue Wang, Bingjun Xu, Hossein Yadegari, Yuxiang Zhou. 2022 roadmap on low temperature electrochemical CO 2 reduction. Journal of Physics: Energy 2022, 4 (4) , 042003. https://doi.org/10.1088/2515-7655/ac7823
  42. Cornelius A. Obasanjo, Ali Shayesteh Zeraati, Hadi Shaker Shiran, Tu N. Nguyen, Sharif Md. Sadaf, Md Golam Kibria, Cao-Thang Dinh. In situ regeneration of copper catalysts for long-term electrochemical CO 2 reduction to multiple carbon products. Journal of Materials Chemistry A 2022, 10 (37) , 20059-20070. https://doi.org/10.1039/D2TA02709G
  43. Weiran Zheng, Lawrence Yoon Suk Lee. Observing Electrocatalytic Processes via In Situ Electrochemical Scanning Tunneling Microscopy: Latest Advances. Chemistry – An Asian Journal 2022, 17 (15) https://doi.org/10.1002/asia.202200384
  44. Sheena Louisia, Dohyung Kim, Yifan Li, Mengyu Gao, Sunmoon Yu, Inwhan Roh, Peidong Yang. The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO 2. Proceedings of the National Academy of Sciences 2022, 119 (18) https://doi.org/10.1073/pnas.2201922119
  45. Wenchuan Lai, Zesong Ma, Jiawei Zhang, Yuliang Yuan, Yan Qiao, Hongwen Huang. Dynamic Evolution of Active Sites in Electrocatalytic CO 2 Reduction Reaction: Fundamental Understanding and Recent Progress. Advanced Functional Materials 2022, 32 (16) https://doi.org/10.1002/adfm.202111193
  46. Paula Sebastián-Pascual, Yang Shao-Horn, María Escudero-Escribano. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Current Opinion in Electrochemistry 2022, 32 , 100918. https://doi.org/10.1016/j.coelec.2021.100918
  47. Shanghong Zeng, Heng Zhang, Yuansong Zhao, Lei Xue, Yanxin Wu, Yang Liu, Min Sun. Surfactant Controls Morphology and Oxidation State on CuO Crystallites for Electrocatalytic CO2 Reduction to C2H4. SSRN Electronic Journal 2022, 12 https://doi.org/10.2139/ssrn.4145227
  48. Huawen Hu, Jian Zhen Ou, Xuejun Xu, Yinlei Lin, Yuyuan Zhang, Hong Zhao, Dongchu Chen, Minghui He, Yugang Huang, Lifang Deng. Graphene-assisted construction of electrocatalysts for carbon dioxide reduction. Chemical Engineering Journal 2021, 425 , 130587. https://doi.org/10.1016/j.cej.2021.130587
  49. Luke Kuo, Cao-Thang Dinh. Toward efficient catalysts for electrochemical CO2 conversion to C2 products. Current Opinion in Electrochemistry 2021, 30 , 100807. https://doi.org/10.1016/j.coelec.2021.100807
  50. Da Li, Hao Zhang, Hang Xiang, Shahid Rasul, Jean-Marie Fontmorin, Paniz Izadi, Alberto Roldan, Rebecca Taylor, Yujie Feng, Liam Banerji, Alexander Cowan, Eileen Hao Yu, Jin Xuan. How to go beyond C 1 products with electrochemical reduction of CO 2. Sustainable Energy & Fuels 2021, 5 (23) , 5893-5914. https://doi.org/10.1039/D1SE00861G
  51. Yuqing Wang, Sebastian Amland Skaanvik, Xuya Xiong, Shuangyin Wang, Mingdong Dong. Scanning probe microscopy for electrocatalysis. Matter 2021, 4 (11) , 3483-3514. https://doi.org/10.1016/j.matt.2021.09.024
  52. Xueying Cao, Dongxing Tan, Bari Wulan, K.S. Hui, K.N. Hui, Jintao Zhang. In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction. Small Methods 2021, 5 (10) https://doi.org/10.1002/smtd.202100700
  53. Fabian Scholten, Khanh‐Ly C. Nguyen, Jared P. Bruce, Markus Heyde, Beatriz Roldan Cuenya. Identifying Structure–Selectivity Correlations in the Electrochemical Reduction of CO 2 : A Comparison of Well‐Ordered Atomically Clean and Chemically Etched Copper Single‐Crystal Surfaces. Angewandte Chemie 2021, 133 (35) , 19318-19324. https://doi.org/10.1002/ange.202103102
  54. Fabian Scholten, Khanh‐Ly C. Nguyen, Jared P. Bruce, Markus Heyde, Beatriz Roldan Cuenya. Identifying Structure–Selectivity Correlations in the Electrochemical Reduction of CO 2 : A Comparison of Well‐Ordered Atomically Clean and Chemically Etched Copper Single‐Crystal Surfaces. Angewandte Chemie International Edition 2021, 60 (35) , 19169-19175. https://doi.org/10.1002/anie.202103102
  55. Williane da Silva Freitas, Alessandra D’Epifanio, Barbara Mecheri. Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization. Journal of CO2 Utilization 2021, 50 , 101579. https://doi.org/10.1016/j.jcou.2021.101579
  56. Hongyu An, Longfei Wu, Laurens D. B. Mandemaker, Shuang Yang, Jim de Ruiter, Jochem H. J. Wijten, Joris C. L. Janssens, Thomas Hartman, Ward van der Stam, Bert M. Weckhuysen. Sub‐Second Time‐Resolved Surface‐Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO 2 Reduction on Copper. Angewandte Chemie 2021, 133 (30) , 16712-16720. https://doi.org/10.1002/ange.202104114
  57. Hongyu An, Longfei Wu, Laurens D. B. Mandemaker, Shuang Yang, Jim de Ruiter, Jochem H. J. Wijten, Joris C. L. Janssens, Thomas Hartman, Ward van der Stam, Bert M. Weckhuysen. Sub‐Second Time‐Resolved Surface‐Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO 2 Reduction on Copper. Angewandte Chemie International Edition 2021, 60 (30) , 16576-16584. https://doi.org/10.1002/anie.202104114
  • Abstract

    Figure 1

    Figure 1. (a–c) Scheme and ex situ AFM images with corresponding height profiles showing the CuNCs formed on a pristine polycrystalline Cu-foil (p-Cu) and a graphene-covered (g-Cu) after polarization at −1 V vs a Pt pseudoreference electrode in a 0.1 M CO2-saturated KHCO3 solution for 4 h. (d) Potential-dependent product analysis on g-Cu performed using gas chromatography and high-performance liquid chromatography after chronoamperometric polarization in 0.1 M CO2-saturated KHCO3.

    Figure 2

    Figure 2. (a) Schemes illustrating STM imaging of g-Cu: by changing the STM scanning parameters, we visualize either the Cu surface underneath graphene or the atomic lattice of the graphene overlayer. (b–i) Series of EC-STM images showing the morphological evolution of a g-Cu surface during CO2RR in 0.1 M CO2-saturated KHCO3: (b–f) from polycrystalline Cu to Cu(100) facets and (g–i) to nanocuboids. Ucell = −1.0 V vs Pt pseudo-RE, Ubias = 328 mV, I = 1.75 nA. (f′) Atomic lattice of the graphene overlayer recorded on top of Cu(100) facets confirming the presence of graphene during reconstruction. (j) Operando Raman spectra of g-Cu obtained during reconstruction, illustrated in EC-STM images from panels b–i, showing the immediate reduction of native CuxO to metallic Cu and the presence of graphene during CuNC formation on g-Cu.

    Figure 3

    Figure 3. Ex situ STM images showing graphene (a) before and (b) after reconstruction to g-CuNCs. Ubias = 0.1 mV, I = 10.5 nA. (c) Ex situ Raman spectra of pristine g-Cu and g-CuNCs. The gray band highlights the wavenumber where the D band is usually observed. (d) ECSA-corrected linear sweep voltammograms obtained for pristine g-Cu, g-CuNCs, and HOPG.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 41 other publications.

    1. 1
      Lim, X. How to Make the Most of Carbon Dioxide. Nature 2015, 526 (7575), 628,  DOI: 10.1038/526628a
    2. 2
      Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Enhanced Formation of Ethylene and Alcohols at Ambient Temperature and Pressure in Electrochemical Reduction of Carbon Dioxide at a Copper Electrode. J. Chem. Soc., Chem. Commun. 1988, (1), 1719,  DOI: 10.1039/c39880000017
    3. 3
      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3 (9), 13111315,  DOI: 10.1039/c0ee00071j
    4. 4
      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. Energy Environ. Sci. 2012, 5 (5), 70507059,  DOI: 10.1039/c2ee21234j
    5. 5
      Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of Carbon Monoxide to Methane and Ethylene at a Copper Electrode in Aqueous Solutions at Ambient Temperature and Pressure. J. Am. Chem. Soc. 1987, 109 (16), 50225023,  DOI: 10.1021/ja00250a044
    6. 6
      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 Reduction: Classifying Cu Facets. ACS Catal. 2019, 9 (9), 78947899,  DOI: 10.1021/acscatal.9b01899
    7. 7
      Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. Angew. Chem., Int. Ed. 2016, 55 (19), 57895792,  DOI: 10.1002/anie.201601582
    8. 8
      Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo, M.; Zhou, H.; Li, F.; Lum, Y.; McCallum, C.; Xu, Y.; Liu, M.; Proppe, A.; Johnston, A.; Todorovic, P.; Zhuang, T.-T.; Sinton, D.; Kelley, S. O.; Sargent, E. H. Catalyst Synthesis under CO2 Electroreduction Favours Faceting and Promotes Renewable Fuels Electrosynthesis. Nat. Catal. 2020, 3 (2), 98106,  DOI: 10.1038/s41929-019-0397-1
    9. 9
      Kwon, Y.; Lum, Y.; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper. ChemElectroChem 2016, 3 (6), 10121019,  DOI: 10.1002/celc.201600068
    10. 10
      Kas, R.; Kortlever, R.; Yılmaz, H.; Koper, M. T. M.; Mul, G. Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO2 Electroreduction by Process Conditions. ChemElectroChem 2015, 2 (3), 354358,  DOI: 10.1002/celc.201402373
    11. 11
      Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Stable and Selective Electrochemical Reduction of Carbon Dioxide to Ethylene on Copper Mesocrystals. Catal. Sci. Technol. 2015, 5 (1), 161168,  DOI: 10.1039/C4CY00906A
    12. 12
      Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2–C3 Products. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (40), 1056010565,  DOI: 10.1073/pnas.1711493114
    13. 13
      Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H.-S.; Min, B. K.; Hwang, Y. J. Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C-C Coupling from CO2 Reduction Reaction. J. Am. Chem. Soc. 2019, 141, 4624,  DOI: 10.1021/jacs.8b11237
    14. 14
      Huang, J.; Hormann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-Induced Nanoclustering of Metallic Catalysts during Electrochemical CO2 Reduction. Nat. Commun. 2018, 9 (1), 3117,  DOI: 10.1038/s41467-018-05544-3
    15. 15
      Kim, Y.-G.; Baricuatro, J. H.; Javier, A.; Gregoire, J. M.; Soriaga, M. P. The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO2RR Potential: A Study by Operando EC-STM. Langmuir 2014, 30 (50), 1505315056,  DOI: 10.1021/la504445g
    16. 16
      Gunathunge, C. M.; Li, X.; Li, J.; Hicks, R. P.; Ovalle, V. J.; Waegele, M. M. Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction. J. Phys. Chem. C 2017, 121 (22), 1233712344,  DOI: 10.1021/acs.jpcc.7b03910
    17. 17
      Kim, Y.-G.; Baricuatro, J. H.; Soriaga, M. P. Surface Reconstruction of Polycrystalline Cu Electrodes in Aqueous KHCO3 Electrolyte at Potentials in the Early Stages of CO2 Reduction. Electrocatalysis 2018, 9, 526530,  DOI: 10.1007/s12678-018-0469-z
    18. 18
      Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size and Support Effects. Angew. Chem., Int. Ed. 2018, 57 (21), 61926197,  DOI: 10.1002/anie.201802083
    19. 19
      Moller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A. S.; Strasser, P. Electrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity Using Operando Spectroscopy. Angew. Chem., Int. Ed. 2020, 59 (41), 1797417983,  DOI: 10.1002/anie.202007136
    20. 20
      Li, Y.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-Fold Twinned Copper Nanowires. Nano Lett. 2017, 17 (2), 13121317,  DOI: 10.1021/acs.nanolett.6b05287
    21. 21
      Hong, J.; Lee, S.; Lee, S.; Han, H.; Mahata, C.; Yeon, H.-W.; Koo, B.; Kim, S.-I.; Nam, T.; Byun, K.; Min, B.-W.; Kim, Y.-W.; Kim, H.; Joo, Y.-C.; Lee, T. Graphene as an Atomically Thin Barrier to Cu Diffusion into Si. Nanoscale 2014, 6 (13), 75037511,  DOI: 10.1039/C3NR06771H
    22. 22
      Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; LI, X.; Manguson, C. W.; Velamakanni, A.; Pinert, R. D.; Kang, J.; Park, J.; Ruoff, R. S. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5 (2), 13211327,  DOI: 10.1021/nn103028d
    23. 23
      Kim, S. M.; Hsu, A.; Lee, Y.-H.; Dresselhaus, M.; Palacios, T.; Kim, K. K.; Kong, J. The Effect of Copper Pre-Cleaning on Graphene Synthesis. Nanotechnology 2013, 24 (36), 365602,  DOI: 10.1088/0957-4484/24/36/365602
    24. 24
      Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer, H. M.; Chi, M.; Ma, C.; Sumpter, B. G.; Rondinone, A. J. High-Selectivity Electrochemical Conversion of CO2 to Ethanol Using a Copper Nanoparticle/N-Doped Graphene Electrode. ChemistrySelect 2016, 1 (19), 60556061,  DOI: 10.1002/slct.201601169
    25. 25
      Geioushy, R. A.; Khaled, M. M.; Hakeem, A. S.; Alhooshani, K.; Basheer, C. High Efficiency Graphene/Cu2O Electrode for the Electrochemical Reduction of Carbon Dioxide to Ethanol. J. Electroanal. Chem. 2017, 785, 138143,  DOI: 10.1016/j.jelechem.2016.12.029
    26. 26
      McCrum, I. T.; Bondue, C. J.; Koper, M. T. M. Hydrogen-Induced Step-Edge Roughening of Platinum Electrode Surfaces. J. Phys. Chem. Lett. 2019, 10 (21), 68426849,  DOI: 10.1021/acs.jpclett.9b02544
    27. 27
      Yin, X.; Li, Y.; Ke, F.; Lin, C.; Zhao, H.; Gan, L.; Luo, Z.; Zhao, R.; Heinz, T. F.; Hu, Z. Evolution of the Raman Spectrum of Graphene Grown on Copper upon Oxidation of the Substrate. Nano Res. 2014, 7 (11), 16131622,  DOI: 10.1007/s12274-014-0521-0
    28. 28
      Lee, U.; Han, Y.; Lee, S.; Kim, J. S.; Lee, Y. H.; Kim, U. J.; Son, H. Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS Nano 2020, 14 (1), 919926,  DOI: 10.1021/acsnano.9b08205
    29. 29
      Scott, S. B.; Hogg, T. V.; Landers, A. T.; Maagaard, T.; Bertheussen, E.; Lin, J. C.; Davis, R. C.; Beeman, J. W.; Higgins, D.; Drisdell, W. S.; Hahn, C.; Mehta, A.; Seger, B.; Jaramillo, T. F.; Chorkendorff, I. Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Lett. 2019, 4 (3), 803804,  DOI: 10.1021/acsenergylett.9b00172
    30. 30
      Costa, S. D.; Righi, A.; Fantini, C.; Hao, Y.; Magnuson, C.; Colombo, L.; Ruoff, R. S.; Pimenta, M. A. Resonant Raman Spectroscopy of Graphene Grown on Copper Substrates. Solid State Commun. 2012, 152 (15), 13171320,  DOI: 10.1016/j.ssc.2012.05.001
    31. 31
      Thevenon, A.; Rosas-Hernández, A.; Peters, J. C.; Agapie, T. In-Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO2 Reduction to Ethylene. Angew. Chem., Int. Ed. 2019, 58 (47), 1695216958,  DOI: 10.1002/anie.201907935
    32. 32
      Schwoebel, R. L.; Shipsey, E. J. Step Motion on Crystal Surfaces. J. Appl. Phys. 1966, 37, 36823686,  DOI: 10.1063/1.1707904
    33. 33
      Ehrlich, G.; Hudda, F. G. Atomic View of Surface Self-Diffusion: Tungsten on Tungsten. J. Chem. Phys. 1966, 44 (3), 10391049,  DOI: 10.1063/1.1726787
    34. 34
      Girard, J. C.; Samson, Y.; Gauthier, S.; Roussel, S.; Klein, J. STM Study of the Nucleation and Annealing of Ion Bombardment Induced Defects on Cu(100). Surf. Sci. 1994, 302 (1), 7380,  DOI: 10.1016/0039-6028(94)91098-7
    35. 35
      Hannon, J. B.; Klünker, C.; Giesen, M.; Ibach, H.; Bartelt, N. C.; Hamilton, J. C. Surface Self-Diffusion by Vacancy Motion: Island Ripening on Cu(001). Phys. Rev. Lett. 1997, 79 (13), 25062509,  DOI: 10.1103/PhysRevLett.79.2506
    36. 36
      Speck, F. D.; Cherevko, S. Electrochemical Copper Dissolution: A Benchmark for Stable CO2 Reduction on Copper Electrocatalysts. Electrochem. Commun. 2020, 115, 106739,  DOI: 10.1016/j.elecom.2020.106739
    37. 37
      Dakkouri, A. S.; Kolb, D. M. Reconstruction of Gold Surfaces. In Interfacial Electrochemistry: Theory, Experiments, and Applications; Wieckowski, A., Ed.; Marcel Dekker Inc.: New York, 1999; pp 151173.
    38. 38
      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610,  DOI: 10.1021/acs.chemrev.8b00705
    39. 39
      Li, H.; Xiao, J.; Fu, Q.; Bao, X. Confined Catalysis under Two-Dimensional Materials. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (23), 59305934,  DOI: 10.1073/pnas.1701280114
    40. 40
      Wordsworth, J.; Benedetti, T. M.; Alinezhad, A.; Tilley, R. D.; Edwards, M. A.; Schuhmann, W.; Gooding, J. J. The Importance of Nanoscale Confinement to Electrocatalytic Performance. Chem. Sci. 2020, 11 (5), 12331240,  DOI: 10.1039/C9SC05611D
    41. 41
      Álvarez-Moreno, M.; de Graaf, C.; López, N.; Maseras, F.; Poblet, J. M.; Bo, C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55 (1), 95103,  DOI: 10.1021/ci500593j
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04703.

    • Experimental details and additional data, AFM images, EC-STM images, Raman spectra, electrostatic energy, modeled surface energies, capacitive scans, and supporting discussions (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.