ACS Publications. Most Trusted. Most Cited. Most Read
Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride
My Activity
    Letter

    Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride
    Click to copy article linkArticle link copied!

    • Chi Li
      Chi Li
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
      More by Chi Li
    • Noah Mendelson
      Noah Mendelson
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
    • Ritika Ritika
      Ritika Ritika
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
    • YongLiang Chen
      YongLiang Chen
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
    • Zai-Quan Xu
      Zai-Quan Xu
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
      More by Zai-Quan Xu
    • Milos Toth
      Milos Toth
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
      ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
      More by Milos Toth
    • Igor Aharonovich*
      Igor Aharonovich
      School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
      ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
      *Email: [email protected]
    Other Access OptionsSupporting Information (2)

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 8, 3626–3632
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.1c00685
    Published April 19, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We demonstrate the fabrication of large-scale arrays of single-photon emitters (SPEs) in hexagonal boron nitride (hBN). Bottom-up growth of hBN onto nanoscale arrays of dielectric pillars yields corresponding arrays of hBN emitters at the pillar sites. Statistical analysis shows that the pillar diameter is critical for isolating single defects, and diameters of ∼250 nm produce a near-unity yield of a single emitter at each pillar site. Our results constitute a promising route toward spatially controlled generation of hBN SPEs and provide an effective and efficient method to create large-scale SPE arrays. The results pave the way to scalability and high throughput fabrication of SPEs for advanced quantum photonic applications.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00685.

    • Videos of wide-field imaging (MP4)

    • Sample fabrication process and SEM images of pillars; statistics of PL intensity from Figure 2a; experimental data and related discussion of CVD and exfoliated hBN that have been transferred to pillars, including AFM, PL, and Raman mapping (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Haidong Liang, Yuan Chen, Leyi Loh, Nicholas Lin Quan Cheng, Dmitrii Litvinov, Chengyuan Yang, Yifeng Chen, Zhepeng Zhang, Kenji Watanabe, Takashi Taniguchi, Maciej Koperski, Su Ying Quek, Michel Bosman, Goki Eda, Andrew Anthony Bettiol. Site-Selective Creation of Blue Emitters in Hexagonal Boron Nitride. ACS Nano 2025, 19 (15) , 15130-15138. https://doi.org/10.1021/acsnano.5c03423
    2. Karin Yamamura, Shu An, Ivan Zhigulin, Mehran Kianinia, Yiming Wu, Zhaogang Dong, Igor Aharonovich. Toward Emission Enhancement of Blue Emitters in hBN Using Plasmonic Lattices. ACS Applied Optical Materials 2025, 3 (1) , 64-69. https://doi.org/10.1021/acsaom.4c00401
    3. Mashnoon Alam Sakib, Brandon Triplett, William Harris, Naveed Hussain, Alexander Senichev, Melika Momenzadeh, Joshua Bocanegra, Polina Vabishchevich, Ruqian Wu, Alexandra Boltasseva, Vladimir M. Shalaev, Maxim R. Shcherbakov. Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride. Nano Letters 2024, 24 (40) , 12390-12397. https://doi.org/10.1021/acs.nanolett.4c02581
    4. Tom Kretzschmar, Sebastian Ritter, Anand Kumar, Tobias Vogl, Falk Eilenberger, Falko Schmidt. Quantitative Investigation of Quantum Emitter Yield in Drop-Casted Hexagonal Boron Nitride Nanoflakes. ACS Applied Optical Materials 2024, 2 (7) , 1427-1435. https://doi.org/10.1021/acsaom.4c00200
    5. Yabin Wang, Ze Yu, Carlas S. Smith, Sabina Caneva. Site-Specific Integration of Hexagonal Boron Nitride Quantum Emitters on 2D DNA Origami Nanopores. Nano Letters 2024, 24 (28) , 8510-8517. https://doi.org/10.1021/acs.nanolett.4c00673
    6. Chun-An Chen, Po-Han Chen, Yu-Xiang Zheng, Chiao-Han Chen, Mong-Kai Hsu, Kai-Chieh Hsu, Ying-Yu Lai, Chih-Sung Chuu, Hui Deng, Yi-Hsien Lee. Tunable Single-Photon Emission with Wafer-Scale Plasmonic Array. Nano Letters 2024, 24 (11) , 3395-3403. https://doi.org/10.1021/acs.nanolett.3c05155
    7. Weijun Luo, Benjamin J. Lawrie, Alexander A. Puretzky, Qishuo Tan, Hongze Gao, David B. Lingerfelt, Gage Eichman, Edward Mcgee, Anna K. Swan, Liangbo Liang, Xi Ling. Imaging Strain-Localized Single-Photon Emitters in Layered GaSe below the Diffraction Limit. ACS Nano 2023, 17 (23) , 23455-23465. https://doi.org/10.1021/acsnano.3c05250
    8. Michael Neumann, Xu Wei, Luis Morales-Inostroza, Seunghyun Song, Sung-Gyu Lee, Kenji Watanabe, Takashi Taniguchi, Stephan Götzinger, Young Hee Lee. Organic Molecules as Origin of Visible-Range Single Photon Emission from Hexagonal Boron Nitride and Mica. ACS Nano 2023, 17 (12) , 11679-11691. https://doi.org/10.1021/acsnano.3c02348
    9. Hongbing Cai, Shihao Ru, Zhengzhi Jiang, John Jun Hong Eng, Ruihua He, Fu-li Li, Yansong Miao, Jesús Zúñiga-Pérez, Weibo Gao. Spin Defects in hBN assisted by Metallic Nanotrenches for Quantum Sensing. Nano Letters 2023, 23 (11) , 4991-4996. https://doi.org/10.1021/acs.nanolett.3c00849
    10. Johann A. Preuß, Helge Gehring, Robert Schmidt, Lin Jin, Daniel Wendland, Johannes Kern, Wolfram H. P. Pernice, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch. Low-Divergence hBN Single-Photon Source with a 3D-Printed Low-Fluorescence Elliptical Polymer Microlens. Nano Letters 2023, 23 (2) , 407-413. https://doi.org/10.1021/acs.nanolett.2c03001
    11. Xiaohui Xu, Abhishek B. Solanki, Demid Sychev, Xingyu Gao, Samuel Peana, Aleksandr S. Baburin, Karthik Pagadala, Zachariah O. Martin, Sarah N. Chowdhury, Yong P. Chen, Takashi Taniguchi, Kenji Watanabe, Ilya A. Rodionov, Alexander V. Kildishev, Tongcang Li, Pramey Upadhyaya, Alexandra Boltasseva, Vladimir M. Shalaev. Greatly Enhanced Emission from Spin Defects in Hexagonal Boron Nitride Enabled by a Low-Loss Plasmonic Nanocavity. Nano Letters 2023, 23 (1) , 25-33. https://doi.org/10.1021/acs.nanolett.2c03100
    12. Igor Aharonovich, Jean-Philippe Tetienne, Milos Toth. Quantum Emitters in Hexagonal Boron Nitride. Nano Letters 2022, 22 (23) , 9227-9235. https://doi.org/10.1021/acs.nanolett.2c03743
    13. Lin Gan, Danyang Zhang, Ruiling Zhang, Qiyao Zhang, Hao Sun, Yongzhuo Li, Cun-Zheng Ning. Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room Temperature in Hexagonal Boron Nitride. ACS Nano 2022, 16 (9) , 14254-14261. https://doi.org/10.1021/acsnano.2c04386
    14. Chenhui Liang, Yating Sha, Jingxian Huang, Chao Zhang, Shubin Su, Hao Li, Guohua Wang, Kaihui Liu, Fei Wang, Haomin Wang, Weidong Luo, Guorui Chen, Tianru Wu, Xiaoming Xie, Dong Qian, Haihua Tao. Oxidizing Hexagonal Boron Nitride into Fluorescent Structures by Photodissociated Directional Oxygen Radical. The Journal of Physical Chemistry Letters 2022, 13 (15) , 3369-3376. https://doi.org/10.1021/acs.jpclett.2c00284
    15. Evgenii Glushkov, Michal Macha, Esther Räth, Vytautas Navikas, Nathan Ronceray, Cheol Yeon Cheon, Aqeel Ahmed, Ahmet Avsar, Kenji Watanabe, Takashi Taniguchi, Ivan Shorubalko, Andras Kis, Georg Fantner, Aleksandra Radenovic. Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water. ACS Nano 2022, 16 (3) , 3695-3703. https://doi.org/10.1021/acsnano.1c07086
    16. Hongwei Liu, Noah Mendelson, Irfan H. Abidi, Shaobo Li, Zhenjing Liu, Yuting Cai, Kenan Zhang, Jiawen You, Mohsen Tamtaji, Hoilun Wong, Yao Ding, Guojie Chen, Igor Aharonovich, Zhengtang Luo. Rational Control on Quantum Emitter Formation in Carbon-Doped Monolayer Hexagonal Boron Nitride. ACS Applied Materials & Interfaces 2022, 14 (2) , 3189-3198. https://doi.org/10.1021/acsami.1c21781
    17. Chi Li, Johannes E. Fröch, Milad Nonahal, Thinh N. Tran, Milos Toth, Sejeong Kim, Igor Aharonovich. Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides. ACS Photonics 2021, 8 (10) , 2966-2972. https://doi.org/10.1021/acsphotonics.1c00890
    18. Xiaohui Xu, Zachariah O. Martin, Demid Sychev, Alexei S. Lagutchev, Yong P. Chen, Takashi Taniguchi, Kenji Watanabe, Vladimir M. Shalaev, Alexandra Boltasseva. Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. Nano Letters 2021, 21 (19) , 8182-8189. https://doi.org/10.1021/acs.nanolett.1c02640
    19. D. Litvinov, A. Wu, M. Barbosa, K. Vaklinova, M. Grzeszczyk, G. Baldi, M. Zhu, M. Koperski. Single photon sources and single electron transistors in two-dimensional materials. Materials Science and Engineering: R: Reports 2025, 163 , 100928. https://doi.org/10.1016/j.mser.2025.100928
    20. Sofiya Karankova, Yeunjeong Lee, Chaun Jang, Yong‐Won Song, Hyowon Moon. One‐Step Creation of Quantum Emitter Arrays in Hexagonal Boron Nitride by Local Stress Application. Advanced Optical Materials 2025, 13 (11) https://doi.org/10.1002/adom.202403018
    21. Guan-Lin 冠麟 Liu 刘, Ji-Lian 辑廉 Xu 徐, Peng-Tao 鹏涛 Jing 景, Jing-Jing 京京 Shao 邵, Xu 旭 Guo 郭, Yun-Tao 韵涛 Wu 吴, Feng 凤 Qin 覃, Zhen 祯 Cheng 程, Deming 德明 Liu 刘, Yang 洋 Bao 鲍, Hai 海 Xu 徐, Li-Gong 立功 Zhang 张, Da 达 Zhan 詹, Jia-Xu 家旭 Yan 闫, Lei 雷 Liu 刘, De-Zhen 德振 Shen 申. Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride. Chinese Physics B 2025, 34 (5) , 057801. https://doi.org/10.1088/1674-1056/adbee7
    22. Thi Ngoc Anh Mai, Md Shakhawath Hossain, Nhat Minh Nguyen, Yongliang Chen, Chaohao Chen, Xiaoxue Xu, Quang Thang Trinh, Toan Dinh, Toan Trong Tran. Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications. Advanced Functional Materials 2025, 12 https://doi.org/10.1002/adfm.202500714
    23. A. Mark Fox. Solid‐State Quantum Emitters. Advanced Quantum Technologies 2025, 8 (2) https://doi.org/10.1002/qute.202300390
    24. Mads A. Jørgensen, Devashish Pandey, Ehsan Amooghorban, Sanshui Xiao, Nicolas Stenger, Martijn Wubs. Collective single-photon emission and energy transfer in thin-layer dielectric and plasmonic systems. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0524
    25. Jae-Pil So. Deterministic generation and nanophotonic integration of 2D quantum emitters for advanced quantum photonic functionalities. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0629
    26. Jinli Chen, Chaohan Cui, Ben Lawrie, Yongzhou Xue, Saikat Guha, Matt Eichenfield, Huan Zhao, Xiaodong Yan. Low-dimensional solid-state single-photon emitters. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0569
    27. Katja Barthelmi, Tomer Amit, Lukas Sigl, Mirco Troue, Thomas Klokkers, Anna Herrmann, Takashi Taniguchi, Kenji Watanabe, Jonathan Finley, Christoph Kastl, Sivan Refaely-Abramson, Alexander Holleitner. Spectrally resolved far-field emission pattern of single photon emitters in Mo S 2 . Physical Review Materials 2025, 9 (1) https://doi.org/10.1103/PhysRevMaterials.9.016201
    28. Anhan Liu, Xiaowei Zhang, Ziyu Liu, Yuning Li, Xueyang Peng, Xin Li, Yue Qin, Chen Hu, Yanqing Qiu, Han Jiang, Yang Wang, Yifan Li, Jun Tang, Jun Liu, Hao Guo, Tao Deng, Songang Peng, He Tian, Tian-Ling Ren. The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters 2024, 16 (1) https://doi.org/10.1007/s40820-023-01273-5
    29. T. Thu Ha Do, Milad Nonahal, Chi Li, Vytautas Valuckas, Hark Hoe Tan, Arseniy I. Kuznetsov, Hai Son Nguyen, Igor Aharonovich, Son Tung Ha. Room-temperature strong coupling in a single-photon emitter-metasurface system. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46544-w
    30. Leyi Loh, Junyong Wang, Magdalena Grzeszczyk, Maciej Koperski, Goki Eda. Towards quantum light-emitting devices based on van der Waals materials. Nature Reviews Electrical Engineering 2024, 1 (12) , 815-829. https://doi.org/10.1038/s44287-024-00108-8
    31. Xiaohui Lu, Zheng Li. Patterned microarrays or nanoscale assemblies for optical sensing of biomarkers. TrAC Trends in Analytical Chemistry 2024, 179 , 117873. https://doi.org/10.1016/j.trac.2024.117873
    32. Jiaojian Shi, Yuejun Shen, Feng Pan, Weiwei Sun, Anudeep Mangu, Cindy Shi, Amy McKeown-Green, Parivash Moradifar, Moungi G. Bawendi, W. E. Moerner, Jennifer A. Dionne, Fang Liu, Aaron M. Lindenberg. Solution-phase sample-averaged single-particle spectroscopy of quantum emitters with femtosecond resolution. Nature Materials 2024, 23 (8) , 1063-1069. https://doi.org/10.1038/s41563-024-01855-7
    33. Madhava Krishna Prasad, Mike P. C. Taverne, Chung-Che Huang, Jonathan D. Mar, Ying-Lung Daniel Ho. Hexagonal Boron Nitride Based Photonic Quantum Technologies. Materials 2024, 17 (16) , 4122. https://doi.org/10.3390/ma17164122
    34. Martin Esmann, Stephen C. Wein, Carlos Antón‐Solanas. Solid‐State Single‐Photon Sources: Recent Advances for Novel Quantum Materials. Advanced Functional Materials 2024, 34 (30) https://doi.org/10.1002/adfm.202315936
    35. Cong Su, Eli Janzen, Mingze He, Chi Li, Alex Zettl, Joshua D. Caldwell, James H. Edgar, Igor Aharonovich. Fundamentals and emerging optical applications of hexagonal boron nitride: a tutorial. Advances in Optics and Photonics 2024, 16 (2) , 229. https://doi.org/10.1364/AOP.502922
    36. Jinyong Ma, Jihua Zhang, Jake Horder, Andrey A. Sukhorukov, Milos Toth, Dragomir N. Neshev, Igor Aharonovich. Engineering Quantum Light Sources with Flat Optics. Advanced Materials 2024, 36 (23) https://doi.org/10.1002/adma.202313589
    37. Giacomo Venturi, Stefano Chiodini, Nicola Melchioni, Eli Janzen, James H. Edgar, Carsten Ronning, Antonio Ambrosio. Selective Generation of Luminescent Defects in Hexagonal Boron Nitride. Laser & Photonics Reviews 2024, 18 (6) https://doi.org/10.1002/lpor.202300973
    38. Guan‐Lin Liu, Xin‐Yu Wu, Peng‐Tao Jing, Zhen Cheng, Da Zhan, Yang Bao, Jia‐Xu Yan, Hai Xu, Li‐Gong Zhang, Bing‐Hui Li, Ke‐Wei Liu, Lei Liu, De‐Zhen Shen. Single Photon Emitters in Hexagonal Boron Nitride Fabricated by Focused Helium Ion Beam. Advanced Optical Materials 2024, 12 (9) https://doi.org/10.1002/adom.202302083
    39. Salvatore Cianci, Elena Blundo, Marco Felici. One (photon), two(-dimensional crystals), a lot (of potential): a quick snapshot of a rapidly evolving field. Nano Futures 2024, 8 (1) , 012001. https://doi.org/10.1088/2399-1984/ad285b
    40. Mashnoon Alam Sakib, Brandon Triplett, Naveed Hussain, Alexander Senichev, Xiaohui Xu, Melika Momenzadeh, Alexandra Boltasseva, Vladimir M. Shalaev, Maxim R. Shcherbakov. Site-Controlled Plasmon-Assisted Single Photon Emission in Locally Strained Few-Layer Hexagonal Boron Nitride. 2024, FM2F.5. https://doi.org/10.1364/CLEO_FS.2024.FM2F.5
    41. Xiao-Jie Wang, Jia-Tai Huang, Hong-Hua Fang, Yun Zhao, Yuan Chai, Ben-Feng Bai, Hong-Bo Sun. Enhanced brightness of quantum emitters via in situ coupling to the dielectric microsphere. Applied Physics Letters 2023, 123 (13) https://doi.org/10.1063/5.0161940
    42. Moritz Fischer, Ali Sajid, Jake Iles-Smith, Alexander Hötger, Denys I. Miakota, Mark K. Svendsen, Christoph Kastl, Stela Canulescu, Sanshui Xiao, Martijn Wubs, Kristian S. Thygesen, Alexander W. Holleitner, Nicolas Stenger. Combining experiments on luminescent centres in hexagonal boron nitride with the polaron model and ab initio methods towards the identification of their microscopic origin. Nanoscale 2023, 15 (34) , 14215-14226. https://doi.org/10.1039/D3NR01511D
    43. M. Iqbal Bakti Utama, Anushka Dasgupta, Riddhi Ananth, Emily A. Weiss, Tobin J. Marks, Mark C. Hersam. Mixed-dimensional heterostructures for quantum photonic science and technology. MRS Bulletin 2023, 48 (9) , 905-913. https://doi.org/10.1557/s43577-023-00584-7
    44. Suk Hyun Kim, Kyeong Ho Park, Young Gie Lee, Seong Jun Kang, Yongsup Park, Young Duck Kim. Color Centers in Hexagonal Boron Nitride. Nanomaterials 2023, 13 (16) , 2344. https://doi.org/10.3390/nano13162344
    45. Arnab Pal, Shuo Zhang, Tanmay Chavan, Kunjesh Agashiwala, Chao‐Hui Yeh, Wei Cao, Kaustav Banerjee. Quantum‐Engineered Devices Based on 2D Materials for Next‐Generation Information Processing and Storage. Advanced Materials 2023, 35 (27) https://doi.org/10.1002/adma.202109894
    46. Anand Kumar, Chanaprom Cholsuk, Ashkan Zand, Mohammad N. Mishuk, Tjorben Matthes, Falk Eilenberger, Sujin Suwanna, Tobias Vogl. Localized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride. APL Materials 2023, 11 (7) https://doi.org/10.1063/5.0147560
    47. Gia Long Ngo, Long Nguyen, Jean-Pierre Hermier, Ngoc Diep Lai. On-Chip 3D Printing of Polymer Waveguide-Coupled Single-Photon Emitter Based on Colloidal Quantum Dots. Polymers 2023, 15 (9) , 2201. https://doi.org/10.3390/polym15092201
    48. Gia Long Ngo, Jean-Pierre Hermier, Ngoc Diep Lai. Single-photon splitting by polymeric submicropillars structures. AVS Quantum Science 2023, 5 (1) https://doi.org/10.1116/5.0135915
    49. Nico S. Baßler, Michael Reitz, Kai Phillip Schmidt, Claudiu Genes. Linear optical elements based on cooperative subwavelength emitter arrays. Optics Express 2023, 31 (4) , 6003. https://doi.org/10.1364/OE.476830
    50. Jaehyuck Jang, Minsu Jeong, Jihae Lee, Seokwoo Kim, Huichang Yun, Junsuk Rho. Planar Optical Cavities Hybridized with Low‐Dimensional Light‐Emitting Materials. Advanced Materials 2023, 35 (4) https://doi.org/10.1002/adma.202203889
    51. Benjamin Lawrie, Weijun Luo, Alexander Puretzky, Gage Eichman, Xi Ling. Hyperspectral Cathodoluminescence Imaging of Strain Localized Quantum Emitters in Multilayer GaSe. 2023, FM1E.4. https://doi.org/10.1364/CLEO_FS.2023.FM1E.4
    52. Weijun Luo, Alexander Puretzky, Benjamin Lawrie, Xi Ling. Electrically Tunable Single Photon Brightness and Purity in Multilayer GaSe. 2023, FM1E.7. https://doi.org/10.1364/CLEO_FS.2023.FM1E.7
    53. Stuart J. Masson, Ana Asenjo-Garcia. Universality of Dicke superradiance in arrays of quantum emitters. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29805-4
    54. Jaewook Lee, Huijin Park, Hosung Seo. First-principles theory of extending the spin qubit coherence time in hexagonal boron nitride. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00336-2
    55. Chao Zhang, Zhiyuan Shi, Tianru Wu, Xiaoming Xie. Microstructure Engineering of Hexagonal Boron Nitride for Single‐Photon Emitter Applications. Advanced Optical Materials 2022, 10 (17) https://doi.org/10.1002/adom.202200207
    56. Wei Liu, Nai-Jie Guo, Shang Yu, Yu Meng, Zhi-Peng Li, Yuan-Ze Yang, Zhao-An Wang, Xiao-Dong Zeng, Lin-Ke Xie, Qiang Li, Jun-Feng Wang, Jin-Shi Xu, Yi-Tao Wang, Jian-Shun Tang, Chuan-Feng Li, Guang-Can Guo. Spin-active defects in hexagonal boron nitride. Materials for Quantum Technology 2022, 2 (3) , 032002. https://doi.org/10.1088/2633-4356/ac7e9f
    57. Rachael Klaiss, Joshua Ziegler, David Miller, Kara Zappitelli, Kenji Watanabe, Takashi Taniguchi, Benjamín Alemán. Uncovering the morphological effects of high-energy Ga+ focused ion beam milling on hBN single-photon emitter fabrication. The Journal of Chemical Physics 2022, 157 (7) https://doi.org/10.1063/5.0097581
    58. Iñigo Liberal, Richard W. Ziolkowski. Quantum Antenna Arrays. 2022, 419-446. https://doi.org/10.1002/9781119813910.ch12
    59. Eric Sierra, Stuart J. Masson, Ana Asenjo-Garcia. Dicke Superradiance in Ordered Lattices: Dimensionality Matters. Physical Review Research 2022, 4 (2) https://doi.org/10.1103/PhysRevResearch.4.023207
    60. Steffen Michaelis de Vasconcellos, Daniel Wigger, Ursula Wurstbauer, Alexander W. Holleitner, Rudolf Bratschitsch, Tilmann Kuhn. Single‐Photon Emitters in Layered Van der Waals Materials. physica status solidi (b) 2022, 259 (4) https://doi.org/10.1002/pssb.202100566
    61. Tieshan Yang, Noah Mendelson, Chi Li, Andreas Gottscholl, John Scott, Mehran Kianinia, Vladimir Dyakonov, Milos Toth, Igor Aharonovich. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale 2022, 14 (13) , 5239-5244. https://doi.org/10.1039/D1NR07919K
    62. Mehran Kianinia, Zai-Quan Xu, Milos Toth, Igor Aharonovich. Quantum emitters in 2D materials: Emitter engineering, photophysics, and integration in photonic nanostructures. Applied Physics Reviews 2022, 9 (1) https://doi.org/10.1063/5.0072091
    63. Noah Mendelson, Ritika Ritika, Mehran Kianinia, John Scott, Sejeong Kim, Johannes E. Fröch, Camilla Gazzana, Mika Westerhausen, Licheng Xiao, Seyed Sepehr Mohajerani, Stefan Strauf, Milos Toth, Igor Aharonovich, Zai‐Quan Xu. Coupling Spin Defects in a Layered Material to Nanoscale Plasmonic Cavities. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202106046
    64. Simon White, Connor Stewart, Alexander S. Solntsev, Chi Li, Milos Toth, Mehran Kianinia, Igor Aharonovich. Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride. Optica 2021, 8 (9) , 1153. https://doi.org/10.1364/OPTICA.431262

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 8, 3626–3632
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.1c00685
    Published April 19, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    4670

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.