ACS Publications. Most Trusted. Most Cited. Most Read
Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization
My Activity
    Letter

    Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization
    Click to copy article linkArticle link copied!

    • Flávia E. Galdino
      Flávia E. Galdino
      Brazilian Synchrotron Light Laboratory (LNLS), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
      Institute of Chemistry, University of Campinas (UNICAMP), CP 6154, CEP 13083-970 Campinas, São Paulo,Brazil
    • Agustin S. Picco
      Agustin S. Picco
      Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faultad de Ciencias Exactas, Universidad Nacional de La Plata—CONICET, 64 y Diag. 113, 1900 La Plata, Argentina
    • Larissa B. Capeletti
      Larissa B. Capeletti
      Brazilian Synchrotron Light Laboratory (LNLS), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
    • Jefferson Bettini
      Jefferson Bettini
      Brazilian Nanotechnology National Laboratory (LNNano), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
    • Mateus B. Cardoso*
      Mateus B. Cardoso
      Brazilian Synchrotron Light Laboratory (LNLS), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
      Institute of Chemistry, University of Campinas (UNICAMP), CP 6154, CEP 13083-970 Campinas, São Paulo,Brazil
      *Email: [email protected]. Tel.: +55 19 3512 1045.
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 19, 8250–8257
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.1c02416
    Published September 23, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Proteins spontaneously adsorb on nanoparticle surfaces when injected into the bloodstream. It drastically modifies the nanoparticle’s fate and how they interact with organs and cells. Although this protein layer (protein corona) has been widely studied, the robustness of the most employed characterization methods and the visualization of its unstained fractions remain open questions. Here, synchrotron-based small-angle X-ray scattering was used to follow the corona formation and estimate binding parameters. At the same time, transmission electron microscopy under cryogenic conditions associated with cross-correlation image processing and energy-filtered transmission electron microscopy allowed to determine protein corona morphology and thickness together with the visualization of its unstained hard and soft fractions. The above-presented strategy shows tremendous potential for deciphering fundamental protein corona aspects and can contribute to rational medical nanoparticle engineering.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02416.

    • Experimental methods; nanoparticles characterization; theories of protein–nanoparticle binding isotherms, DLS, and cumulants and NNLS analysis; equation for binding parameters by DLS and SAXS; protein corona DLS; influence of NNLS settings; DLS and SAXS analysis of corona free-nanoparticles; correlation curves (DLS) of aggregates; theory of Kratky and its correlation with fractional coverage; carbon intensity or intensity profile graphs; protein corona micrographs (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 36 publications.

    1. Pradip Das, Lorenzo Albertazzi, Jean-Olivier Durand. Silica-Based Nanoparticles: From Understanding to Biomedical Applications. ACS Materials Letters 2025, 7 (4) , 1297-1312. https://doi.org/10.1021/acsmaterialslett.4c02433
    2. Qi Han, Zachary P. J. Candiloro, Xudong Cai, Mohamad El Mohamad, Brendan P. Dyett, Carlos J. Rosado, Jiali Zhai, Gary Bryant, Calum J. Drummond, Tamar L. Greaves. Silica Nanoparticle–Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques. ACS Applied Materials & Interfaces 2025, 17 (5) , 8574-8587. https://doi.org/10.1021/acsami.4c19591
    3. Caroline E. P. Silva, Agustin S. Picco, Flavia Elisa Galdino, Mariangela de Burgos Martins de Azevedo, Marilina Cathcarth, Aline R. Passos, Mateus Borba Cardoso. Distinguishing Protein Corona from Nanoparticle Aggregate Formation in Complex Biological Media Using X-ray Photon Correlation Spectroscopy. Nano Letters 2024, 24 (42) , 13293-13299. https://doi.org/10.1021/acs.nanolett.4c03662
    4. Iris Renata Sousa Ribeiro, Raquel Frenedoso da Silva, Renata Santos Rabelo, Talita Miguel Marin, Jefferson Bettini, Mateus Borba Cardoso. Flowing through Gastrointestinal Barriers with Model Nanoparticles: From Complex Fluids to Model Human Intestinal Epithelium Permeation. ACS Applied Materials & Interfaces 2023, 15 (30) , 36025-36035. https://doi.org/10.1021/acsami.3c07048
    5. Marion Schvartz, Florent Saudrais, Stéphanie Devineau, Stéphane Chédin, Frédéric Jamme, Jocelyne Leroy, Karol Rakotozandriny, Olivier Taché, Guillaume Brotons, Serge Pin, Yves Boulard, Jean-Philippe Renault. Role of the Protein Corona in the Colloidal Behavior of Microplastics. Langmuir 2023, 39 (12) , 4291-4303. https://doi.org/10.1021/acs.langmuir.2c03237
    6. Larissa Fernanda Ferreira, Agustín Silvio Picco, Flávia Elisa Galdino, Lindomar Jose Calumby Albuquerque, Jean-François Berret, Mateus Borba Cardoso. Nanoparticle–Protein Interaction: Demystifying the Correlation between Protein Corona and Aggregation Phenomena. ACS Applied Materials & Interfaces 2022, 14 (25) , 28559-28569. https://doi.org/10.1021/acsami.2c05362
    7. Zi-Yi Zheng, Zhi-Hua Shen, Guo Xie, Wen-Li Liu, Zi-Qiang Pan. Investigation on topology-dependent adsorption and aggregation of protein on nanoparticle surface enabled by integrating time-limited proteolysis with cross-linking mass spectrometry. International Journal of Biological Macromolecules 2025, 287 , 138511. https://doi.org/10.1016/j.ijbiomac.2024.138511
    8. Carlos Jacinto, Yasir Javed, Gabriel Lavorato, Wilson A. Tarraga, Blessed Isaac C. Conde, Juan Manuel Orozco, Agustin S. Picco, Joel Garcia, Carlos Sato Baraldi Dias, Sonia Malik, Surender Kumar Sharma. Biotransformation and Biological Fate of Magnetic Iron Oxide Nanoparticles for Biomedical Research and Clinical Applications. Nanoscale Advances 2025, https://doi.org/10.1039/D5NA00195A
    9. Eleni K. Efthimiadou, Sara Seriah, Danai Prokopiou, Anastasia Stavropoulou, Athina Papadopoulou, Sofia Nikolopoulou, Evangelia Tsitsou, Maria Theodosiou. Polymer-based Nanocapsules. 2024, 179-208. https://doi.org/10.1039/9781837672981-00179
    10. David Esporrín‐Ubieto, Cristián Huck‐Iriart, Agustin S. Picco, Ana Beloqui, Marcelo Calderón. Hybrid Nanogel‐Wrapped Anisotropic Gold Nanoparticles Feature Enhanced Photothermal Stability. Small 2024, 20 (48) https://doi.org/10.1002/smll.202404097
    11. Wei Liu, Yuwei Zhu, Hang Jiang, Lidan Zhou, Yinan Li, Jiahao Wu, Jie Han, Cheng Yang, Jianzhong Jiang, To Ngai. Aggregation and aging of nanoparticle–protein complexes at interfaces studied by evanescent‐light scattering microscopy. Aggregate 2024, 5 (4) https://doi.org/10.1002/agt2.538
    12. Sandor Balog, Mauro Sousa de Almeida, Patricia Taladriz-Blanco, Barbara Rothen-Rutishauser, Alke Petri-Fink. Does the surface charge of the nanoparticles drive nanoparticle–cell membrane interactions?. Current Opinion in Biotechnology 2024, 87 , 103128. https://doi.org/10.1016/j.copbio.2024.103128
    13. E. A. Molkova, V. I. Pustovoi, I. V. Baimler, A. V. Simakin, D. E. Burmistrov, I. V. Gorudko, S. V. Gudkov. Optical Study of the Influence of the Medium Acidity on the Interaction between Gold Nanoparticles and Bovine Serum Albumin in Aqueous Solution. Physics of Wave Phenomena 2024, 32 (3) , 232-240. https://doi.org/10.3103/S1541308X24700213
    14. Sagar Dhoble, Tzu‐Hsien Wu, Kenry. Decoding Nanomaterial‐Biosystem Interactions through Machine Learning. Angewandte Chemie 2024, 136 (16) https://doi.org/10.1002/ange.202318380
    15. Sagar Dhoble, Tzu‐Hsien Wu, Kenry. Decoding Nanomaterial‐Biosystem Interactions through Machine Learning. Angewandte Chemie International Edition 2024, 63 (16) https://doi.org/10.1002/anie.202318380
    16. Luca Boselli, Valentina Castagnola, Andrea Armirotti, Fabio Benfenati, Pier Paolo Pompa. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. Small 2024, 20 (15) https://doi.org/10.1002/smll.202306474
    17. Wenjing Xie, Ziyi Xiong, Huimin Wang, Xiaoyi Liu, Hongyan Cui, Qiongyi Huang, Ying Tang. The nanosafety assessment of ENMs under a dermal exposure scenario: from key molecular events to in silico modeling tools. Environmental Science: Nano 2024, 11 (3) , 708-738. https://doi.org/10.1039/D3EN00585B
    18. Jiali Wang, Yuhang Xu, Yun Zhou, Jian Zhang, Jianbo Jia, Peifu Jiao, Yin Liu, Gaoxing Su. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. Science of The Total Environment 2024, 914 , 169590. https://doi.org/10.1016/j.scitotenv.2023.169590
    19. Abhishek Ramachandra Panigrahi, Abhinandana Sahu, Pooja Yadav, Samir Kumar Beura, Jyoti Singh, Krishnakanta Mondal, Sunil Kumar Singh. Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications. 2024, 263-288. https://doi.org/10.1016/bs.apcsb.2023.11.015
    20. André F. Lima, Alioscka A. Sousa. Kinetics and Timescales in Bio–Nano Interactions. Physchem 2023, 3 (4) , 385-410. https://doi.org/10.3390/physchem3040026
    21. Ronggang Liu, Deyang Yu, A.M. Abd El-Aty, Mingqian Tan. Protein corona of food nanoparticles: Implications for biological responses and future research directions. Trends in Food Science & Technology 2023, 141 , 104179. https://doi.org/10.1016/j.tifs.2023.104179
    22. Pingping Zheng, Shengtao Yu, Liming Wang. Progress in analytical methods for the interaction between nanomaterials and biomolecules based on large-scale scientific facilities. SCIENTIA SINICA Chimica 2023, 53 (11) , 2157-2174. https://doi.org/10.1360/SSC-2023-0165
    23. Jiulong Li, Xiangsheng Liu, Kai Ma, Yanyan Liu, Huan Meng. Understanding of surface chemistry of silica-based nanomaterials contributes to the design of safe and efficacious nanomedicine. Matter 2023, 6 (8) , 2564-2567. https://doi.org/10.1016/j.matt.2023.06.023
    24. Karin Nienhaus, Gerd Ulrich Nienhaus. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small 2023, 19 (28) https://doi.org/10.1002/smll.202301663
    25. Elena Rosini, Marta Boreggio, Matteo Verga, Laura Caldinelli, Loredano Pollegioni, Elisa Fasoli. The D-amino acid oxidase-carbon nanotubes: evaluation of cytotoxicity and biocompatibility of a potential anticancer nanosystem. 3 Biotech 2023, 13 (7) https://doi.org/10.1007/s13205-023-03568-1
    26. Kazushige Yokoyama, Joshua Thomas, Windsor Ardner, Madison Kieft, Lorenz S. Neuwirth, Wei Liu. An approach for in-situ detection of gold colloid aggregates amyloid formations within the hippocampus of the Cohen’s Alzheimer’s disease rat model by surface enhanced raman scattering methods. Journal of Neuroscience Methods 2023, 393 , 109892. https://doi.org/10.1016/j.jneumeth.2023.109892
    27. Rongrong Qiao, Yalin Cong, Muhammad Ovais, Rui Cai, Chunying Chen, Liming Wang. Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Reports Physical Science 2023, 4 (6) , 101453. https://doi.org/10.1016/j.xcrp.2023.101453
    28. Ghazal Bashiri, Marshall S. Padilla, Kelsey L. Swingle, Sarah J. Shepherd, Michael J. Mitchell, Karin Wang. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab on a Chip 2023, 23 (6) , 1432-1466. https://doi.org/10.1039/D2LC00799A
    29. Hwankyu Lee. Differences in protein distribution, conformation, and dynamics in hard and soft coronas: dependence on protein and particle electrostatics. Physical Chemistry Chemical Physics 2023, 25 (10) , 7496-7507. https://doi.org/10.1039/D2CP05936C
    30. Yushuang Hou, Shuyang Tu, Xiaohuan Zhao, Guangyi Li, Na Li, Aihua Zou. An integrative method for evaluating the biological effects of nanoparticle-protein corona. Biochimica et Biophysica Acta (BBA) - General Subjects 2023, 1867 (3) , 130300. https://doi.org/10.1016/j.bbagen.2022.130300
    31. Bengt Fadeel. Understanding the immunological interactions of engineered nanomaterials: Role of the bio‐corona. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (6) https://doi.org/10.1002/wnan.1798
    32. Saima Hameed, Didar Baimanov, Xiumin Li, Ke Liu, Liming Wang. Synchrotron radiation-based analysis of interactions at the nano–bio interface. Environmental Science: Nano 2022, 9 (9) , 3152-3167. https://doi.org/10.1039/D2EN00408A
    33. Marilina Cathcarth, Agustin S Picco, Gabriela B Mondo, Mateus B Cardoso, Gabriel S Longo. Competitive protein adsorption on charge regulating silica-like surfaces: the role of protonation equilibrium. Journal of Physics: Condensed Matter 2022, 34 (36) , 364001. https://doi.org/10.1088/1361-648X/ac6388
    34. Arthur Degasperi, Lucie Labied, Carole Farre, Emmanuel Moreau, Matteo Martini, Carole Chaix, Agnès Hagège. Probing the protein corona of gold/silica nanoparticles by Taylor dispersion analysis-ICP-MS. Talanta 2022, 243 , 123386. https://doi.org/10.1016/j.talanta.2022.123386
    35. Xiaobo Wang, Wenli Zhang. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. Journal of Controlled Release 2022, 345 , 832-850. https://doi.org/10.1016/j.jconrel.2022.03.056
    36. Yanni Yu, Yaning Luan, Wei Dai. Dynamic process, mechanisms, influencing factors and study methods of protein corona formation. International Journal of Biological Macromolecules 2022, 205 , 731-739. https://doi.org/10.1016/j.ijbiomac.2022.03.105

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 19, 8250–8257
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.1c02416
    Published September 23, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2702

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.