ACS Publications. Most Trusted. Most Cited. Most Read
The Effect of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics in TiO2 Films
My Activity
    Letter

    The Effect of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics in TiO2 Films
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 19, 8348–8354
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.1c02853
    Published September 28, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Metal-oxide semiconductors (MOS) are widely utilized for catalytic and photocatalytic applications in which the dynamics of charged carriers (e.g., electrons, holes) play important roles. Under operation conditions, photoinduced surface oxygen vacancies (PI-SOV) can greatly impact the dynamics of charge carriers. However, current knowledge regarding the effect of PI-SOV on the dynamics of hole migration in MOS films, such as titanium dioxide, is solely based upon volume-averaged measurements and/or vacuum conditions. This limits the basic understanding of hole-vacancy interactions, as they are not capable of revealing time-resolved variations during operation. Here, we measured the effect of PI-SOV on the dynamics of hole migration using time-resolved atomic force microscopy. Our findings demonstrate that the time constant associated with hole migration is strongly affected by PI-SOV, in a reversible manner. These results will nucleate an insightful understanding of the physics of hole dynamics and thus enable emerging technologies, facilitated by engineering hole-vacancy interactions.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02853.

    • Sample preparation; time-resolved atomic force microscopy; measurements under ambient conditions and comparisons with different samples; ultraviolet irradiation of the sample; additional discussion on the effect of ultraviolet irradiation of the sample; Raman spectroscopy measurements; X-ray diffraction measurements (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 45 publications.

    1. Zhenzhen Yu, Dexi Yu, Xiaoyi Wang, Meirong Huang, Yidong Hou, Wei Lin, Masakazu Anpo, Jimmy C. Yu, Jinshui Zhang, Xinchen Wang. Photoinduced Formation of Oxygen Vacancies on Mo-Incorporated WO3 for Direct Oxidation of Benzene to Phenol by Air. Journal of the American Chemical Society 2025, Article ASAP.
    2. R. S. Harisankar, Prabana Jetty, Kannan Udaya Mohanan, Suryanarayana Jammalamadaka. Optically Controlled P–CuxO-Based Artificial Synaptic Device for Neuromorphic Applications. ACS Applied Electronic Materials 2025, 7 (4) , 1622-1631. https://doi.org/10.1021/acsaelm.4c02275
    3. Andrei Stefancu, Javier Aizpurua, Ivano Alessandri, Ilko Bald, Jeremy J. Baumberg, Lucas V. Besteiro, Phillip Christopher, Miguel Correa-Duarte, Bart de Nijs, Angela Demetriadou, Renee R. Frontiera, Tomohiro Fukushima, Naomi J. Halas, Prashant K. Jain, Zee Hwan Kim, Dmitry Kurouski, Holger Lange, Jian-Feng Li, Luis M. Liz-Marzán, Ivan T. Lucas, Alfred J. Meixner, Kei Murakoshi, Peter Nordlander, William J. Peveler, Raul Quesada-Cabrera, Emilie Ringe, George C. Schatz, Sebastian Schlücker, Zachary D. Schultz, Emily Xi Tan, Zhong-Qun Tian, Lingzhi Wang, Bert M. Weckhuysen, Wei Xie, Xing Yi Ling, Jinlong Zhang, Zhigang Zhao, Ru-Yu Zhou, Emiliano Cortés. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS Nano 2024, 18 (43) , 29337-29379. https://doi.org/10.1021/acsnano.4c06192
    4. Xiufang Huang, Yueyue Gao, Wanpeng Li, Jiantao Wang, Gentian Yue, Furui Tan, Hsing-Lin Wang. Efficient and Stable Z907-Based Dye-Sensitized Solar Cells Enabled by Suppressed Charge Recombination and Photocatalytic Activity. ACS Sustainable Chemistry & Engineering 2024, 12 (34) , 13007-13016. https://doi.org/10.1021/acssuschemeng.4c05171
    5. Fu-Guang Zhang, Yan Chen, Chi Ma, Ji-Ping Tang, Zi-Yi Wang, Zong-Yan Zhao, Liang Bao, Yong-Jun Yuan. Accelerated Charge Transfer through Interface Chemical Bonds in MoS2/TiO2 for Photocatalytic Conversion of Lignocellulosic Biomass to H2. Inorganic Chemistry 2024, 63 (29) , 13766-13774. https://doi.org/10.1021/acs.inorgchem.4c02147
    6. Bugrahan Guner, Orcun Dincer, Omur E. Dagdeviren. Fast and Slow Time-Scale Effects of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics of TiO2. ACS Applied Energy Materials 2024, 7 (6) , 2292-2298. https://doi.org/10.1021/acsaem.3c03040
    7. Seulyoung Park, Noki Lee, Jun Oh Park, Jin Park, Yu Seong Heo, Jaichan Lee. Exploring the Latent Chemical Space of Oxygen Vacancy Formation Energy by a Machine Learning Ensemble. ACS Materials Letters 2024, 6 (1) , 66-72. https://doi.org/10.1021/acsmaterialslett.3c00636
    8. Junzhi Ye, Rakesh Arul, Michel K. Nieuwoudt, Junzhe Dong, Ting Zhang, Linjie Dai, Neil C. Greenham, Akshay Rao, Robert L. Z. Hoye, Wei Gao, M. Cather Simpson. Understanding the Chemical Mechanism behind Photoinduced Enhanced Raman Spectroscopy. The Journal of Physical Chemistry Letters 2023, 14 (19) , 4607-4616. https://doi.org/10.1021/acs.jpclett.3c00478
    9. Giorgio Tseberlidis, Valerio Di Palma, Vanira Trifiletti, Luigi Frioni, Matteo Valentini, Claudia Malerba, Alberto Mittiga, Maurizio Acciarri, Simona O. Binetti. Titania as Buffer Layer for Cd-Free Kesterite Solar Cells. ACS Materials Letters 2023, 5 (1) , 219-224. https://doi.org/10.1021/acsmaterialslett.2c00933
    10. Liping Wen, Yao Liu, Yong Liu, Yuping Xu, Baoshun Liu. Effect of Vacuum-Sealed Annealing and Ice-Water Quenching on the Structure and Photocatalytic Acetone Oxidations of Nano-TiO2 Materials. ACS Omega 2022, 7 (48) , 43710-43718. https://doi.org/10.1021/acsomega.2c04695
    11. Qin Ren, Ye He, Hong Wang, Yanjuan Sun, Fan Dong. Photo-Switchable Oxygen Vacancy as the Dynamic Active Site in the Photocatalytic NO Oxidation Reaction. ACS Catalysis 2022, 12 (22) , 14015-14025. https://doi.org/10.1021/acscatal.2c03353
    12. Thomas Dittrich, Jekaterina Sydorenko, Nicolae Spalatu, Norbert H. Nickel, Arvo Mere, Malle Krunks, Ilona Oja Acik. Synthesis Control of Charge Separation at Anatase TiO2 Thin Films Studied by Transient Surface Photovoltage Spectroscopy. ACS Applied Materials & Interfaces 2022, 14 (38) , 43163-43170. https://doi.org/10.1021/acsami.2c09032
    13. Bugrahan Guner, Omur E. Dagdeviren. Multidimensionality of the Contact Potential Difference at the Nanoscale in Inorganic Oxides. ACS Applied Electronic Materials 2022, 4 (8) , 4085-4093. https://doi.org/10.1021/acsaelm.2c00713
    14. Haiyang Hu, Thomas Weber, Oliver Bienek, Alwin Wester, Ludwig Hüttenhofer, Ian D. Sharp, Stefan A. Maier, Andreas Tittl, Emiliano Cortés. Catalytic Metasurfaces Empowered by Bound States in the Continuum. ACS Nano 2022, 16 (8) , 13057-13068. https://doi.org/10.1021/acsnano.2c05680
    15. Emily Hruska, Jakub Husek, Savini Bandaranayake, L. Robert Baker. Visible Light Absorption and Hot Carrier Trapping in Anatase TiO2: The Role of Surface Oxygen Vacancies. The Journal of Physical Chemistry C 2022, 126 (26) , 10752-10761. https://doi.org/10.1021/acs.jpcc.2c02978
    16. Yong-Gang Xu, Pan Zhang, Guo-Jun Zhu, Ji-Hui Yang, Xin-Gao Gong. Enhancing Hole Density and Suppressing Recombination Centers through Illumination in Kesterite Thin Film Solar Cells. The Journal of Physical Chemistry Letters 2022, 13 (11) , 2474-2478. https://doi.org/10.1021/acs.jpclett.2c00502
    17. Bugrahan Guner, Mohammad Safikhani-Mahmoudi, Fengmiao Li, Ke Zou, Omur E. Dagdeviren. Ultraviolet irradiation penetration depth on TiO2. Communications Chemistry 2025, 8 (1) https://doi.org/10.1038/s42004-025-01487-1
    18. Zi-Han Liu, Xiao-Yu Chen, Yuan Zhao, Yi-Tong Pang, Di-Gen Wei, Jing-Yi Wangchen, Cheng-Bao Yao. Constructing MO/TMDs heterostructures: Photoelectrochemical activity and charge transfer mechanism investigation. Chemical Engineering Journal 2025, 511 , 161981. https://doi.org/10.1016/j.cej.2025.161981
    19. Fangke Wang, Ruiling He, Yuanyuan Zhao, Lin Zhu, Zhixin Xu, Zengming Qin, Ji Zhang, Haijiao Xie, Kangjun Wang. Unlocking Time‐Dependent Visual Response Mode Through Regulating the Photo‐Induced Local Structure Evolution Process of C@TiO 2 :Sm,N. Advanced Optical Materials 2025, 13 (7) https://doi.org/10.1002/adom.202402625
    20. Guo-Jun Zhu, Yong-Gang Xu, Pan Zhang, Yi-Bin Fang, Ji-Hui Yang, Xin-Gao Gong. Unified defect mechanism for illumination effects on the rutile Ti O 2 (110) surface from first principles. Physical Review B 2025, 111 (1) https://doi.org/10.1103/PhysRevB.111.014101
    21. Sulakshana Mondal, Amaresh Das, Durga Basak. Impact on the structural and photophysical properties of TiO2 films owing to Li implantation. Journal of Materials Science: Materials in Electronics 2024, 35 (34) https://doi.org/10.1007/s10854-024-13926-1
    22. Kangwang Wang, Zhuofeng Hu, Peifeng Yu, Alina M. Balu, Kuan Li, Longfu Li, Lingyong Zeng, Chao Zhang, Rafael Luque, Kai Yan, Huixia Luo. Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction. Nano-Micro Letters 2024, 16 (1) https://doi.org/10.1007/s40820-023-01221-3
    23. Mohammad Rahim Pour, Mohammad Fereidooni, Supareak Praserthdam, Piyasan Praserthdam, Victor Marquez, Kaito Uesaka, Akira Yamakata, C.V. Paz, Nattawut kamjam, Pongsakorn kanjanaboos. Zeolite-decorated black TiOx quantum dots for photocatalytic degradation of organic cationic dyes under LED light irradiation. Journal of Alloys and Compounds 2024, 1008 , 176797. https://doi.org/10.1016/j.jallcom.2024.176797
    24. Huazhang Feng, Zhaohui Chen, Cheng Lin, Yanping Chen, Jingyun Su, Enna Ha, Kan Zhang, Luyang Wang. Domain-limited surface oxygen vacancy in rutile TiO2 for enhancing photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2024, 96 , 255-263. https://doi.org/10.1016/j.ijhydene.2024.11.338
    25. Linfeng Jin, Hangjing Yu, Chenhui Wang, Changfa Guo, Saikh Mohammad Wabaidur, Yijun Zhong, Yong Hu. S‐Scheme MnO 2 /Co 3 O 4 Sugar‐Gourd Nanohybrids with Abundant Oxygen Vacancies for Efficient Visible‐Light‐Driven CO 2 Reduction. ChemCatChem 2024, 16 (22) https://doi.org/10.1002/cctc.202401057
    26. G. Tseberlidis, C. Gobbo, V. Trifiletti, V. Di Palma, S. Binetti. Cd-free kesterite solar cells: State-of-the-art and perspectives. Sustainable Materials and Technologies 2024, 41 , e01003. https://doi.org/10.1016/j.susmat.2024.e01003
    27. Majid Shahsanaei, Nastaran Farahbakhsh, Sadegh Pour-Ali, Annika Schardt, Setareh Orangpour, Carsten Engelhard, Shiva Mohajernia, Manuela S. Killian, Sina Hejazi. Synergistic enhancement of photocatalytic hydrogen production in TiO 2 nanosheets through light-induced defect formation and Pt single atoms. Journal of Materials Chemistry A 2024, 12 (29) , 18554-18562. https://doi.org/10.1039/D4TA01809E
    28. Ton Nu Quynh Trang, Nguyen Tran Gia Bao, Thai Duong, Vu Thi Hanh Thu. Design of high-active SERS in 2D Au/TiO2 thin film for quantitative and photodegraded analysis. Chemical Papers 2024, 78 (11) , 6649-6661. https://doi.org/10.1007/s11696-024-03563-7
    29. Taixiang Feng, F.K. Yam. Photoelectrochemical properties of anatase TiO2 nanostructures prepared by hydrothermal method: Effect of illumination and external bias on charge transport. Ceramics International 2024, 50 (11) , 19886-19897. https://doi.org/10.1016/j.ceramint.2024.03.116
    30. Haiyang Hu, Anil Kumar Pal, Alexander Berestennikov, Thomas Weber, Andrei Stefancu, Emiliano Cortés, Stefan A. Maier, Andreas Tittl. Surface‐Enhanced Raman Scattering in BIC‐Driven Semiconductor Metasurfaces. Advanced Optical Materials 2024, 12 (14) https://doi.org/10.1002/adom.202302812
    31. Orcun Dincer, Bugrahan Guner, Omur E. Dagdeviren. Effect of methanol and photoinduced surface oxygen vacancies on the charge carrier dynamics in TiO2. APL Materials 2024, 12 (2) https://doi.org/10.1063/5.0192058
    32. Marti Checa, Addis S. Fuhr, Changhyo Sun, Rama Vasudevan, Maxim Ziatdinov, Ilia Ivanov, Seok Joon Yun, Kai Xiao, Alp Sehirlioglu, Yunseok Kim, Pankaj Sharma, Kyle P. Kelley, Neus Domingo, Stephen Jesse, Liam Collins. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42583-x
    33. Sultan Ben-Jaber, Daniel Glass, Thomas Brick, Stefan A. Maier, Ivan P. Parkin, Emiliano Cortés, William J. Peveler, Raúl Quesada-Cabrera. Photo-induced enhanced Raman spectroscopy as a probe for photocatalytic surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2023, 381 (2259) https://doi.org/10.1098/rsta.2022.0343
    34. Bugrahan Guner, Simon Laflamme, Omur E. Dagdeviren. Customization of an atomic force microscope for multidimensional measurements under environmental conditions. Review of Scientific Instruments 2023, 94 (6) https://doi.org/10.1063/5.0147331
    35. Pankaj Sharma, Monika Sharma, Malcolm Dearg, Martin Wilding, Thomas J. A. Slater, C. Richard A. Catlow. Cd/Pt Precursor Solution for Solar H 2 Production and in situ Photochemical Synthesis of Pt Single‐atom Decorated CdS Nanoparticles. Angewandte Chemie 2023, 135 (20) https://doi.org/10.1002/ange.202301239
    36. Pankaj Sharma, Monika Sharma, Malcolm Dearg, Martin Wilding, Thomas J. A. Slater, C. Richard A. Catlow. Cd/Pt Precursor Solution for Solar H 2 Production and in situ Photochemical Synthesis of Pt Single‐atom Decorated CdS Nanoparticles. Angewandte Chemie International Edition 2023, 62 (20) https://doi.org/10.1002/anie.202301239
    37. Gemma Davison, Yidan Yin, Tabitha Jones, Ivan P. Parkin, William J. Peveler, Tung-Chun Lee. Multi-mode enhanced Raman scattering spectroscopy using aggregation-free hybrid metal/metal-oxide nanoparticles with intrinsic oxygen vacancies. Journal of Materials Chemistry C 2023, 11 (9) , 3334-3341. https://doi.org/10.1039/D2TC05069B
    38. Mohammed Alyami. Ultra-Violet-Assisted Scalable Method to Fabricate Oxygen-Vacancy-Rich Titanium-Dioxide Semiconductor Film for Water Decontamination under Natural Sunlight Irradiation. Nanomaterials 2023, 13 (4) , 703. https://doi.org/10.3390/nano13040703
    39. Haina Zhang, Yali Hu, Wei Luo, Lingling Jiang, Xia Yang, Ruo Yuan, Yaqin Chai. Crystal-amorphous Ni(OH)2 nanocages as SERS substrate with conspicuous defects-induced charge-transfer resonance for ultrasensitive detection of MicroRNA 155. Sensors and Actuators B: Chemical 2023, 375 , 132879. https://doi.org/10.1016/j.snb.2022.132879
    40. Chenyu Xu, Jing-Li Luo. Understanding the light-induced oxygen vacancy in the photochemical conversion. Journal of Physics: Energy 2023, 5 (1) , 011001. https://doi.org/10.1088/2515-7655/acb28f
    41. Qinglin Li, Cong Fang, Zihao Yang, Bo Yu, Moe Takabatake, Ken Motokura, Xiaoyan Sun, Yong Yang. Modulating the Oxidation State of Titanium via Dual Anions Substitution for Efficient N 2 Electroreduction. Small 2022, 18 (25) https://doi.org/10.1002/smll.202201343
    42. Begoña Puértolas, Miguel Comesaña‐Hermo, Lucas V. Besteiro, Margarita Vázquez‐González, Miguel A. Correa‐Duarte. Challenges and Opportunities for Renewable Ammonia Production via Plasmon‐Assisted Photocatalysis. Advanced Energy Materials 2022, 12 (18) https://doi.org/10.1002/aenm.202103909
    43. Laura Collado, Patricia Reñones, Javier Fermoso, Fernando Fresno, Leoncio Garrido, Virginia Pérez-Dieste, Carlos Escudero, María D. Hernández-Alonso, Juan M. Coronado, David P. Serrano, Víctor A. de la Peña O’Shea. The role of the surface acidic/basic centers and redox sites on TiO2 in the photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2022, 303 , 120931. https://doi.org/10.1016/j.apcatb.2021.120931
    44. Ge Song, Shan Cong, Zhigang Zhao. Defect engineering in semiconductor-based SERS. Chemical Science 2022, 13 (5) , 1210-1224. https://doi.org/10.1039/D1SC05940H
    45. Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy. Beilstein Journal of Nanotechnology 2022, 13 , 712-720. https://doi.org/10.3762/bjnano.13.63

    Nano Letters

    Cite this: Nano Lett. 2021, 21, 19, 8348–8354
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.1c02853
    Published September 28, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2289

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.