ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Ultrafast Plasmonics Beyond the Perturbative Regime: Breaking the Electronic-Optical Dynamics Correspondence

  • Andrea Schirato
    Andrea Schirato
    Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
  • Giulia Crotti
    Giulia Crotti
    Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
  • Mychel Gonçalves Silva
    Mychel Gonçalves Silva
    Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG Brazil
  • Danielle Cristina Teles-Ferreira
    Danielle Cristina Teles-Ferreira
    Instituto Federal de Minas Gerais, Campus Ouro Preto, Ouro Preto 35400-000, MG Brazil
  • Cristian Manzoni
    Cristian Manzoni
    Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
  • Remo Proietti Zaccaria
    Remo Proietti Zaccaria
    Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
    Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
  • Paolo Laporta
    Paolo Laporta
    Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
  • Ana Maria de Paula
    Ana Maria de Paula
    Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG Brazil
  • Giulio Cerullo
    Giulio Cerullo
    Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
  • , and 
  • Giuseppe Della Valle*
    Giuseppe Della Valle
    Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    Istituto Nazionale di Fisica Nucleare - Sezione di Milano, Via Celoria, 16, I-20133 Milano, Italy
    *E-mail: [email protected]
Cite this: Nano Lett. 2022, 22, 7, 2748–2754
Publication Date (Web):March 28, 2022
https://doi.org/10.1021/acs.nanolett.1c04608

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0.
  • Open Access

Article Views

2680

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi–Dirac occupation probability at high hot-electron temperatures.

This publication is licensed under

CC-BY 4.0.
  • cc licence
  • by licence

Plasmonic nanomaterials are intensively investigated for a variety of applications, (1−3) from innovative photodetection (4,5) and photocatalysis (6−11) to photothermal therapies (12,13) and light harvesting. (14−16) Moreover, optical components based on metallic nanostructures have lately emerged as a new promising platform for the manipulation of light (17−21) with particular interest toward nonlinear nanophotonics applications. (22−25)

Underlying the advances envisaged above is the understanding of the nonequilibrium processes regulating the interaction between electromagnetic radiation and nanostructured plasmonic materials. (26−30) In this framework, ultrafast optical spectroscopy has become the most suitable tool to gain insight into such processes (being noninvasive and of general applicability) and has given significant contributions to a vast literature (among the others, see, e.g., refs (31−36)), referred to as ultrafast plasmonics. (37,38)

In all of these studies, a fundamental hypothesis is the strict correspondence between the dynamics of the optical signal retrieved via the interaction with a low-intensity probe pulse interrogating the excited structure and the dynamics of the hot electron distribution (described by an electronic temperature) induced by absorption of the intense pump pulse. In particular, all studies so far assumed that the dynamics of the transient optical signal on the time scale of a few picoseconds after pump excitation correlates directly with the dynamics of the energy equilibration of hot electrons toward the metal lattice. However, to the best of our knowledge this hypothesis has not been systematically tested, and has even shown to be fulfilled in the presence of considerable effects altering the photoexcited carrier dynamics, such as ultrafast charge injection through metal–semiconductor heterojunctions. (39,40) In this work, we aim at bridging this gap, relying on a combination of transient absorption spectroscopy, quasi-static electromagnetic modeling, and semiclassical theory of light–matter interaction to investigate the correspondence between electronic and optical dynamics in plasmonic nanostructures.

The optical properties of nanostructures are dictated by a complex interplay between the permittivity ε of the constituent material and their nanoscale geometry. Upon excitation with ultrashort light pulses, the latter can however be considered unvaried for a wide range of interaction conditions, and the transient optical response can be exclusively ascribed to the dynamical modification of material permittivity, Δε. (41) As such, the nonperturbative regime of photoexcitation arises from two distinct mechanisms: (i) the nonlinear relationship, specific to the nanostructure geometrical configuration, between the nanostructure permittivity variation and the optical observable under consideration; and (ii) the optical nonlinearity detailing at the nanoscale the dependence of Δε on the excitation local intensity, depending on the material photophysical properties.

To illustrate these phenomena, we considered a prototypical plasmonic system represented by a gold nanoellipsoid embedded in a homogeneous medium. A typical transmission spectrum for such gold nanoparticles (NPs) with an aspect ratio of ∼2 dispersed in water computed from quasi-static formulas (Supporting Information, Section 1) is shown in Figure 1a (yellow curve). The extinction peak at low (high) photon energy can be ascribed to the excitation of the longitudinal (transverse) surface-plasmon resonance, LSPR (TSPR). Upon a change of the NP constituent medium permittivity Δε, the optical transmittance evolves from T(ε) to T(ε + Δε) . When Δε ≪ ε, a perturbative approach can be applied to determine ΔT = T(ε + Δε) – T(ε) = ∂T/∂ε × Δε (see, e.g., refs (42−44)). Yet, generally the evolution from T(ε) to T(ε + Δε) is not perturbative, and ΔT does not scale linearly with Δε, as depicted in Figure 1a. To quantify this effect, one can analyze spectra of the differential transmittance, ΔT/T, normalized to the corresponding Δε, and the effects induced by imaginary, Δε″, and real part, Δε′, of the permittivity change can be investigated separately. For the structure considered, the obtained two sets of spectra are reported in Figure 1b,c, for values of Δε (either imaginary or real) increasing from 0.01 to 2 (assumed constant over the entire spectrum for simplicity). The shape of these spectra can be interpreted as due to either the broadening (Figure 1b) or the red-shift (Figure 1c) of the LSPR/TSPR resonances, induced by the increase of material losses (via Δε″) and optical density (via Δε′), respectively. Importantly, since spectra are normalized to Δε, the onset of a nonperturbative effect manifests itself as the nonoverlapping of traces corresponding to different values of the Δε. This condition is more evident for the imaginary permittivity modulation (Figure 1b), compared to the real one (Figure 1c), and corresponds in any case to a relatively weak saturation effect even for a permittivity increase as high as 2, which is expected to give the strongest contribution to optical modulation around λ1 ∼ 500 nm (blue vertical line in Figure 1).

Figure 1

Figure 1. Nonperturbative photoexcitation of Au nanostructures. (a–c) Nonperturbative effect arising from the nonlinear relation between the system transmission T and the metal permittivity ε, for NPs in aqueous environment, as schematized in (a). The two plasmonic resonances (TSPR and LSPR) are marked by arrows. The differential transmittance signal, obtained for a given constant dispersionless Δε ranging between 0.01 and 2, is reported for either a purely imaginary (b) or real (c) variation. (d–f) Nonperturbative effect arising from the universal nonlinear mechanism of Fermi smearing in Au, triggered by the increase of the electronic temperature ΔΘE and resulting in a change of the metal electron Fermi–Dirac distribution f(E), as sketched in (d), where the arrows point from low to high temperatures. The Δε associated with the change in f(E), normalized to ΔΘE, is displayed in both its imaginary (e) and real (f) parts. Vertical lines identify the three wavelengths analyzed in Figures 2 and 3

Furthermore, to account for the second aforementioned nonperturbative mechanism, we need to consider the dependence of Δε on the photoexcitation fluence. For noble metals, the most prominent effect following photoexcitation is the generation of hot carriers. These carriers, following an ultrafast electron–electron thermalization, (45) are characterized by a Fermi–Dirac distribution in energy, , at temperature ΘE higher than the room temperature Θ0, E being the electron energy and EF the Fermi energy. The temperature increase ΔΘE = ΘE – Θ0 causes a modification of f(E, ΘE) with respect to the equilibrium distribution, an effect referred to as “Fermi smearing” (46) and schematically depicted in Figure 1d. In essence, the electronic temperature increase results in a reduction (increase) of the occupation probability of the electron states below (above) the Fermi energy EF. This promotes a variation of the imaginary part of the metal permittivity, accounting for the decreased (increased) absorption for 5d-6sp interband transitions (left panel, Figure 1d) involving final states above (below) EF. This is accompanied by a variation in the real part of the permittivity, due to the Kramers–Kronig relationship (Supporting Information, Section 2 for details). Because of the highly nonlinear dependence of f(E, ΘE) on the hot electron temperature ΘE inherent in the Fermi–Dirac distribution, the Fermi smearing mechanism can significantly contribute to nonperturbative effects of the photoexcitation. A detailed illustration is provided in Figure 1e,f, showing respectively the spectra of the imaginary and real part of Δε due to thermalizd carriers only, normalized to the corresponding fixed ΔΘE considered in determining the interband transition modulation, here ranging from 20 to 4000 K (typical values induced by laser pulses with mJ/cm2 fluences). The fact that curves corresponding to different values of ΔΘE do not overlap represents a clear-cut indication of the onset of nonpertubative effects. A complex spectral behavior is also displayed in the two cases of real and imaginary permittivity modulations. In particular, a huge enhancement of Δε″ is predicted for λ > 550 nm (Figure 1e), whereas sign changes in the modulation of the real permittivity can take place over a relatively broad range of wavelengths from ∼520 to ∼620 nm (Figure 1f), in the red wing of the Au interband transition, starting at around 505 nm. Nonperturbative effects due to Δε′ should therefore govern the optical modulation at wavelengths as λ2 (green vertical line), while Δε″ is expected to dominate close to λ3 (red line). Note that the nonperturbative effects related to the Fermi smearing are intrinsic to any plasmonic system, that is, they do not depend on the specific resonances of the nanostructure, contrary to the nonperturbative mechanism previously introduced (Figure 1a–c) which is related instead to the connection between Δε and the nanostructure polarizability.

To reveal the occurrence of effects arising from the two phenomena discussed above, we performed nonperturbative transient absorption experiments to retrieve the normalized differential transmission ΔT/T for a sample of colloidal Au nanorods (NRs) dispersed in water (inset of Figure 2) with dimensions comparable to the one considered in the model in Figure 1. The capability of quasi-static formulas for nanoellipsoids to reproduce the static and transient optical response of small Au NRs has been ascertained in a previous work. (45) The results of these measurements for four different fluences of the pump are reported in Figure 2a–c at three probe wavelengths, λ1 = 515 nm (Figure 2a), λ2 = 554 nm (Figure 2b), λ3 = 670 nm (Figure 2c), selected after having identified (in Figure 1) the spectral regions where nonperturbative effects are the strongest and dominated by the Fermi smearing. Full maps of the transient absorption signal are reported in Supporting Information, Section 4 (Figure S1).

Figure 2

Figure 2. Breaking the correspondence between electronic and optical dynamics. (a–c) Experimental pump–probe traces recorded at three different probe wavelengths: (a) λ1 = 515 nm, (b) λ2 = 554 nm, and (c) λ3 = 670 nm. The sample is excited by laser pulses at 400 nm wavelength with 100 fs duration, whereas a broadband probe pulse is focused on the sample at a time delay t with respect to the pump. Further details, together with information on the experimental setup, can be found in the Supporting Information, Section 3. The color of the curves refer to different pump fluences with increasing fluence from lighter to darker shades. Pump fluences in the experiment are (in mJ/cm2), F1 = 0.13, F2 = 0.25, F3 = 1.26, and F4 = 3.12. (d–f) Simulated nonthermalized (d) and thermalized (e) electrons, together with lattice (f) dynamics under different excitation regimes. Inset in (d) is a magnification on the subpicosecond time scale. (g–i) Simulated ΔT/T signal evaluated at (g) λ1 = 505 nm, (h) λ2 = 546 nm, and (i) λ3 = 661 nm. Pump fluences in the simulations are (in mJ/cm2), F1 = 0.05, F2 = 0.11, F3 = 0.64, and F4 = 1.50. Insets show a transmission electron microscopy (TEM) image of the sample used in the measurements (top) and a schematic of the transient absorption scheme modeled in the simulations (bottom).

At λ1, nonperturbative effects manifest as a mere saturation of the ΔT/T with increasing pump fluence F (Figure 2a); apart from a slight modification in the signal dynamics, the ΔT/T remains monotonic with F with a peak reached in the first hundreds of femtoseconds and a slow decay on a picoseconds time scale. A strikingly different behavior is instead retrieved when analyzing the temporal evolution of the modulated signal at λ2 (Figure 2b). While traces corresponding to F1 and F2 follow, apart from the sign (depending on the spectral dispersion of the photoinduced Δε) the same dynamics as the curves at λ1 (cf. Figure 2a) a substantially different nontrivial evolution of the transient signal over time is observed for higher fluences. The signal starts rising (in absolute value) then decreases again within the first hundreds of femtoseconds. Because of this behavior, in the case of F4 the signal changes sign, reaching a second ultrafast peak after its initial negative-valued one. Following this abrupt sign reversal, the signal starts increasing (in absolute value) again, featuring a peak at ∼5 ps for F3 and at a time delay longer than 15 ps for F4. This is a remarkable delay effect considering that pump pulses have a duration of 100 fs. Also, the optical signal does not scale monotonically with fluence: by fixing a time delay, the highest modulated signal is not the one at the highest fluence, contrary to what happens at λ1. Such a nontrivial dynamics is not peculiar of λ2 only or restricted to a narrow band, since the same trend with fluence is also observed at a distant wavelength λ3 (Figure 2c). According to the full transient maps of Figure S1, the most pronounced nonperturbative effects are indeed observable in the red wings of the plasmonic resonances, which are more sensitive to photoinduced changes of the isosbestic lines (black contours in Figure S1). Note also that the onset of the nonperturbative regime is experimentally achieved for a pump fluence of F3 = 1.26 mJ/cm2, which is higher than typical low-perturbation fluences (26,32,47) by a factor of ∼10 (at least) but still readily available and previously reported. (33,48)

To relate the observed optical dynamics to the temporal evolution of the hot carriers distribution, we simulated the transient absorption experiments using the so-called three-temperature model (3TM). (30,49−51) It consists of a rate-equation model describing the energy relaxation processes following photoabsorption in terms of three internal energetic degrees of freedom of the nanostructure: N, the density of excess energy stored in a nonthermalized fraction of the out-of-equilibrium electronic population, the aforementioned temperature ΘE, accounting for the excitation level of thermalizd hot carriers, and ΘL, the Au lattice temperature (see Supporting Information, Section 5). For the plasmonic system under investigation, the temporal dynamics of these three internal variables are reported in Figure 2d–f for increasing values of the pump pulse fluence. As expected, N (Figure 2d), ΔΘE (Figure 2e), and ΔΘL (Figure 2f) monotonically increase with increasing fluence at any time delay t. To be more precise, ΔΘE(t) scales proportionally although sublinearly with the pump fluence, which is a well-known consequence (41,47) of the fact that the 3TM comprises a time-dependent coefficient, that is, the electronic heat capacity CE ∝ ΘE(t). (52) However, this affects the dynamics of ΔΘE only quantitatively, resulting in an increased time constant for the electronic temperature relaxation, which remains monotonic in time but tends to become linear for high fluences because of the increased electron thermal inertia. Note that the approximation of CE as linearly dependent on ΘE is justified by the predicted range of electronic temperatures we span (see Figure 2e). For higher fluences inducing temperatures exceeding ∼3000 K, more refined models (53) should be employed to accurately assess the excited electron population dynamics. To retrieve then the transmission change of the ensemble of nanostructures via quasi-static formulas (see Supporting Information, Section 1), one should translate the dynamics of N, ΔΘE, and ΔΘL into the corresponding permittivity modulation terms (25,30) to compute spectra of Δε and T(ε + Δε) at each time delay (see Supporting Information, Sections 2 and 6).

The results of our calculations are reported in Figure 2g–i for three selected wavelengths: λ1 = 505 nm (Figure 2d), λ2 = 546 nm (Figure 2e), and λ3 = 661 nm (Figure 2f). Remarkably, by admitting a slight rigid shift (by less than 10 nm) and a lower value of fluence, ascribed to the increased Drude damping in Au static permittivity and to the linear model of pump absorption, neglecting saturation effects, (48) simulations are in excellent agreement with measured data. As for experiments, the signal traces at λ1 (Figure 2g) have almost the same dynamics regardless of F apart from the increase in the decay time with the signal tail evolving from exponential to linear at high fluences. Conversely, the differential transmittance at λ2 (Figure 2h) and λ3 (Figure 2i) exhibits nontrivial abrupt changes in the first hundreds of femtoseconds, together with delayed peaks reached at several picoseconds, confirming the observed breaking of the electronic-optical dynamics correspondence for nonperturbative excitations: the dynamics of the optical signal (Figure 2a–c) cannot be directly employed, in general, to infer the dynamics of the hot carrier temperature (Figure 2e) upon high-fluence photoexcitation, creating an electron distribution at very high temperatures (ΘE > ∼2000 K).

Our modeling approach allows us to gain further insight into the origin of the observed ΔT/T dynamics and in particular on whether the breaking of the electronic-optical correspondence is ascribable to a mere photonic effect (described in Figure 1a–c), is dominated by the Fermi smearing mechanism (detailed in Figure 1d,e), or rather both effects contribute.

We thus disentangled the contribution to the ΔT/T (for the fluence F3 = 640 μJ/cm2) arising from thermalizd carriers. This allows us to isolate the contribution of the electronic temperature, and rule out the possibility that the ultrafast dynamics of ΔT/T is due to nonthermal electrons (34) (see Supporting Information, Section 7 for details). Moreover, to ascertain the role of Fermi smearing in the photoinduced modulation, the computations of the permittivity modulation, and of the ensuing differential transmittance, were performed starting from the same dynamics of ΘE (solution of the 3TM) with the full nonperturbative as well as with a linearized model of variation in the hot electron distribution (see Supporting Information, Section 6). In the latter case, the variation of the Fermi–Dirac energy distribution of thermalizd hot carriers, written as ΔfT(E) = f(EE) – f(E0) in the full model, is instead expressed as a linear function of ΔΘE, that is, ΔfT(E) = [∂f(E, ΘE)/∂ΘE]ΘE = Θ0*ΔΘE with Θ0* an effective room temperature fitted to mimic broadening effects in Au interband transitions. (54) With the same rationale as in Figure 1, the differential transmission is computed as if only the imaginary Δε″ (Figure 3c,h,m) or the real Δε′ (Figure 3e,j,o) components were changed by an increase in the electronic temperature ΔΘE(t).

Figure 3

Figure 3. Disentangling contributions from thermalized hot carriers. (a) Simulated temporal dynamics of the pump–probe signal at λ1 = 505 nm due to thermalizd hot carriers only, namely computed as if ΔΘE was the only energetic variable modifying the metal permittivity. (b–e) Imaginary part of the photoinduced permittivity change from thermalized hot carriers (b) and corresponding contribution to the pump–probe signal trace at λ1, obtained as if Δε″ was the only term of permittivity modulation (c). With the same rationale, the real part Δε′ of permittivity modulation from ΘE (d) and the resulting relative change in transmittance (e) are shown. (f–j) Same as (a–e) for quantities evaluated at λ2 = 546 nm. (k-o) Same as (a-e) at λ3=661 nm. Results from the full model, considering a non-perturbative occupation probability of thermal electrons (solid curves), and from its linearised version, considering a linear dependence on ΘE of the thermal electron energy distribution (dashed curves) are compared

The main results of our analysis at λ1 are presented in Figure 3a–e for the two modeling approaches (solid lines for the full model, dashed lines for the linearized one), where the ΔT/T due to ΔΘE (Figure 3a) can be compared with the temporal evolution of the corresponding imaginary (real) part of permittivity variation Δε″ (Δε′), shown in Figure 3b (Figure 3d), and the relative transmission modulation, shown in Figure 3c (Figure 3e). As suggested by the regular trend of the pump–probe traces reported in Figure 2a,g, scaling monotonically with increasing fluence, the disentanglement confirms that the correspondence between optical (Figure 3a–e) and electronic (Figure 2e) dynamics at λ1 is preserved, the linearized model being adequate to describe the signal dynamics. At λ2 and λ3, first of all, as for the total ΔT/T (Figure 2b,c for experiments, Figure 2h,i for simulations), the signals arising from thermalized carriers are also similar (solid curves in Figure 3f,k) although the error introduced by the linearized Fermi smearing at λ2 is larger (compare dashed curves in Figure 3f,k). Most importantly, the onset of the delayed signal peak at around 3–4 ps, the fingerprint of the breaking of correspondence between optical and electronic dynamics, is lacking in the linearized model (dashed curves in Figure 3f,k). This indicates that such breaking is a signature of nonperturbative effects related to the Fermi smearing mechanism illustrated in Figure 1d. In more detail regarding λ3, Figure 3l,o show a dramatic discrepancy between the two models when dealing with imaginary permittivity modulations, where the linearized model largely underestimates the ΔT/T (cf. solid and dashed curves in Figure 3l,m). This correlates well with the analysis of Figure 1, since at this wavelength (marked by vertical red lines in Figures 1e,f) nonperturbative effects of the Fermi smearing, weak in terms of Δε′ (the curves in Figure 1f almost overlap), result in a sharp increase of Δε″ (Figure 1e). On the contrary, at λ2 (Figures 3g–j), the models mismatch is illustrated to be due to Δε′ (cf. solid and dashed curves in Figure 3i,j) and it is not only quantitative but involves a discrepancy in the sign of the contribution at the early stage of the dynamics. Again, this is fully consistent with the analysis reported in Figure 1, since at λ2 (marked by vertical green lines in Figure 1e,f) the Fermi smearing does not provide sizable nonperturbative effects due to Δε″ (the curves in Figure 1e are superimposed), whereas strong nonperturbative effects, including sign reversal, are predicted for Δε′ (Figure 1f) at high temperatures.

In conclusion, we investigated the ultrafast hot electron dynamics in plasmonic nanostructures excited with ultrashort laser pulses in a highly nonperturbative regime, reaching absorbed energy densities as high as ∼0.3 aJ/nm3 (yet well below the typical estimated (48) damage threshold of a few aJ/nm3, as ascertained by the absence of morphological changes in the sample after pump irradiation). The theoretical predictions turned out to be in excellent agreement with transient absorption spectroscopy experiments performed on colloidal gold nanorods. Our model provides a consistent explanation of the origin of sign changes and unexpected formation of delayed peaks observed in the pump–probe traces despite the monotonic dynamics of hot electron relaxation taking place on the same time scale. These results indicate that the correspondence between electronic and optical dynamics ceases to be valid beyond the perturbative regime. This behavior is intrinsically related to the Fermi smearing mechanism presiding over hot electron relaxation in any metallic structure and is therefore universal in ultrafast plasmonics. In these terms, our study provides a fundamental argument with general validity on how the optical signal retrieved by ultrafast pump–probe spectroscopy relates to the electron temperature in metallic nanomaterials under high-fluence excitation. Moreover, our results will be relevant for understanding the nonequilibrium optical response of plasmon-enhanced nanophotonic devices, from ultrafast photodetectors to all-optical modulators, where the achievement of a nonperturbative regime of the optical excitation is of crucial relevance to address real-world applications.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04608.

  • Static optical response; permittivity modulation; experimental measurements; broadband transient absorption spectroscopy; the three-temperature model (3TM); modeling Au optical nonlinearities; nonthermal electron contribution (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Giuseppe Della Valle - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyIstituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyIstituto Nazionale di Fisica Nucleare - Sezione di Milano, Via Celoria, 16, I-20133 Milano, ItalyOrcidhttps://orcid.org/0000-0003-0117-2683 Email: [email protected]
  • Authors
    • Andrea Schirato - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyIstituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
    • Giulia Crotti - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyIstituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
    • Mychel Gonçalves Silva - Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG Brazil
    • Danielle Cristina Teles-Ferreira - Instituto Federal de Minas Gerais, Campus Ouro Preto, Ouro Preto 35400-000, MG Brazil
    • Cristian Manzoni - Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    • Remo Proietti Zaccaria - Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, ItalyCixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, ChinaOrcidhttps://orcid.org/0000-0002-4951-7161
    • Paolo Laporta - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyIstituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
    • Ana Maria de Paula - Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG BrazilOrcidhttps://orcid.org/0000-0002-8551-5948
    • Giulio Cerullo - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyIstituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, ItalyOrcidhttps://orcid.org/0000-0002-9534-2702
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This publication is part of the METAFAST project that received funding from the European Union Horizon 2020 Research and Innovation programme under Grant Agreement 899673. This work reflects only the author view and the European Commission is not responsible for any use that may be made of the information it contains. M.G.S., D.C.T.-F., and A.M.d.P. acknowledge financial support from the Brazilian funding agencies Capes, Fapemig, and CNPq.

References

ARTICLE SECTIONS
Jump To

This article references 54 other publications.

  1. 1
    Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics─A Route to Nanoscale Optical Devices. Adv. Mater. 2001, 13, 15011505,  DOI: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  2. 2
    Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641648,  DOI: 10.1038/nphoton.2007.223
  3. 3
    Lindquist, N. C.; Nagpal, P.; McPeak, K. M.; Norris, D. J.; Oh, S.-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 2012, 75, 036501,  DOI: 10.1088/0034-4885/75/3/036501
  4. 4
    Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with Active Optical Antennas. Science 2011, 332, 702704,  DOI: 10.1126/science.1203056
  5. 5
    Chalabi, H.; Schoen, D.; Brongersma, M. L. Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna. Nano Lett. 2014, 14, 13741380,  DOI: 10.1021/nl4044373
  6. 6
    Mukherjee, S.; Zhou, L.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-Electron-Induced Dissociation of H2 on Gold Nanoparticles Supported on SiO2. J. Am. Chem. Soc. 2014, 136, 6467,  DOI: 10.1021/ja411017b
  7. 7
    Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An Autonomous Photosynthetic Device in which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8, 247251,  DOI: 10.1038/nnano.2013.18
  8. 8
    Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J. R.; Wei, W. D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118, 29272954,  DOI: 10.1021/acs.chemrev.7b00430
  9. 9
    Vadai, M.; Angell, D. K.; Hayee, F.; Sytwu, K.; Dionne, J. A. In-Situ Observation of Plasmon-Controlled Photocatalytic Dehydrogenation of Individual Palladium Nanoparticles. Nat. Commun. 2018, 9, 4658,  DOI: 10.1038/s41467-018-07108-x
  10. 10
    Cortés, E.; Besteiro, L. V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in Plasmonic Catalysis. ACS Nano 2020, 14, 1620216219,  DOI: 10.1021/acsnano.0c08773
  11. 11
    Zhou, L.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M.; Dong, L.; Henderson, L.; Christopher, P.; Carter, E. A.; Nordlander, P.; Halas, N. J. Light-Driven Methane Dry Reforming with Single Atomic Site Antenna-Reactor Plasmonic Photocatalysts. Nature Energy 2020, 5, 6170,  DOI: 10.1038/s41560-019-0517-9
  12. 12
    Abadeer, N. S.; Murphy, C. J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 46914716,  DOI: 10.1021/acs.jpcc.5b11232
  13. 13
    Li, Y.; Zhang, Y.; Wang, W. Phototriggered targeting of nanocarriers for drug delivery. Nano Research 2018, 11, 54245438,  DOI: 10.1007/s12274-018-2132-7
  14. 14
    Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205213,  DOI: 10.1038/nmat2629
  15. 15
    Dang, X.; Qi, J.; Klug, M. T.; Chen, P.-Y.; Yun, D. S.; Fang, N. X.; Hammond, P. T.; Belcher, A. M. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells. Nano Lett. 2013, 13, 637642,  DOI: 10.1021/nl3043823
  16. 16
    Aubry, A.; Lei, D. Y.; Fernández-Domínguez, A. I.; Sonnefraud, Y.; Maier, S. A.; Pendry, J. B. Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum. Nano Lett. 2010, 10, 25742579,  DOI: 10.1021/nl101235d
  17. 17
    Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9, 193204,  DOI: 10.1038/nmat2630
  18. 18
    Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics Beyond the Diffraction Limit. Nat. Photonics 2010, 4, 8391,  DOI: 10.1038/nphoton.2009.282
  19. 19
    Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar Photonics with Metasurfaces. Science 2013, 339, 1232009,  DOI: 10.1126/science.1232009
  20. 20
    Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139150,  DOI: 10.1038/nmat3839
  21. 21
    Neshev, D. N.; Aharonovich, I. Optical Metasurfaces: New Generation Building Blocks for Multi-Functional Optics. Light: Sci. and Appl. 2018, 7, 58,  DOI: 10.1038/s41377-018-0058-1
  22. 22
    Aouani, H.; Navarro-Cia, M.; Rahmani, M.; Sidiropoulos, T. P.; Hong, M.; Oulton, R. F.; Maier, S. A. Multiresonant Broadband Optical Antennas as Efficient Tunable Nanosources of Second Harmonic Light. Nano Lett. 2012, 12, 49975002,  DOI: 10.1021/nl302665m
  23. 23
    Li, G.; Zhang, S.; Zentgraf, T. Nonlinear Photonic Metasurfaces. Nature Reviews Materials 2017, 2, 114,  DOI: 10.1038/natrevmats.2017.10
  24. 24
    Zhang, Y.; Grady, N. K.; Ayala-Orozco, C.; Halas, N. J. Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Lett. 2011, 11, 55195523,  DOI: 10.1021/nl2033602
  25. 25
    Schirato, A.; Maiuri, M.; Toma, A.; Fugattini, S.; Proietti Zaccaria, R.; Laporta, P.; Nordlander, P.; Cerullo, G.; Alabastri, A.; Della Valle, G. Transient Optical Symmetry Breaking for Ultrafast Broadband Dichroism in Plasmonic Metasurfaces. Nat. Photonics 2020, 14, 723727,  DOI: 10.1038/s41566-020-00702-w
  26. 26
    Brown, A. M.; Sundararaman, R.; Narang, P.; Schwartzberg, A. M.; Goddard, W. A., III; Atwater, H. A. Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Phys. Rev. Lett. 2017, 118, 087401,  DOI: 10.1103/PhysRevLett.118.087401
  27. 27
    Liu, J. G.; Zhang, H.; Link, S.; Nordlander, P. Relaxation of Plasmon-Induced Hot Carriers. ACS Photonics 2018, 5, 25842595,  DOI: 10.1021/acsphotonics.7b00881
  28. 28
    Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano 2014, 8, 76307638,  DOI: 10.1021/nn502445f
  29. 29
    Besteiro, L. V.; Kong, X.-T.; Wang, Z.; Hartland, G.; Govorov, A. O. Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics 2017, 4, 27592781,  DOI: 10.1021/acsphotonics.7b00751
  30. 30
    Zavelani-Rossi, M.; Polli, D.; Kochtcheev, S.; Baudrion, A.-L.; Béal, J.; Kumar, V.; Molotokaite, E.; Marangoni, M.; Longhi, S.; Cerullo, G.; Adam, P.-M.; Della Valle, G. Transient Optical Response of a Single Gold Nanoantenna: The Role of Plasmon Detuning. ACS Photonics 2015, 2, 521529,  DOI: 10.1021/ph5004175
  31. 31
    Muskens, O. L.; Del Fatti, N.; Vallée, F. Femtosecond Response of a Single Metal Nanoparticle. Nano Lett. 2006, 6, 552556,  DOI: 10.1021/nl0524086
  32. 32
    Baida, H.; Mongin, D.; Christofilos, D.; Bachelier, G.; Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F. Ultrafast Nonlinear Optical Response of a Single Gold Nanorod near Its Surface Plasmon Resonance. Phys. Rev. Lett. 2011, 107, 057402,  DOI: 10.1103/PhysRevLett.107.057402
  33. 33
    Wang, X.; Guillet, Y.; Selvakannan, P. R.; Remita, H.; Palpant, B. Broadband Spectral Signature of the Ultrafast Transient Optical Response of Gold Nanorods. J. Phys. Chem. C 2015, 119, 74167427,  DOI: 10.1021/acs.jpcc.5b00131
  34. 34
    Harutyunyan, H.; Martinson, A. B. F.; Rosenmann, D.; Khorashad, L. K.; Besteiro, L. V.; Govorov, A. O.; Wiederrecht, G. P. Anomalous Ultrafast Dynamics of Hot Plasmonic Electrons in Nanostructures with Hot Spots. Nat. Nanotechnol. 2015, 10, 770774,  DOI: 10.1038/nnano.2015.165
  35. 35
    Wang, Y.; Shi, H.; Shen, L.; Wang, Y.; Cronin, S. B.; Dawlaty, J. M. Ultrafast Dynamics of Hot Electrons in Nanostructures: Distinguishing the Influence on Interband and Plasmon Resonances. ACS Photonics 2019, 6, 22952302,  DOI: 10.1021/acsphotonics.9b00793
  36. 36
    Moretti, L.; Mazzanti, A.; Rossetti, A.; Schirato, A.; Polito, L.; Pizzetti, F.; Sacchetti, A.; Cerullo, G.; Della Valle, G.; Rossi, F.; Maiuri, M. Plasmonic Control of Drug Release Efficiency in Agarose Gel Loaded with Gold Nanoparticle Assemblies. Nanophotonics 2020, 10, 247257,  DOI: 10.1515/nanoph-2020-0418
  37. 37
    MacDonald, K. F.; Sámson, Z. L.; Stockman, M. I.; Zheludev, N. I. Ultrafast Active Plasmonics. Nat. Photonics 2009, 3, 5558,  DOI: 10.1038/nphoton.2008.249
  38. 38
    Vasa, P.; Ropers, C.; Pomraenke, R.; Lienau, C. Ultra-Fast Nano-Optics. Laser & Photonics Review 2009, 3, 483507,  DOI: 10.1002/lpor.200810064
  39. 39
    Du, L.; Furube, A.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast Plasmon Induced Electron Injection Mechanism in Gold–TiO2 Nanoparticle System. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 2130,  DOI: 10.1016/j.jphotochemrev.2012.11.001
  40. 40
    Tagliabue, G.; DuChene, J. S.; Abdellah, M.; Habib, A.; Gosztola, D. J.; Hattori, Y.; Cheng, W.-H.; Zheng, K.; Canton, S. E.; Sundararaman, R.; Sá, J.; Atwater, H. A. Ultrafast Hot-Hole Injection Modifies Hot-Electron Dynamics in Au/p-GaN Heterostructures. Nat. Mater. 2020, 19, 13121318,  DOI: 10.1038/s41563-020-0737-1
  41. 41
    Voisin, C.; Del Fatti, N.; Christofilos, D.; Vallée, F. Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles. J. Phys. Chem. B 2001, 105, 22642280,  DOI: 10.1021/jp0038153
  42. 42
    Mazzanti, A.; Yang, Z.; Silva, M. G.; Yang, N.; Rizza, G.; Coulon, P.-E.; Manzoni, C.; de Paula, A. M.; Cerullo, G.; Della Valle, G.; Pileni, M.-P. Light–Heat Conversion Dynamics in Highly Diversified Water-Dispersed Hydrophobic Nanocrystal Assemblies. Proc. Natl. Acad. Sci. U. S. A 2019, 116, 81618166,  DOI: 10.1073/pnas.1817850116
  43. 43
    Mazzanti, A.; Pogna, E. A. A.; Ghirardini, L.; Celebrano, M.; Schirato, A.; Marino, G.; Lemaítre, A.; Finazzi, M.; Angelis, C. D.; Leo, G.; Cerullo, G.; Della Valle, G. All-Optical Modulation with Dielectric Nanoantennas: Multiresonant Control and Ultrafast Spatial Inhomogeneities. Small Science 2021, 1, 2000079,  DOI: 10.1002/smsc.202000079
  44. 44
    Ashoka, A.; Tamming, R. R.; Girija, A. V.; Bretscher, H.; Verma, S. D.; Yang, S.-D.; Lu, C.-H.; Hodgkiss, J. M.; Ritchie, D.; Chen, C.; Smith, C. G.; Schnedermann, C.; Price, M. B.; Chen, K.; Rao, A. Extracting Quantitative Dielectric Properties from Pump-Probe Spectroscopy. 2021; arXiv:2108.10605. arXiv.org e-Print archive. https://arxiv.org/abs/2108.10605 (accessed Aug 31, 2021).
  45. 45
    Silva, M. G.; Teles-Ferreira, D. C.; Siman, L.; Chaves, C. R.; Ladeira, L. O.; Longhi, S.; Cerullo, G.; Manzoni, C.; de Paula, A. M.; Della Valle, G. Universal Saturation Behavior in the Transient Optical Response of Plasmonic Structures. Phys. Rev. B 2018, 98, 115407,  DOI: 10.1103/PhysRevB.98.115407
  46. 46
    Rosei, R. Temperature Modulation of the Optical Transitions Involving the Fermi Surface in Ag: Theory. Phys. Rev. B 1974, 10, 474,  DOI: 10.1103/PhysRevB.10.474
  47. 47
    Fatti, N. D.; Vallée, F.; Flytzanis, C.; Hamanaka, Y.; Nakamura, A. Electron Dynamics and Surface Plasmon Resonance Nonlinearities in Metal Nanoparticles. Chem. Phys. 2000, 251, 215226,  DOI: 10.1016/S0301-0104(99)00304-3
  48. 48
    Hou, X.; Djellali, N.; Palpant, B. Absorption of Ultrashort Laser Pulses by Plasmonic Nanoparticles: Not Necessarily What You Might Think. ACS Photonics 2018, 5, 38563863,  DOI: 10.1021/acsphotonics.8b01012
  49. 49
    Sun, C.-K.; Vallée, F.; Acioli, L. H.; Ippen, E. P.; Fujimoto, J. G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 1994, 50, 1533715348,  DOI: 10.1103/PhysRevB.50.15337
  50. 50
    Averitt, R. D.; Westcott, S. L.; Halas, N. J. Ultrafast electron dynamics in gold nanoshells. Phys. Rev. B 1998, 58, R10203R10206,  DOI: 10.1103/PhysRevB.58.R10203
  51. 51
    della Valle, G.; Scotognella, F.; Kandada, A. R. S.; Zavelani-Rossi, M.; Li, H.; Conforti, M.; Longhi, S.; Manna, L.; Lanzani, G.; Tassone, F. Ultrafast Optical Mapping of Nonlinear Plasmon Dynamics in Cu2–xSe Nanoparticles. J. Phys. Chem. Lett. 2013, 4, 33373344,  DOI: 10.1021/jz401862v
  52. 52
    Lin, Z.; Zhigilei, L. V.; Celli, V. Electron-Phonon coupling and Electron Heat Capacity of Metals under Conditions of Strong Electron-Phonon Nonequilibrium. Phys. Rev. B 2008, 77, 075133,  DOI: 10.1103/PhysRevB.77.075133
  53. 53
    Brown, A. M.; Sundararaman, R.; Narang, P.; Goddard, W. A.; Atwater, H. A. Ab Initio Phonon Coupling and Optical Response of Hot Electrons in Plasmonic Metals. Phys. Rev. B 2016, 94, 075120,  DOI: 10.1103/PhysRevB.94.075120
  54. 54
    Winsemius, P.; Guerrisi, M.; Rosei, R. Splitting of the Interband Absorption Edge in Au: Temperature Dependence. Phys. Rev. B 1975, 12, 45704572,  DOI: 10.1103/PhysRevB.12.4570

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 5 publications.

  1. Andrea Schirato, Luca Moretti, Elisa Lacroce, Laura Polito, Filippo Rossi, Giuseppe Della Valle, Margherita Maiuri. Pump-Selective Spectral Shaping of the Ultrafast Response in Plasmonic Nanostars. The Journal of Physical Chemistry C 2024, 128 (6) , 2551-2560. https://doi.org/10.1021/acs.jpcc.3c07267
  2. Federico Toffoletti, Elisabetta Collini. Coherent and Incoherent Ultrafast Dynamics in Colloidal Gold Nanorods. The Journal of Physical Chemistry Letters 2024, 15 (1) , 339-348. https://doi.org/10.1021/acs.jpclett.3c03226
  3. Artur Avdizhiyan, Weronika Janus, Marcin Szpytma, Tomasz Ślezak, Marek Przybylski, Maciej Chrobak, Vladimir Roddatis, Andrzej Stupakiewicz, Ilya Razdolski. Ultrafast Laser-Induced Dynamics of Non-Equilibrium Electron Spill-Out in Nanoplasmonic Bilayers. Nano Letters 2024, 24 (1) , 466-471. https://doi.org/10.1021/acs.nanolett.3c04318
  4. Niklas Gross, Christopher T. Kuhs, Behnaz Ostovar, Wei-Yi Chiang, Kelly S. Wilson, Tanner S. Volek, Zachary M. Faitz, Claire C. Carlin, Jennifer A. Dionne, Martin T. Zanni, Martin Gruebele, Sean T. Roberts, Stephan Link, Christy F. Landes. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. The Journal of Physical Chemistry C 2023, 127 (30) , 14557-14586. https://doi.org/10.1021/acs.jpcc.3c02091
  5. Andrea Schirato, Margherita Maiuri, Giulio Cerullo, Giuseppe Della Valle. Ultrafast hot electron dynamics in plasmonic nanostructures: experiments, modelling, design. Nanophotonics 2023, 12 (1) , 1-28. https://doi.org/10.1515/nanoph-2022-0592
  • Abstract

    Figure 1

    Figure 1. Nonperturbative photoexcitation of Au nanostructures. (a–c) Nonperturbative effect arising from the nonlinear relation between the system transmission T and the metal permittivity ε, for NPs in aqueous environment, as schematized in (a). The two plasmonic resonances (TSPR and LSPR) are marked by arrows. The differential transmittance signal, obtained for a given constant dispersionless Δε ranging between 0.01 and 2, is reported for either a purely imaginary (b) or real (c) variation. (d–f) Nonperturbative effect arising from the universal nonlinear mechanism of Fermi smearing in Au, triggered by the increase of the electronic temperature ΔΘE and resulting in a change of the metal electron Fermi–Dirac distribution f(E), as sketched in (d), where the arrows point from low to high temperatures. The Δε associated with the change in f(E), normalized to ΔΘE, is displayed in both its imaginary (e) and real (f) parts. Vertical lines identify the three wavelengths analyzed in Figures 2 and 3

    Figure 2

    Figure 2. Breaking the correspondence between electronic and optical dynamics. (a–c) Experimental pump–probe traces recorded at three different probe wavelengths: (a) λ1 = 515 nm, (b) λ2 = 554 nm, and (c) λ3 = 670 nm. The sample is excited by laser pulses at 400 nm wavelength with 100 fs duration, whereas a broadband probe pulse is focused on the sample at a time delay t with respect to the pump. Further details, together with information on the experimental setup, can be found in the Supporting Information, Section 3. The color of the curves refer to different pump fluences with increasing fluence from lighter to darker shades. Pump fluences in the experiment are (in mJ/cm2), F1 = 0.13, F2 = 0.25, F3 = 1.26, and F4 = 3.12. (d–f) Simulated nonthermalized (d) and thermalized (e) electrons, together with lattice (f) dynamics under different excitation regimes. Inset in (d) is a magnification on the subpicosecond time scale. (g–i) Simulated ΔT/T signal evaluated at (g) λ1 = 505 nm, (h) λ2 = 546 nm, and (i) λ3 = 661 nm. Pump fluences in the simulations are (in mJ/cm2), F1 = 0.05, F2 = 0.11, F3 = 0.64, and F4 = 1.50. Insets show a transmission electron microscopy (TEM) image of the sample used in the measurements (top) and a schematic of the transient absorption scheme modeled in the simulations (bottom).

    Figure 3

    Figure 3. Disentangling contributions from thermalized hot carriers. (a) Simulated temporal dynamics of the pump–probe signal at λ1 = 505 nm due to thermalizd hot carriers only, namely computed as if ΔΘE was the only energetic variable modifying the metal permittivity. (b–e) Imaginary part of the photoinduced permittivity change from thermalized hot carriers (b) and corresponding contribution to the pump–probe signal trace at λ1, obtained as if Δε″ was the only term of permittivity modulation (c). With the same rationale, the real part Δε′ of permittivity modulation from ΘE (d) and the resulting relative change in transmittance (e) are shown. (f–j) Same as (a–e) for quantities evaluated at λ2 = 546 nm. (k-o) Same as (a-e) at λ3=661 nm. Results from the full model, considering a non-perturbative occupation probability of thermal electrons (solid curves), and from its linearised version, considering a linear dependence on ΘE of the thermal electron energy distribution (dashed curves) are compared

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 54 other publications.

    1. 1
      Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics─A Route to Nanoscale Optical Devices. Adv. Mater. 2001, 13, 15011505,  DOI: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
    2. 2
      Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641648,  DOI: 10.1038/nphoton.2007.223
    3. 3
      Lindquist, N. C.; Nagpal, P.; McPeak, K. M.; Norris, D. J.; Oh, S.-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 2012, 75, 036501,  DOI: 10.1088/0034-4885/75/3/036501
    4. 4
      Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with Active Optical Antennas. Science 2011, 332, 702704,  DOI: 10.1126/science.1203056
    5. 5
      Chalabi, H.; Schoen, D.; Brongersma, M. L. Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna. Nano Lett. 2014, 14, 13741380,  DOI: 10.1021/nl4044373
    6. 6
      Mukherjee, S.; Zhou, L.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-Electron-Induced Dissociation of H2 on Gold Nanoparticles Supported on SiO2. J. Am. Chem. Soc. 2014, 136, 6467,  DOI: 10.1021/ja411017b
    7. 7
      Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An Autonomous Photosynthetic Device in which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8, 247251,  DOI: 10.1038/nnano.2013.18
    8. 8
      Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J. R.; Wei, W. D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118, 29272954,  DOI: 10.1021/acs.chemrev.7b00430
    9. 9
      Vadai, M.; Angell, D. K.; Hayee, F.; Sytwu, K.; Dionne, J. A. In-Situ Observation of Plasmon-Controlled Photocatalytic Dehydrogenation of Individual Palladium Nanoparticles. Nat. Commun. 2018, 9, 4658,  DOI: 10.1038/s41467-018-07108-x
    10. 10
      Cortés, E.; Besteiro, L. V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in Plasmonic Catalysis. ACS Nano 2020, 14, 1620216219,  DOI: 10.1021/acsnano.0c08773
    11. 11
      Zhou, L.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M.; Dong, L.; Henderson, L.; Christopher, P.; Carter, E. A.; Nordlander, P.; Halas, N. J. Light-Driven Methane Dry Reforming with Single Atomic Site Antenna-Reactor Plasmonic Photocatalysts. Nature Energy 2020, 5, 6170,  DOI: 10.1038/s41560-019-0517-9
    12. 12
      Abadeer, N. S.; Murphy, C. J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 46914716,  DOI: 10.1021/acs.jpcc.5b11232
    13. 13
      Li, Y.; Zhang, Y.; Wang, W. Phototriggered targeting of nanocarriers for drug delivery. Nano Research 2018, 11, 54245438,  DOI: 10.1007/s12274-018-2132-7
    14. 14
      Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205213,  DOI: 10.1038/nmat2629
    15. 15
      Dang, X.; Qi, J.; Klug, M. T.; Chen, P.-Y.; Yun, D. S.; Fang, N. X.; Hammond, P. T.; Belcher, A. M. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells. Nano Lett. 2013, 13, 637642,  DOI: 10.1021/nl3043823
    16. 16
      Aubry, A.; Lei, D. Y.; Fernández-Domínguez, A. I.; Sonnefraud, Y.; Maier, S. A.; Pendry, J. B. Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum. Nano Lett. 2010, 10, 25742579,  DOI: 10.1021/nl101235d
    17. 17
      Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9, 193204,  DOI: 10.1038/nmat2630
    18. 18
      Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics Beyond the Diffraction Limit. Nat. Photonics 2010, 4, 8391,  DOI: 10.1038/nphoton.2009.282
    19. 19
      Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar Photonics with Metasurfaces. Science 2013, 339, 1232009,  DOI: 10.1126/science.1232009
    20. 20
      Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139150,  DOI: 10.1038/nmat3839
    21. 21
      Neshev, D. N.; Aharonovich, I. Optical Metasurfaces: New Generation Building Blocks for Multi-Functional Optics. Light: Sci. and Appl. 2018, 7, 58,  DOI: 10.1038/s41377-018-0058-1
    22. 22
      Aouani, H.; Navarro-Cia, M.; Rahmani, M.; Sidiropoulos, T. P.; Hong, M.; Oulton, R. F.; Maier, S. A. Multiresonant Broadband Optical Antennas as Efficient Tunable Nanosources of Second Harmonic Light. Nano Lett. 2012, 12, 49975002,  DOI: 10.1021/nl302665m
    23. 23
      Li, G.; Zhang, S.; Zentgraf, T. Nonlinear Photonic Metasurfaces. Nature Reviews Materials 2017, 2, 114,  DOI: 10.1038/natrevmats.2017.10
    24. 24
      Zhang, Y.; Grady, N. K.; Ayala-Orozco, C.; Halas, N. J. Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Lett. 2011, 11, 55195523,  DOI: 10.1021/nl2033602
    25. 25
      Schirato, A.; Maiuri, M.; Toma, A.; Fugattini, S.; Proietti Zaccaria, R.; Laporta, P.; Nordlander, P.; Cerullo, G.; Alabastri, A.; Della Valle, G. Transient Optical Symmetry Breaking for Ultrafast Broadband Dichroism in Plasmonic Metasurfaces. Nat. Photonics 2020, 14, 723727,  DOI: 10.1038/s41566-020-00702-w
    26. 26
      Brown, A. M.; Sundararaman, R.; Narang, P.; Schwartzberg, A. M.; Goddard, W. A., III; Atwater, H. A. Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Phys. Rev. Lett. 2017, 118, 087401,  DOI: 10.1103/PhysRevLett.118.087401
    27. 27
      Liu, J. G.; Zhang, H.; Link, S.; Nordlander, P. Relaxation of Plasmon-Induced Hot Carriers. ACS Photonics 2018, 5, 25842595,  DOI: 10.1021/acsphotonics.7b00881
    28. 28
      Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano 2014, 8, 76307638,  DOI: 10.1021/nn502445f
    29. 29
      Besteiro, L. V.; Kong, X.-T.; Wang, Z.; Hartland, G.; Govorov, A. O. Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics 2017, 4, 27592781,  DOI: 10.1021/acsphotonics.7b00751
    30. 30
      Zavelani-Rossi, M.; Polli, D.; Kochtcheev, S.; Baudrion, A.-L.; Béal, J.; Kumar, V.; Molotokaite, E.; Marangoni, M.; Longhi, S.; Cerullo, G.; Adam, P.-M.; Della Valle, G. Transient Optical Response of a Single Gold Nanoantenna: The Role of Plasmon Detuning. ACS Photonics 2015, 2, 521529,  DOI: 10.1021/ph5004175
    31. 31
      Muskens, O. L.; Del Fatti, N.; Vallée, F. Femtosecond Response of a Single Metal Nanoparticle. Nano Lett. 2006, 6, 552556,  DOI: 10.1021/nl0524086
    32. 32
      Baida, H.; Mongin, D.; Christofilos, D.; Bachelier, G.; Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F. Ultrafast Nonlinear Optical Response of a Single Gold Nanorod near Its Surface Plasmon Resonance. Phys. Rev. Lett. 2011, 107, 057402,  DOI: 10.1103/PhysRevLett.107.057402
    33. 33
      Wang, X.; Guillet, Y.; Selvakannan, P. R.; Remita, H.; Palpant, B. Broadband Spectral Signature of the Ultrafast Transient Optical Response of Gold Nanorods. J. Phys. Chem. C 2015, 119, 74167427,  DOI: 10.1021/acs.jpcc.5b00131
    34. 34
      Harutyunyan, H.; Martinson, A. B. F.; Rosenmann, D.; Khorashad, L. K.; Besteiro, L. V.; Govorov, A. O.; Wiederrecht, G. P. Anomalous Ultrafast Dynamics of Hot Plasmonic Electrons in Nanostructures with Hot Spots. Nat. Nanotechnol. 2015, 10, 770774,  DOI: 10.1038/nnano.2015.165
    35. 35
      Wang, Y.; Shi, H.; Shen, L.; Wang, Y.; Cronin, S. B.; Dawlaty, J. M. Ultrafast Dynamics of Hot Electrons in Nanostructures: Distinguishing the Influence on Interband and Plasmon Resonances. ACS Photonics 2019, 6, 22952302,  DOI: 10.1021/acsphotonics.9b00793
    36. 36
      Moretti, L.; Mazzanti, A.; Rossetti, A.; Schirato, A.; Polito, L.; Pizzetti, F.; Sacchetti, A.; Cerullo, G.; Della Valle, G.; Rossi, F.; Maiuri, M. Plasmonic Control of Drug Release Efficiency in Agarose Gel Loaded with Gold Nanoparticle Assemblies. Nanophotonics 2020, 10, 247257,  DOI: 10.1515/nanoph-2020-0418
    37. 37
      MacDonald, K. F.; Sámson, Z. L.; Stockman, M. I.; Zheludev, N. I. Ultrafast Active Plasmonics. Nat. Photonics 2009, 3, 5558,  DOI: 10.1038/nphoton.2008.249
    38. 38
      Vasa, P.; Ropers, C.; Pomraenke, R.; Lienau, C. Ultra-Fast Nano-Optics. Laser & Photonics Review 2009, 3, 483507,  DOI: 10.1002/lpor.200810064
    39. 39
      Du, L.; Furube, A.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast Plasmon Induced Electron Injection Mechanism in Gold–TiO2 Nanoparticle System. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 2130,  DOI: 10.1016/j.jphotochemrev.2012.11.001
    40. 40
      Tagliabue, G.; DuChene, J. S.; Abdellah, M.; Habib, A.; Gosztola, D. J.; Hattori, Y.; Cheng, W.-H.; Zheng, K.; Canton, S. E.; Sundararaman, R.; Sá, J.; Atwater, H. A. Ultrafast Hot-Hole Injection Modifies Hot-Electron Dynamics in Au/p-GaN Heterostructures. Nat. Mater. 2020, 19, 13121318,  DOI: 10.1038/s41563-020-0737-1
    41. 41
      Voisin, C.; Del Fatti, N.; Christofilos, D.; Vallée, F. Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles. J. Phys. Chem. B 2001, 105, 22642280,  DOI: 10.1021/jp0038153
    42. 42
      Mazzanti, A.; Yang, Z.; Silva, M. G.; Yang, N.; Rizza, G.; Coulon, P.-E.; Manzoni, C.; de Paula, A. M.; Cerullo, G.; Della Valle, G.; Pileni, M.-P. Light–Heat Conversion Dynamics in Highly Diversified Water-Dispersed Hydrophobic Nanocrystal Assemblies. Proc. Natl. Acad. Sci. U. S. A 2019, 116, 81618166,  DOI: 10.1073/pnas.1817850116
    43. 43
      Mazzanti, A.; Pogna, E. A. A.; Ghirardini, L.; Celebrano, M.; Schirato, A.; Marino, G.; Lemaítre, A.; Finazzi, M.; Angelis, C. D.; Leo, G.; Cerullo, G.; Della Valle, G. All-Optical Modulation with Dielectric Nanoantennas: Multiresonant Control and Ultrafast Spatial Inhomogeneities. Small Science 2021, 1, 2000079,  DOI: 10.1002/smsc.202000079
    44. 44
      Ashoka, A.; Tamming, R. R.; Girija, A. V.; Bretscher, H.; Verma, S. D.; Yang, S.-D.; Lu, C.-H.; Hodgkiss, J. M.; Ritchie, D.; Chen, C.; Smith, C. G.; Schnedermann, C.; Price, M. B.; Chen, K.; Rao, A. Extracting Quantitative Dielectric Properties from Pump-Probe Spectroscopy. 2021; arXiv:2108.10605. arXiv.org e-Print archive. https://arxiv.org/abs/2108.10605 (accessed Aug 31, 2021).
    45. 45
      Silva, M. G.; Teles-Ferreira, D. C.; Siman, L.; Chaves, C. R.; Ladeira, L. O.; Longhi, S.; Cerullo, G.; Manzoni, C.; de Paula, A. M.; Della Valle, G. Universal Saturation Behavior in the Transient Optical Response of Plasmonic Structures. Phys. Rev. B 2018, 98, 115407,  DOI: 10.1103/PhysRevB.98.115407
    46. 46
      Rosei, R. Temperature Modulation of the Optical Transitions Involving the Fermi Surface in Ag: Theory. Phys. Rev. B 1974, 10, 474,  DOI: 10.1103/PhysRevB.10.474
    47. 47
      Fatti, N. D.; Vallée, F.; Flytzanis, C.; Hamanaka, Y.; Nakamura, A. Electron Dynamics and Surface Plasmon Resonance Nonlinearities in Metal Nanoparticles. Chem. Phys. 2000, 251, 215226,  DOI: 10.1016/S0301-0104(99)00304-3
    48. 48
      Hou, X.; Djellali, N.; Palpant, B. Absorption of Ultrashort Laser Pulses by Plasmonic Nanoparticles: Not Necessarily What You Might Think. ACS Photonics 2018, 5, 38563863,  DOI: 10.1021/acsphotonics.8b01012
    49. 49
      Sun, C.-K.; Vallée, F.; Acioli, L. H.; Ippen, E. P.; Fujimoto, J. G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 1994, 50, 1533715348,  DOI: 10.1103/PhysRevB.50.15337
    50. 50
      Averitt, R. D.; Westcott, S. L.; Halas, N. J. Ultrafast electron dynamics in gold nanoshells. Phys. Rev. B 1998, 58, R10203R10206,  DOI: 10.1103/PhysRevB.58.R10203
    51. 51
      della Valle, G.; Scotognella, F.; Kandada, A. R. S.; Zavelani-Rossi, M.; Li, H.; Conforti, M.; Longhi, S.; Manna, L.; Lanzani, G.; Tassone, F. Ultrafast Optical Mapping of Nonlinear Plasmon Dynamics in Cu2–xSe Nanoparticles. J. Phys. Chem. Lett. 2013, 4, 33373344,  DOI: 10.1021/jz401862v
    52. 52
      Lin, Z.; Zhigilei, L. V.; Celli, V. Electron-Phonon coupling and Electron Heat Capacity of Metals under Conditions of Strong Electron-Phonon Nonequilibrium. Phys. Rev. B 2008, 77, 075133,  DOI: 10.1103/PhysRevB.77.075133
    53. 53
      Brown, A. M.; Sundararaman, R.; Narang, P.; Goddard, W. A.; Atwater, H. A. Ab Initio Phonon Coupling and Optical Response of Hot Electrons in Plasmonic Metals. Phys. Rev. B 2016, 94, 075120,  DOI: 10.1103/PhysRevB.94.075120
    54. 54
      Winsemius, P.; Guerrisi, M.; Rosei, R. Splitting of the Interband Absorption Edge in Au: Temperature Dependence. Phys. Rev. B 1975, 12, 45704572,  DOI: 10.1103/PhysRevB.12.4570
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04608.

    • Static optical response; permittivity modulation; experimental measurements; broadband transient absorption spectroscopy; the three-temperature model (3TM); modeling Au optical nonlinearities; nonthermal electron contribution (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect