ACS Publications. Most Trusted. Most Cited. Most Read
Electrical Control of Uniformity in Quantum Dot Devices
My Activity
  • Open Access
Letter

Electrical Control of Uniformity in Quantum Dot Devices
Click to copy article linkArticle link copied!

  • Marcel Meyer
    Marcel Meyer
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    More by Marcel Meyer
  • Corentin Déprez
    Corentin Déprez
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Timo R. van Abswoude
    Timo R. van Abswoude
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Ilja N. Meijer
    Ilja N. Meijer
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Dingshan Liu
    Dingshan Liu
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    More by Dingshan Liu
  • Chien-An Wang
    Chien-An Wang
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Saurabh Karwal
    Saurabh Karwal
    QuTech and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
  • Stefan Oosterhout
    Stefan Oosterhout
    QuTech and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
  • Francesco Borsoi
    Francesco Borsoi
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Amir Sammak
    Amir Sammak
    QuTech and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
    More by Amir Sammak
  • Nico W. Hendrickx
    Nico W. Hendrickx
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Giordano Scappucci
    Giordano Scappucci
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
  • Menno Veldhorst*
    Menno Veldhorst
    QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    *Email for M.V.: [email protected]
Open PDFSupporting Information (1)

Nano Letters

Cite this: Nano Lett. 2023, 23, 7, 2522–2529
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.nanolett.2c04446
Published March 28, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to electrically obtain a high degree of uniformity in the intrinsic potential landscape using hysteretic shifts of the gate voltage characteristics. We demonstrate the tuning of pinch-off voltages in quantum dot devices over hundreds of millivolts that then remain stable at least for hours. Applying our method, we homogenize the pinch-off voltages of the plunger gates in a linear array for four quantum dots, reducing the spread in pinch-off voltages by one order of magnitude. This work provides a new tool for the tuning of quantum dot devices and offers new perspectives for the implementation of scalable spin qubit arrays.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2023 The Authors. Published by American Chemical Society

Spin qubits in semiconductor quantum dots are a promising platform for quantum information processing. (1−4) Group IV semiconductors such as silicon and germanium can be isotopically purified, (5) enabling long quantum coherence (6,7) high-fidelity single-qubit (8−10) and two-qubit gates (11−13) as well as multi-qubit operation. (14,15) Spin qubits can be operated at comparatively high temperatures, (16−18) and their compatibility with semiconductor technologies spurred the realization of qubits made in industrial foundries. (19,20) However, implementing more than a few qubits on a single chip remains extremely challenging.

Variations, in particular at the nanoscale, may lead to significant alterations of the relevant device metrics, (1,2,21) such as the voltage needed to load a single electron to be used as a spin qubit. These variations can complicate the tuning of initialization, control, or readout and potentially form a roadblock for larger systems. Additionally, qubit-to-qubit variability may require the use of individual control electronics for each qubit, as is common practice in current experimental implementations, thus challenging the scalability. While several proposals have been put forward to scale quantum dot qubits, (2,22−24) in all cases a high level of device uniformity is critical in their realization.

For semiconductor quantum dot qubits, the uniformity of the potential landscape is the key parameter that dictates the number of control voltages required per qubit. Ideally, a few voltages would suffice to induce a highly regular potential landscape as, drawn in Figure 1b. Yet, potential fluctuations are naturally present, as illustrated in Figure 1c. They can be caused by defects, charge traps and mechanical stress induced by the deposition of metallic gates, (25,26) as well as variations in material growth or in the exact shape of the gates. The development of devices based on quantum wells buried in heterostructures, similar to that sketched in Figure 1a, already has led to a drastic improvement of the uniformity compared to metal oxide semiconductor systems. (27) This has enabled the control of up to 16 quantum dots in a 4 × 4 array with shared gate control. (28) However, significant variations in the quantum dot potential landscape are still commonly observed. (28−30) This raises the question whether material (4) and fabrication development (20,28,31,32) will suffice to reach the required uniformity to operate large qubit arrays.

Figure 1

Figure 1. Fluctuations in the potential landscape in semiconductor quantum dot devices. (a) Schematic of typical semiconductor heterostructures with buried quantum wells studied. The metallic gate electrodes colored in yellow and blue represent the barrier (B) and plunger gates (P) of a quantum dot array, respectively. (b) Potential landscape in an ideal device with shared gate control. The application of the same voltage VP/B on all plunger/barrier gates leads to a regular potential landscape with negligible fluctuations compared to those of the other relevant energy scales (α denotes the gate lever arm). The quantum dots all have the same charge configuration. (c) Potential landscape in state-of-the-art devices with shared gate control. The application of the same voltage VP/B on all plunger/barrier gates leads to an irregular potential landscape due to local fluctuations, which are often comparable to or larger than the charging energy EC. Consequently, the quantum dots have different charge configurations. (d) Typical variations in the pinch-off characteristic of the plunger gates in a state-of-the-art linear quantum dot array (device A), nominally identical with that displayed in in Figure 4a, just after a cooldown. The pinch-off voltage Vthres is defined as the gate voltage for which the current reaches Ithres = 50 pA at a bias of |Vsd| = 100 μV. Here, the pinch-off voltages spread over a voltage range ΔVthres = 226 mV.

Here, we present an alternative method and demonstrate electrical control of uniformity in quantum dot devices. Our approach takes advantage of the gate voltage hysteresis, a ubiquitous effect observed in semiconductor heterostructures, that is mostly considered as a limitation in the tune-up of quantum dots. It manifests in shifts of the gate voltage characteristics and is commonly explained by a buildup of charges at the interface between the semiconductor barrier and the dielectrics, which then alter the electric field in the buried quantum well. (33−39) We unveil the hysteresis and its effects on the potential landscape beneath the gates by studying how pinch-off characteristics evolve with the application of tailored stress voltage sequences. This method allows us to tune those pinch-off voltages over hundreds of millivolts, after which they remain stable at least on the time scale of hours. We then apply our findings to homogeneize the plunger gate pinch-off characteristics in a linear quantum dot array, reducing potential fluctuations in the quantum well underneath the corresponding gates.

The gate voltage required to confine a single electron or hole typically varies between quantum dots in an array, as it is dependent on the local electrostatic environment. These fluctuations also affect the pinch-off curve as exemplarily depicted for sweeping the four plunger gates of a linear quantum dot device (similar to that shown in Figure 4a) in Figure 1d. The curves reveal the local depletion of a conducting path through the quantum well and experimentally can be obtained in a very short time compared to the time required for the formation of a well-defined quantum dot. Therefore, we will employ pinch-off characteristics in the following to efficiently estimate variations in the potential landscape on the length scale of single quantum dots. In particular, we focus on the pinch-off voltages Vthres defined as the gate voltages at which a current of Ithres = 50 pA is reached for an applied source drain bias of |Vsd| = 100 μV.

We study devices in 28Si/SiGe heterostructures (40) and investigate how the pinch-off voltage of a single gate evolves depending on the previously applied gate voltages. To that end, we conduct systematic transport measurements at 4.2 K similar to sequences in refs (41−44) following the procedure depicted in Figure 2a. First a stress voltage Vstress is applied to the gate under study for a time tstress = 1 min. Then the gate voltage is swept back until the pinch-off condition I = Ithres is met. This sequence is repeated several times with evolving stress voltages to measure the evolution of Vthres as a function of Vstress. First, the applied stress voltage Vstress is decreased stepwise to be increased gradually again after reaching a reversal point Vstress = Vstressrev.

Figure 2

Figure 2. Hysteresis of the pinch-off characteristics. (a) Schematics of the measurement sequence used to probe the hysteretic behavior of the pinch-off voltage Vthres of a single gate. Vthres, i.e. the voltage when the current reaches Ithres = 50 pA at a bias voltage |Vsd| = 100 μV, is measured after application of successive stress voltages Vstress for tstress = 1 min. The measurements start with decreasing Vstress. Upon reaching Vstress = Vstressrev, the direction is reversed and a sequence of increasing Vstress is applied. (b) Evolution of the pinch-off voltage Vthres of the sensor plunger gate S1 as a function of the stress voltage Vstress for two different cooldowns of device B. The measurement cycle is sketched in the top illustration. The square and the circle mark the starting point and the ending point of the cycles, respectively. The star indicates the point Vstressrev where the stress voltage sequence is reversed. Vstress is first decreased before being increased again after Vstressrev = −3.7 V. Both sets of points draw hysteresis cycles which overlap. The remaining gates that are needed to form a conductive channel are set to V0 = 1.2 V. (c) (Vstress, Vthres) hysteresis cycles measured successively for plunger gate P1 in device A. The points where the stress voltage sequences are reversed (stars) and ended (circles) are changed between each cycle. Note that for the fifth iteration, the stress voltage sequence with increasing Vstress was stopped purposely when Vthres ≃ 1 V. All other gates were set to V0 = 1.704 V.

Figure 2b shows the resulting pinch-off voltage evolution for a plunger gate Pi that is part of a linear quantum dot array for two different cooldowns (blue and pink curve, respectively). In these cases, Vstress is first lowered stepwise from Vstress = 1.05 V to Vstressrev = −3.7 V. We observe that up to Vstress > −2.0 V the pinch-off voltages Vthres stay within ±15 mV of the first pinch-off voltage Vthres0 = 1.06 V, forming a plateau. Then, they drop down rapidly to Vthres = 0.83 V. At Vstressrev = −3.7 V, the sweep direction is reversed and we start to increase Vstress progressively. However, we do not observe a reversed behavior. Instead, from Vstress = −2.7 V to Vstress = 0.9 V, the pinch-off voltages increase by less than 25 mV, forming a second plateau. Only when Vstress = 1.0 (1.1) V for the first (second) cooldown does Vthres start to increase steeply again. The ensembles of (Vstress, Vthres) values draw typical hysteresis cycles with plateaus marking the ranges of applicable gate voltages over which the pinch-off voltage is not significantly changing. Furthermore, Figure 2b highlights the effect of thermal cycling on these measurements and reveals a remarkable overlap of the hysteresis cycles measured during two different cooldowns. A high degree of similarity is also observed when comparing successive measurements performed using the same stress voltage sequence as shown in Figure S2 in the Supporting Information for gate S of device D. This suggests that the underlying process has a deterministic nature.

Similar experiments performed on another sample with varying reversal points Vstressrev result in the cycles plotted in Figure 2c. The shapes of the curves are nearly identical for each iteration. Again, we observe plateaus where the pinch-off voltage deviates by less than 50 mV from its first value. Yet, the position of the plateaus varies with the chosen Vstressrev. The pinch-off voltage plateaus can be shifted by up to |ΔVthres| = 290 mV for the lower plateau and by up to |ΔVthres| = 400 mV for the upper plateau. Overall, Figure 2b,c suggests that by applying a dedicated voltage sequence the pinch-off voltage can be adjusted on demand to chosen targets and thus that the intrinsic potential landscape underneath the gates can be tuned.

We also note that similar hysteretic behaviors, with sample-dependent variations of the exact shape of the (Vstress, Vthres) curves, are consistently found in several Si/SiGe devices (e.g., device D gate S shown in Figure S2 in the Supporting Information) as well as in samples made from Ge/SiGe heterostructures (see Figure S3 in the Supporting Information), suggesting a common underlying mechanism. The observed reproducibility and the large control window of the pinch-off voltage are the foundations of our approach to homogenize the potential landscape below an ensemble of gates.

However, the electrical tuning of the intrinsic potential uniformity is of practical interest only if the resulting potential landscape remains stable afterward. Therefore, we study how the pinch-off voltage evolves in time after stopping the hysteresis measurement cycle at varying points. The procedure followed is depicted in Figure 3a. The gate voltage is swept back and forth continuously to determine the voltage range [Vthres(t),Vthres+(t)] over which the current stays in a small range [Ithres – ΔI, Ithres + ΔI] around the current threshold Ithres as a function of time t. For each sweep [Vthres(t),Vthres+(t)] a linear regression I = m × V + b with fitting parameters m and b is applied from which the pinch-off voltage Vthres(t) = (Ithresb)/m is extracted. Figure 3a shows the time evolution directly after the application of decreasing (violet and blue) and increasing (light pink) stress voltages. For comparison, we also plot how the pinch-off voltage evolves right after a cooldown without prior application of a stress voltage sequence (dark pink). For decreasing Vstress sequences, the pinch-off voltages converge into steady states after initial decays and the time evolution exhibits random abrupt jumps. For the situation where no stress voltage or increasing stress voltages Vstress are applied, no significant variations of Vthres are observed. The relative evolution depicted in Figure 3b reveals that, for t > 2 h, the voltage fluctuations are similar for all three situations. This is confirmed by extracting the standard deviations of Vthres for experiments with and without application of stress voltage sequences, which are σstress = 0.4 mV (increasing Vstress), σstress = 1.0 and 0.6 mV (decreasing Vstress), and σno stress = 0.8 mV (no stress), respectively. These experiments suggest that after a potential initial transient regime there is no change in the stability of the device due to the electrical tuning. This stability is observed for at least 1 h and up to 3 h depending on the voltage sequence applied.

Figure 3

Figure 3. Stability of the pinch-off voltage after tuning. (a) Schematic representation of the procedure used to probe the time stability of the pinch-off voltage of a single gate. The gate voltage is continuously swept back and forth to detect the voltage range [Vthres(t),Vthres+(t)] over which the current stays between Ithres – ΔI and Ithres + ΔI with ΔI ∈ {10 pA, 25 pA}. From each sweep Vthres(t) is extracted by linear regression. (b) Time evolution of Vthres prior to any application of stress voltages (dark pink) and after tuning via application of increasing Vstress with Vstressrev > 0 V (light pink) or decreasing Vstress with Vstressrev < 0 V (violet and blue). The curves are obtained for sensor plunger gate S in device C, except for the pink curve which is obtained for sensor plunger gate S in device D. Ithres = 50 pA, except for the blue curve of decreasing stress, where it was defined as Ithres = 30 pA, which provided a more robust analysis. (c) Relative variations ΔVthres(t) = Vthres(t) – Vthres(t = 3 h) of the data shown in (b).

Next we apply our findings and probe the capability to homogenize the pinch-off voltages Vthresi of a group of plunger gates Pi with i in [1,4] in a quantum dot array. Figure 4a displays the device studied, which has a geometry similar to linear quantum dot arrays in refs (12,15,29,and45). The pinch-off characteristics recorded prior to the tuning sequence are depicted in the left panel of Figure 4c and show a spread ΔVthres = max(Vthres) – min(Vthres) of 153 mV. Employing increasing gate voltage stress, we tune the individual plunger pinch-off voltages to the target value Vtarget = 1.05 V chosen before starting the tuning. Figure 4b illustrates the procedure followed for the specific case of two gates. A schematic representation including all four gates is displayed in Figure S4 in the Supporting Information. Vstress is gradually increased in n steps. For each Vstressn, the plunger gates are sequentially stressed, measured, and parked ΔVpark = 50 mV above their latest pinch-off voltage, where they remain until the next stress voltage Vstressn+1 = Vstressn + ΔVstress is selected. When a pinch-off voltage Vthresi crosses the target voltage Vtarget, the corresponding plunger gate Pi is henceforth no longer stressed. A full automated round of this sequence finishes after all pinch-off voltages are larger than the target voltage. The complete procedure is repeated two times with a stress voltage resolution of ΔVstress = 25 mV taking approximately 9 h in total. All applied stress voltages and measured pinch-off voltages are visualized in the panels of Figure 4d. After each repetition a pinch-off characterization is performed with the resulting curves depicted in Figure 4c. During the first round the pinch-off voltages shift toward the target voltage Vtarget (indicated by the red dashed line), finally spreading in a range of ΔVthres = 86 mV around it. This spread is further reduced by the following iteration, reaching a final value of ΔVthres = 20 mV. Afterward the plunger pinch-off characteristics are observed to remain stable at least for 20 min (see Figure S5 in the Supporting Information).

Figure 4

Figure 4. Homogenization of the potential landscape below the plunger gates of a linear quantum dot array. (a) Scanning electron micrograph of a linear quantum dot array. The plunger, barrier, accumulation, and screening gates are colored in blue, yellow, orange, and violet, respectively. The current flow is depicted by the dashed line. We aim at equalizing the pinch-off voltages of the plunger gates Pi. (b) Schematics of the strategy followed illustrated with only two gates for clarity. Note that here, in contrast to the illustration in Figure 2a, the pinch-off voltage Vthres is detected through lowering the gate voltage until I = Ithres. (c) Evolution of the pinch-off characteristics in device A after two iterations of the tuning procedure. The target voltage Vtarget = 1.05 V is marked by a red dashed line. After two iterations the spread of the pinch-off voltage ΔVthres is reduced from 153 mV to 20 mV. (d) Evolution of Vthres for each gate while Vstress is increased during the tuning procedure. The red dashed line indicates the target pinch-off voltage Vtarget = 1.05 V. The stressing on each gate is stopped when its pinch-off voltage becomes larger than Vtarget. The coloring of the data points encodes the time evolution of the stress and pinch-off voltages of the gates during each iteration.

To discuss our results and their implications for the tuning of quantum dot arrays, we assume that pinch-off voltages constitute a witness of the intrinsic potential landscape in the quantum well. Thus, we state that the observed tunability of pinch-off voltages also directly translates into a similar tunability of quantum dot chemical potentials. This statement is supported by a study of the effect of stress voltages on charge transitions of a quantum dot discussed in section VII in the Supporting Information. We find that the quantum dot potential can be tuned analogously to the threshold voltage Vthres by applying stress voltage sequences on the quantum dot plunger gate.

This motivates us to compare the final spread of the pinch-off voltages to the degree of uniformity needed to load an array of quantum dots with a single electron at each site using a single common gate voltage. Reaching such uniformity would require the potential fluctuations below the gates to be smaller than the average charging voltage VC = EC/α that is needed to alter the charge occupation, with EC being the charging energy and α the gate lever arm. Charging voltages typically range from 10 to 60 mV in devices similar to that under study. (27,29,45,46) Consequently, the final spread ΔVthres = 20 mV reached after electrical tuning promises a path toward the homogenization of quantum dot potentials inside an array. Even smaller spreads might be achievable by decreasing the stress voltage resolution ΔVstress. We envision that a similar method could be used to tune the potential underneath all plunger and all barrier gates simultaneously. It could also allow equalizing the interdot tunnel couplings and reaching an energy landscape similar to that in Figure 1b.

At the same time, optimization of the automated procedure could lead to a significant increase of the tuning efficiency. Such an optimized procedure may be obtained by dividing the tuning into coarse and fine steps and exploring different stressing times and thereby could drastically reduce the tuning time. Additionally, utilizing a model to predict the effect of the next stress voltage could further minimize the number of steps required to reach the target potentials, and simultaneous tuning of multiple gates may be envisioned in larger quantum dot arrays.

Adapted tuning procedures may also be designed for scalable device architectures. In a crossbar gate architecture, (24,28) one could envision applying different stressing voltages on different sets of gates such that only close to the crossing points of these gates the combined electric field would be strong enough to shift the intrinsic potential. This would allow parallel but individual stressing of selected sites in a row-by-row manner. Another degree of selectivity might be provided through biasing of purposely isolated parts of the quantum well. Effectively, this would locally change the gates’ reference potential and thereby locally alter the effect of the stressing voltages applied to them. Further work is needed to confirm the viability of these approaches.

Also, a better understanding of the underlying mechanism of the hysteresis would be valuable to exploit it most efficiently. A possible origin might be the trapping and detrapping of charge in or close to the dielectric capping layer caused by the application of stress voltages. (33−38) For example, a positive stress voltage might enable the tunneling of electrons from the quantum well or traps underneath nonstressed gates to traps underneath the stressed gate. These traps could be bound states in the nonoxidized part of the silicon capping layer or at its SiGe interface. They can be induced by charge defects in the gate oxide (47) or emerge due to mechanical stress originating from the deposition of metallic gates. (25,26) Also, charge trapping into and out of unpassivated silicon and germanium dangling bonds, (48−50) charge trapping in the oxide itself mediated by leakage currents, (44,51−53) or movement of mobile ions (54) might be underlying the hysteresis. In all cases, when the gate voltage stress is removed, the charges would be expected to be immobile at the device operation temperature and would cause local shifts in the intrinsic potential landscape observable as alterations in the pinch-off characteristics. This tunneling and trapping of charge also would be highly similar to the principle used to operate modern flash memories (based on electrically erasable programmable read-only memories), which encode their stored information in pinch-off voltages and rely on gate stacks specifically engineered for that purpose. (53,55) They could inspire new heterostructures and gate stacks with dedicated trapping layers, further refining the tunability of the potential landscape using the gate voltage hysteresis.

In conclusion, we have presented a new method to increase the electrostatic potential uniformity in quantum dot devices electrically. We demonstrate that we can take advantage of hysteretic shifts in gate voltage characteristics to deliberately tune pinch-off voltages across a wide range of more than 500 mV by applying stress voltage sequences. The resulting states remain stable on the time scale of hours. We also show that the chemical potential of single quantum dots can be tuned using similar procedures. Utilizing our method, we have shifted and equalized the pinch-off voltages of four plunger gates in a linear quantum dot array to a predetermined target voltage. Although most of our results were obtained in Si/SiGe heterostructures, other measurements indicate that the effect and method also can be used in other heterostructure materials like Ge/SiGe. Our work opens up a new path to increase uniformity in quantum dot based spin qubits. It may enable reducing overheads in tuning and control, making the implementation of scalable architectures more feasible in practice.

Data Availability

Click to copy section linkSection link copied!

The data and analysis supporting this work are openly available in a public Zenodo repository at 10.5281/zenodo.7746206. (56)

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04446.

  • Materials and device fabrication details, description of the experimental setup, details on the experimental procedures, SEM images of devices nominally identical with those used in this work, presentation of ten consecutive hysteresis cycles, hysteresis cycles obtained in Ge/SiGe single hole transistor structures, full schematics of the stress voltage sequence employed for tuning the plunger gate pinch-off voltages in a linear array, stability of the four plunger pinch-off characteristics after the tuning procedure presented, analysis of the effect of stress voltages on coulomb-blockade oscillations, table of samples investigated and corresponding reversal points (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Menno Veldhorst - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands Email: [email protected]
  • Authors
    • Marcel Meyer - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The NetherlandsOrcidhttps://orcid.org/0000-0002-7832-5927
    • Corentin Déprez - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    • Timo R. van Abswoude - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    • Ilja N. Meijer - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The NetherlandsOrcidhttps://orcid.org/0000-0003-0516-8446
    • Dingshan Liu - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The NetherlandsOrcidhttps://orcid.org/0000-0003-3410-9111
    • Chien-An Wang - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    • Saurabh Karwal - QuTech and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
    • Stefan Oosterhout - QuTech and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
    • Francesco Borsoi - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The NetherlandsOrcidhttps://orcid.org/0000-0001-9398-7614
    • Amir Sammak - QuTech and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
    • Nico W. Hendrickx - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
    • Giordano Scappucci - QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The NetherlandsOrcidhttps://orcid.org/0000-0003-2512-0079
  • Notes
    The authors declare the following competing financial interest(s): M.V. and N.W.H. are inventors on a patent application related to this work (PCT/N L2022/050377), filing date 30 June 2022. The other authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

We gratefully acknowledge D. Michalak, D. Degli-Esposti, and M. Mehmandoost for sharing their expertise, their insights on the underlying physics, and their valuable advice. We also acknowledge S. Philips and F. K. Unseld for their help on the Si/SiGe device design. We thank L. M. K. Vandersypen for his feedback as well as all the members of the Veldhorst and Vandersypen group for stimulating discussions. We thank J. D. Mensingh and N. P. Alberts for their technical support with the experimental setups and S. L. de Snoo for software support. We acknowledge support through an ERC Starting Grant and through an NWO projectruimte. This research was supported by the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 951852 (QLSI project). Research was sponsored by the Army Research Office (ARO) and was accomplished under Grant No. W911NF-17-1-0274. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office (ARO) or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

References

Click to copy section linkSection link copied!

This article references 56 other publications.

  1. 1
    Zwanenburg, F. A.; Dzurak, A. S.; Morello, A.; Simmons, M. Y.; Hollenberg, L. C. L.; Klimeck, G.; Rogge, S.; Coppersmith, S. N.; Eriksson, M. A. Silicon quantum electronics. Rev. Mod. Phys. 2013, 85, 961,  DOI: 10.1103/RevModPhys.85.961
  2. 2
    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M. Interfacing spin qubits in quantum dots and donors - hot, dense, and coherent. npj Quantum Inf 2017, 3, 34,  DOI: 10.1038/s41534-017-0038-y
  3. 3
    Scappucci, G.; Kloeffel, C.; Zwanenburg, F. A.; Loss, D.; Myronov, M.; Zhang, J.-J.; De Franceschi, S.; Katsaros, G.; Veldhorst, M. The germanium quantum information route. Nature Reviews Materials 2021, 6, 926,  DOI: 10.1038/s41578-020-00262-z
  4. 4
    Scappucci, G.; Taylor, P. J.; Williams, J. R.; Ginley, T.; Law, S. Crystalline materials for quantum computing: Semiconductor heterostructures and topological insulators exemplars. MRS Bull. 2021, 46, 596,  DOI: 10.1557/s43577-021-00147-8
  5. 5
    Itoh, K. M.; Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 2014, 4, 143157,  DOI: 10.1557/mrc.2014.32
  6. 6
    Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.; Leenstra, A. W.; de Ronde, B.; Dehollain, J. P.; Muhonen, J. T.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Dzurak, A. S. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981,  DOI: 10.1038/nnano.2014.216
  7. 7
    Stano, P.; Loss, D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. Nature Review Physics 2022, 4, 672,  DOI: 10.1038/s42254-022-00484-w
  8. 8
    Dehollain, J. P.; Muhonen, J. T.; Blume-Kohout, R.; Rudinger, K. M.; King Gamble, J.; Nielsen, E.; Laucht, A.; Simmons, S.; Kalra, R.; Dzurak, A. S.; Morello, A. Optimization of a solid-state electron spin qubit using gate set tomography. New J. Phys. 2016, 18, 103018,  DOI: 10.1088/1367-2630/18/10/103018
  9. 9
    Yoneda, J.; Takeda, K.; Otsuka, T.; Nakajima, T.; Delbecq, M. R.; Allison, G.; Honda, T.; Kodera, T.; Oda, S.; Hoshi, Y.; Noritaka, U.; Itoh, K. M.; Tarucha, S. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 2018, 13, 102,  DOI: 10.1038/s41565-017-0014-x
  10. 10
    Lawrie, W. I. L.; Russ, M.; van Riggelen, F.; Hendrickx, N. W.; de Snoo, S. L.; Sammak, A.; Vandersypen, L. M. K.; Scappucci, G.; Veldhorst, M. Simultaneous driving of semiconductor spin qubits at the fault-tolerant threshold. arXiv, 2109.07837 (2021).
  11. 11
    Mądzik, M.; Asaad, S.; Youssry, A.; Joecker, B.; Rudinger, K. M.; Nielsen, E.; Young, K. C.; Proctor, T. J.; Baczewski, A. D.; Laucht, A.; Schmitt, V.; Hudson, F. E.; Itoh, K. M.; Jakob, A. M.; Johnson, B. C.; Jamieson, D. N.; Dzurak, A. S.; Ferrie, C.; Blume-Kohout, R.; Morello, A. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 2022, 601, 348,  DOI: 10.1038/s41586-021-04292-7
  12. 12
    Noiri, A.; Takeda, K.; Nakajima, T.; Kobayashi, T.; Sammak, A.; Scappucci, G.; Tarucha, S. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 2022, 601, 338,  DOI: 10.1038/s41586-021-04182-y
  13. 13
    Xue, X.; Russ, M.; Samkharadze, N.; Undseth, B.; Sammak, A.; Scappucci, G.; Vandersypen, L. M. K. Quantum logic with spin qubits crossing the surface code threshold. Nature 2022, 601, 343,  DOI: 10.1038/s41586-021-04273-w
  14. 14
    Hendrickx, N. W.; Lawrie, W. I. L.; Russ, M.; van Riggelen, F.; de Snoo, S. L.; Schouten, R. N.; Sammak, A.; Scappucci, G.; Veldhorst, M. A four-qubit germanium quantum processor. Nature 2021, 591, 580,  DOI: 10.1038/s41586-021-03332-6
  15. 15
    Philips, S. G. J.; Mądzik, M. T.; Amitonov, S. V.; de Snoo, S. L.; Russ, M.; Kalhor, N.; Volk, C.; Lawrie, W. I. L.; Brousse, D.; Tryputen, L.; Paquelet Wuetz, B.; Sammak, A.; Veldhorst, M.; Scappucci, G.; Vandersypen, L. M. K. Universal control of a six-qubit quantum processor in silicon. Nature 2022, 609, 919924,  DOI: 10.1038/s41586-022-05117-x
  16. 16
    Petit, L.; Eenink, H. G. J.; Russ, M.; Lawrie, W. I. L.; Hendrickx, N. W.; Phillips, S. G. J.; Clarke, J. S.; Vandersypen, L. M. K.; Veldhorst, M. Universal quantum logic in hot silicon qubits. Nature 2020, 580, 355,  DOI: 10.1038/s41586-020-2170-7
  17. 17
    Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. Operation of a silicon quantum processor unit cell above one kelvin. Nature 2020, 580, 350,  DOI: 10.1038/s41586-020-2171-6
  18. 18
    Camenzind, L. C.; Geyer, S.; Fuhrer, A.; Warburton, R. J.; Zumbühl, D. M.; Kuhlmann, A. V. A hole spin qubit in a fin field-effect transistor above 4 Kelvin. Nature Electronics 2022, 5, 178,  DOI: 10.1038/s41928-022-00722-0
  19. 19
    Ansaloni, F.; Chatterjee, A.; Bohuslavskyi, H.; Bertrand, B.; Hutin, L.; Vinet, M.; Kuemmeth, F. Single-electron operations in a foundry-fabricated array of quantum dots. Nat. Commun. 2020, 11, 6399,  DOI: 10.1038/s41467-020-20280-3
  20. 20
    Zwerver, A.-M. J.; Krähenmann, T.; Watson, T. F.; Lampert, L.; George, H. C.; Pillarisetty, R.; Bojarski, S. A.; Amin, P.; Amitonov, S. V.; Boter, J. M.; Caudillo, R.; Corras-Serrano, D.; Dehollain, J. P.; Droulers, G.; Henry, E. M.; Kotlyar, R.; Lodari, M.; Lüthi, F.; Michalak, D. J.; Mueller, B. K.; Neyens, S.; Roberts, J.; Samkharadze, N.; Zheng, G.; Zietz, O. K.; Scappucci, G.; Veldhorst, M.; Vandersypen, L. M. K.; Clarke, J. S. Qubits made by advanced semiconductor manufacturing. Nature Electronics 2022, 5, 184,  DOI: 10.1038/s41928-022-00727-9
  21. 21
    Bavdaz, P. L.; Eenink, H. G. J.; van Staveren, J.; Lodari, M.; Almudever, C. G.; Clarke, J. S.; Sebastiano, F.; Veldhorst, M.; Scappucci, G. A quantum dot crossbar with sublinear scaling of interconnects at cryogenic temperature. npj Quantum Information 2022, 8, 86,  DOI: 10.1038/s41534-022-00597-1
  22. 22
    Hill, C. D.; Peretz, E.; Hile, S. J.; House, M. G.; Fuechsle, M.; Rogge, S.; Simmons, M. Y.; Hollenberg, L. C. L. A surface code quantum computer in silicon. Science Advances 2015, 1, e1500707  DOI: 10.1126/sciadv.1500707
  23. 23
    Veldhorst, M.; Eenink, H. G. J.; Yang, C. H.; Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 2017, 8, 1766,  DOI: 10.1038/s41467-017-01905-6
  24. 24
    Li, R.; Petit, L.; Franke, D. P.; Dehollain, J. P.; Helsen, J.; Steudtner, M.; Thomas, N. K.; Yoscovits, Z. R.; Singh, K. J.; Wehner, S.; Vandersypen, L. M. K.; Clarke, J. S.; Veldhorst, M. A crossbar network for silicon quantum dot qubits. Science Advances 2018, 4, eaar3960  DOI: 10.1126/sciadv.aar3960
  25. 25
    Thorbeck, T.; Zimmerman, N. M. Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Advances 2015, 5, 087107,  DOI: 10.1063/1.4928320
  26. 26
    Stein, R. M.; Barcikowski, Z. S.; Pookpanratana, S. J.; Pomeroy, J. M.; Stewart, M. D., Jr. Alternatives to aluminum gates for silicon quantum devices: Defects and strain. J. Appl. Phys. 2021, 130, 115102,  DOI: 10.1063/5.0061369
  27. 27
    Lawrie, W. I. L.; Eenink, H. G. J.; Hendrickx, N. W.; Boter, J. M.; Petit, L.; Amitonov, S. V.; Lodari, M.; Paquelet Wuetz, B.; Volk, C.; Philips, S. G. J.; Droulers, G.; Kalhor, N.; van Riggelen, F.; Brousse, D.; Sammak, A.; Vandersypen, L. M. K.; Scappucci, G.; Veldhorst, M. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 2020, 116, 080501,  DOI: 10.1063/5.0002013
  28. 28
    Borsoi, F.; Hendrickx, N. W.; John, V.; Motz, S.; van Riggelen, F.; Sammak, A.; de Snoo, S. L.; Scappucci, G.; Veldhorst, M. Shared control of a 16 semiconductor quantum dot crossbar array. arXiv, 2209.06609 (2022).
  29. 29
    Zajac, D. M.; Hazard, T. M.; Mi, X.; Nielsen, E.; Petta, J. R. Scalable gate architecture for a one-dimensional array of semiconductor spin qubits. Physical Review Applied 2016, 6, 054013,  DOI: 10.1103/PhysRevApplied.6.054013
  30. 30
    Mills, A. R.; Zajac, D. M.; Gullans, M. J.; Schupp, F. J.; Hazard, T. M.; Petta, J. R. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 2019, 10, 1063,  DOI: 10.1038/s41467-019-08970-z
  31. 31
    Dodson, J. P.; Holman, N.; Thorgrimsson, B.; Neyens, S. F.; MacQuarrie, E. R.; McJunkin, T.; Foote, R. H.; Edge, L. F.; Coppersmith, S. N.; Eriksson, M. A. Fabrication process and failure analysis for robust quantum dots in silicon. Nanotechnology 2020, 31, 505001,  DOI: 10.1088/1361-6528/abb559
  32. 32
    Ha, W.; Ha, S. D.; Choi, M. D.; Tang, Y.; Schmitz, A. E.; Levendorf, M. P.; Lee, K.; Chappell, J. M.; Adams, T. S.; Hulbert, D. R.; Acuna, E.; Noah, R. S.; Matten, J. W.; Jura, M. P.; Wright, J. A.; Rakher, M. T.; Borselli, M. G. A flexible design platform for Si/SiGe exchange-only qubits with low disorder. Nano Lett. 2022, 22, 1443,  DOI: 10.1021/acs.nanolett.1c03026
  33. 33
    Lu, T. M.; Lee, C.-H.; Huang, S.-H.; Tsui, D. C.; Liu, C. W. Upper limit of two-dimensional electron density in enhancement-mode Si/SiGe heterostructure field-effect transistors. Appl. Phys. Lett. 2011, 99, 153510,  DOI: 10.1063/1.3652909
  34. 34
    Huang, C.-T.; Li, J.-Y.; Chou, K. S.; Sturm, J. C. Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer. Appl. Phys. Lett. 2014, 104, 243510,  DOI: 10.1063/1.4884650
  35. 35
    Laroche, D.; Huang, S. H.; Nielsen, E.; Chuang, Y.; Li, J.-Y.; Liu, C. W.; Lu, T. M. Scattering mechanisms in shallow undoped Si/SiGe quantum wells. AIP Advances 2015, 5, 107106,  DOI: 10.1063/1.4933026
  36. 36
    Su, Y.-H.; Chuang, Y.; Liu, C.-Y.; Li, J.-Y.; Lu, T.-M. Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures. Physical Review Materials 2017, 1, 044601,  DOI: 10.1103/PhysRevMaterials.1.044601
  37. 37
    Chou, K.-Y.; Hsu, N.-W.; Su, Y.-H.; Chou, C.-T.; Chiu, P.-Y.; Chuang, Y.; Li, J.-Y. Temperature dependence of dc transport characteristics for a two-dimensional electron gas in an undoped Si/SiGe heterostructure. Appl. Phys. Lett. 2018, 112, 083502,  DOI: 10.1063/1.5018636
  38. 38
    Su, Y.-H.; Chou, K.-Y.; Chuang, Y.; Lu, T.-M.; Li, J.-Y. Electron mobility enhancement in an undoped Si/SiGe heterostructure by remote carrier screening. J. Appl. Phys. 2019, 125, 235705,  DOI: 10.1063/1.5094848
  39. 39
    Degli Esposti, D.; Paquelet Wuetz, B.; Fezzi, V.; Lodari, M.; Sammak, A.; Scappucci, G. Wafer-scale low-disorder 2DEG in 28Si/SiGe without an epitaxial Si cap. Appl. Phys. Lett. 2022, 120, 184003,  DOI: 10.1063/5.0088576
  40. 40
    Paquelet Wuetz, B.; Losert, M. P.; Koelling, S.; Stehouwer, L. E. A.; Zwerver, A.-M. J.; Philips, S. G. J.; Mądzik, M. T.; Xue, X.; Zheng, G.; Lodari, M.; Amitonov, S. V.; Samkharadze, N.; Sammak, A.; Vandersypen, L. M. K.; Rahman, R.; Coppersmith, S. N.; Moutanabbir, O.; Friesen, M.; Scappucci, G. Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots. Nat. Commun. 2022, 13, 7730,  DOI: 10.1038/s41467-022-35458-0
  41. 41
    Ershov, M.; Saxena, S.; Karbasi, H.; Winters, S.; Minehane, S.; Babcock, J.; Lindley, R.; Clifton, P.; Redford, M.; Shibkov, A. Dynamic recovery of negative bias temperature instability in p-type metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 2003, 83, 1647,  DOI: 10.1063/1.1604480
  42. 42
    Kaczer, B.; Grasser, T.; Roussel, J.; J., Martin-Martinez; R., O’Connor; O’Sullivan, B. J.; Groeseneken, G. Ubiquitous relaxation in BTI stressing─new evaluation and insights, in 2008 IEEE International Reliability Physics Symposium , 2008; pp 2027.
  43. 43
    Lelis, A. J.; Green, R.; Habersat, D. B.; El, M. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron Devices 2015, 62, 316,  DOI: 10.1109/TED.2014.2356172
  44. 44
    Franco, J.; Alian, A.; Kaczer, B.; Lin, D.; Ivanov, T.; Pourghaderi, A.; Martens, K.; Mols, Y.; Zhou, D.; Waldron, N.; Sioncke, S.; Kauerauf, T.; Collaert, N.; Thean, A.; Heyns, M.; Groeseneken, G. Suitability of high-k gate oxides for III–V devices: A PBTI study in In0.53Ga0.47As devices with Al2O3, in 2014 IEEE International Reliability Physics Symposium , 2014; pp 6A.2.16A.2.6.
  45. 45
    Neyens, S. F.; MacQuarrie, E. R.; Dodson, J. P.; Corrigan, J.; Holman, N.; Thorgrimsson, B.; Palma, M.; McJunkin, T.; Edge, L. F.; Friesen, M.; Coppersmith, S. N.; Eriksson, M. A. Measurements of capacitive coupling within a quadruple-quantum-dot array. Physical Review Applied 2019, 12, 064049,  DOI: 10.1103/PhysRevApplied.12.064049
  46. 46
    Takeda, K.; Noiri, A.; Nakajima, T.; Yoneda, J.; Kobayashi, T.; Tarucha, S. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 2021, 16, 965,  DOI: 10.1038/s41565-021-00925-0
  47. 47
    Goetzberger, A.; Heine, V.; Nicollian, E. H. Surface states in silicon from charge in the oxide coating. Appl. Phys. Lett. 1968, 12, 95,  DOI: 10.1063/1.1651913
  48. 48
    Poindexter, E. H.; Caplan, P. J. Electron spin resonance of inherent and process induced defects near the Si/SiO2 interface of oxidized silicon wafers. Journal of Vacuum Science & Technology A 1988, 6, 1352,  DOI: 10.1116/1.575701
  49. 49
    Lenahan, P. M.; Conley, J. F., Jr. What can electron paramagnetic resonance tell us about the Si/SiO2 system?. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1998, 16, 2134,  DOI: 10.1116/1.590301
  50. 50
    Stesmans, A.; Nguyen Hoang, T.; Afanas’ev, V. V. Hydrogen interaction kinetics of Ge dangling bonds at the Si0.25Ge0.75/SiO2 interface. J. Appl. Phys. 2014, 116, 044501,  DOI: 10.1063/1.4880739
  51. 51
    Kerber, A.; Cartier, E.; Groeseneken, G.; Maes, H. E.; Schwalke, U. Stress induced charge trapping effects in SiO2/Al2O3 gate stacks with TiN electrodes. J. Appl. Phys. 2003, 94, 6627,  DOI: 10.1063/1.1621718
  52. 52
    Pioro-Ladrière, M.; Davies, J. H.; Long, A. R.; Sachrajda, A. S.; Gaudreau, L.; Zawadzki, P.; Lapointe, J.; Gupta, J.; Wasilewski, Z.; Studenikin, S. Origin of switching noise in GaAsAlx/Ga1-xAs lateral gated devices. Phys. Rev. B 2005, 72, 115331,  DOI: 10.1103/PhysRevB.72.115331
  53. 53
    Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; Wiley: 2006; pp 484486.
  54. 54
    Vanheusden, K.; Warren, W. L.; Fleetwood, D. M.; Schwank, J. R.; Shaneyfelt, M. R.; Draper, B. L.; Winokur, P. S.; Devine, R. A. B.; Archer, L. B.; Brown, G. A.; Wallace, R. M. Chemical kinetics of mobile-proton generation and annihilation in SiO2 thin films. Appl. Phys. Lett. 1998, 73, 674,  DOI: 10.1063/1.121944
  55. 55
    Hoffmann, K. System Integration: From Transistor Design to Large Scale Integrated Circuits; Wiley: 2004; pp 339340 and 345352.
  56. 56
    Meyer, M.; Déprez, C.; van Abswoude, T. R.; Meijer, I. N.; Liu, D.; Wang, C.; Karwal, S.; Oosterhout, S.; Borsoi, F.; Sammak, A.; Hendrickx, N. W.; Scappucci, G.; Veldhorst, M. Dataset underlying the manuscript: Electrical control of uniformity in quantum dot devices. Zenodo.org , 2022.

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 18 publications.

  1. Zongnan Zhang, Weiqing Tang, Jiajun Chen, Yuxiang Zhang, Chenhao Zhang, Mingming Fu, Feihong Huang, Xu Li, Chunmiao Zhang, Zhiming Wu, Yaping Wu, Junyong Kang. Manipulations of Electronic and Spin States in Co-Quantum Dot/WS2 Heterostructure on a Metal-Dielectric Composite Substrate by Controlling Interfacial Carriers. Nano Letters 2024, 24 (4) , 1415-1422. https://doi.org/10.1021/acs.nanolett.3c04831
  2. Marcel Meyer, Corentin Déprez, Ilja N. Meijer, Florian K. Unseld, Saurabh Karwal, Amir Sammak, Giordano Scappucci, Lieven M. K. Vandersypen, Menno Veldhorst. Single-Electron Occupation in Quantum Dot Arrays at Selectable Plunger Gate Voltage. Nano Letters 2023, 23 (24) , 11593-11600. https://doi.org/10.1021/acs.nanolett.3c03349
  3. Zhenzhen Kong, Yanpeng Song, Hailing Wang, Xiaomeng Liu, Xiangsheng Wang, Jinbiao Liu, Ben Li, Jiale Su, Xinguang Tan, Qingjie Luan, Hongxiao Lin, Yuhui Ren, Yiwen Zhang, Jingxiong Liu, Junfeng Li, Anyan Du, Henry H. Radamson, Chao Zhao, Tianchun Ye, Guilei Wang. Interface Investigation on SiGe/Si Multilayer Structures: Influence of Different Epitaxial Process Conditions. ACS Applied Materials & Interfaces 2023, 15 (48) , 56567-56574. https://doi.org/10.1021/acsami.3c14168
  4. Joel B. Varley, Keith G. Ray, Vincenzo Lordi. Dangling Bonds as Possible Contributors to Charge Noise in Silicon and Silicon–Germanium Quantum Dot Qubits. ACS Applied Materials & Interfaces 2023, 15 (36) , 43111-43123. https://doi.org/10.1021/acsami.3c06725
  5. F. Stampfl, C. Godfrin, S. Kubicek, S. Baudot, B. Raes, K. De Greve, A. Grill, M. Waltl. CV Characterization of Si/SiGe Heterostructures at Cryo Temperatures. 2025, 1-5. https://doi.org/10.1109/IRPS48204.2025.10982705
  6. Laura K. Diebel, Lukas G. Zinkl, Andreas Hötzinger, Felix Reichmann, Marco Lisker, Yuji Yamamoto, Dominique Bougeard. Impact of biased cooling on the operation of undoped silicon quantum well field-effect devices. AIP Advances 2025, 15 (3) https://doi.org/10.1063/5.0250968
  7. Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci. Low disorder and high valley splitting in silicon. npj Quantum Information 2024, 10 (1) https://doi.org/10.1038/s41534-024-00826-9
  8. Leonardo Massai, Bence Hetényi, Matthias Mergenthaler, Felix J. Schupp, Lisa Sommer, Stephan Paredes, Stephen W. Bedell, Patrick Harvey-Collard, Gian Salis, Andreas Fuhrer, Nico W. Hendrickx. Impact of interface traps on charge noise and low-density transport properties in Ge/SiGe heterostructures. Communications Materials 2024, 5 (1) https://doi.org/10.1038/s43246-024-00563-8
  9. A. V. Tsukanov. Resonant Coulomb interaction of excitonic and charge qubits on quantum dots. Optical and Quantum Electronics 2024, 56 (9) https://doi.org/10.1007/s11082-024-07412-5
  10. M.A. Wolfe, Brighton X. Coe, Justin S. Edwards, Tyler J. Kovach, Thomas McJunkin, Benjamin Harpt, D.E. Savage, M.G. Lagally, R. McDermott, Mark Friesen, Shimon Kolkowitz, M.A. Eriksson. Control of threshold voltages in Si / Si 0.7 Ge 0.3 quantum devices via optical illumination. Physical Review Applied 2024, 22 (3) https://doi.org/10.1103/PhysRevApplied.22.034044
  11. Biel Martinez, Silvano de Franceschi, Yann-Michel Niquet. Mitigating variability in epitaxial-heterostructure-based spin-qubit devices by optimizing gate layout. Physical Review Applied 2024, 22 (2) https://doi.org/10.1103/PhysRevApplied.22.024030
  12. M. Mehmandoost, V. V. Dobrovitski. Decoherence induced by a sparse bath of two-level fluctuators: Peculiar features of 1 / f noise in high-quality qubits. Physical Review Research 2024, 6 (3) https://doi.org/10.1103/PhysRevResearch.6.033175
  13. Angelika Knothe, Guido Burkard. Extended Hubbard model describing small multidot arrays in bilayer graphene. Physical Review B 2024, 109 (24) https://doi.org/10.1103/PhysRevB.109.245401
  14. Ying-Jie Ma, Jing-Wen Wang, Yang Zhang, Zi-Long Zhang, Ming-Yue Zhang, Liang Tao. Poly(dimethyl siloxane)-based copolymer dielectric composites with copper sulfide loaded carbon nanotubes doped with carbon quantum dots. European Polymer Journal 2024, 210 , 112958. https://doi.org/10.1016/j.eurpolymj.2024.112958
  15. Nikiforos Paraskevopoulos, Fabio Sebastiano, Carmen G. Almudever, Sebastian Feld. SpinQ: Compilation Strategies for Scalable Spin-Qubit Architectures. ACM Transactions on Quantum Computing 2024, 5 (1) , 1-36. https://doi.org/10.1145/3624484
  16. Adam Gali, André Schleife, Andreas J. Heinrich, Arne Laucht, Bruno Schuler, Chitraleema Chakraborty, Christopher P. Anderson, Corentin Déprez, Jeffrey McCallum, Lee C. Bassett, Mark Friesen, Michael E. Flatté, Peter Maurer, Susan N. Coppersmith, Tian Zhong, Vijaya Begum-Hudde, Yuan Ping. Challenges in advancing our understanding of atomic-like quantum systems: Theory and experiment. MRS Bulletin 2024, 49 (3) , 256-276. https://doi.org/10.1557/s43577-023-00659-5
  17. Lukas Johannes Splitthoff, Jaap Joachim Wesdorp, Marta Pita-Vidal, Arno Bargerbos, Yu Liu, Christian Kraglund Andersen. Gate-tunable kinetic inductance parametric amplifier. Physical Review Applied 2024, 21 (1) https://doi.org/10.1103/PhysRevApplied.21.014052
  18. C. Corley-Wiciak, M.H. Zoellner, I. Zaitsev, K. Anand, E. Zatterin, Y. Yamamoto, A.A. Corley-Wiciak, F. Reichmann, W. Langheinrich, L.R. Schreiber, C.L. Manganelli, M. Virgilio, C. Richter, G. Capellini. Lattice Deformation at Submicron Scale: X-Ray Nanobeam Measurements of Elastic Strain in Electron Shuttling Devices. Physical Review Applied 2023, 20 (2) https://doi.org/10.1103/PhysRevApplied.20.024056

Nano Letters

Cite this: Nano Lett. 2023, 23, 7, 2522–2529
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.nanolett.2c04446
Published March 28, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

3915

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Fluctuations in the potential landscape in semiconductor quantum dot devices. (a) Schematic of typical semiconductor heterostructures with buried quantum wells studied. The metallic gate electrodes colored in yellow and blue represent the barrier (B) and plunger gates (P) of a quantum dot array, respectively. (b) Potential landscape in an ideal device with shared gate control. The application of the same voltage VP/B on all plunger/barrier gates leads to a regular potential landscape with negligible fluctuations compared to those of the other relevant energy scales (α denotes the gate lever arm). The quantum dots all have the same charge configuration. (c) Potential landscape in state-of-the-art devices with shared gate control. The application of the same voltage VP/B on all plunger/barrier gates leads to an irregular potential landscape due to local fluctuations, which are often comparable to or larger than the charging energy EC. Consequently, the quantum dots have different charge configurations. (d) Typical variations in the pinch-off characteristic of the plunger gates in a state-of-the-art linear quantum dot array (device A), nominally identical with that displayed in in Figure 4a, just after a cooldown. The pinch-off voltage Vthres is defined as the gate voltage for which the current reaches Ithres = 50 pA at a bias of |Vsd| = 100 μV. Here, the pinch-off voltages spread over a voltage range ΔVthres = 226 mV.

    Figure 2

    Figure 2. Hysteresis of the pinch-off characteristics. (a) Schematics of the measurement sequence used to probe the hysteretic behavior of the pinch-off voltage Vthres of a single gate. Vthres, i.e. the voltage when the current reaches Ithres = 50 pA at a bias voltage |Vsd| = 100 μV, is measured after application of successive stress voltages Vstress for tstress = 1 min. The measurements start with decreasing Vstress. Upon reaching Vstress = Vstressrev, the direction is reversed and a sequence of increasing Vstress is applied. (b) Evolution of the pinch-off voltage Vthres of the sensor plunger gate S1 as a function of the stress voltage Vstress for two different cooldowns of device B. The measurement cycle is sketched in the top illustration. The square and the circle mark the starting point and the ending point of the cycles, respectively. The star indicates the point Vstressrev where the stress voltage sequence is reversed. Vstress is first decreased before being increased again after Vstressrev = −3.7 V. Both sets of points draw hysteresis cycles which overlap. The remaining gates that are needed to form a conductive channel are set to V0 = 1.2 V. (c) (Vstress, Vthres) hysteresis cycles measured successively for plunger gate P1 in device A. The points where the stress voltage sequences are reversed (stars) and ended (circles) are changed between each cycle. Note that for the fifth iteration, the stress voltage sequence with increasing Vstress was stopped purposely when Vthres ≃ 1 V. All other gates were set to V0 = 1.704 V.

    Figure 3

    Figure 3. Stability of the pinch-off voltage after tuning. (a) Schematic representation of the procedure used to probe the time stability of the pinch-off voltage of a single gate. The gate voltage is continuously swept back and forth to detect the voltage range [Vthres(t),Vthres+(t)] over which the current stays between Ithres – ΔI and Ithres + ΔI with ΔI ∈ {10 pA, 25 pA}. From each sweep Vthres(t) is extracted by linear regression. (b) Time evolution of Vthres prior to any application of stress voltages (dark pink) and after tuning via application of increasing Vstress with Vstressrev > 0 V (light pink) or decreasing Vstress with Vstressrev < 0 V (violet and blue). The curves are obtained for sensor plunger gate S in device C, except for the pink curve which is obtained for sensor plunger gate S in device D. Ithres = 50 pA, except for the blue curve of decreasing stress, where it was defined as Ithres = 30 pA, which provided a more robust analysis. (c) Relative variations ΔVthres(t) = Vthres(t) – Vthres(t = 3 h) of the data shown in (b).

    Figure 4

    Figure 4. Homogenization of the potential landscape below the plunger gates of a linear quantum dot array. (a) Scanning electron micrograph of a linear quantum dot array. The plunger, barrier, accumulation, and screening gates are colored in blue, yellow, orange, and violet, respectively. The current flow is depicted by the dashed line. We aim at equalizing the pinch-off voltages of the plunger gates Pi. (b) Schematics of the strategy followed illustrated with only two gates for clarity. Note that here, in contrast to the illustration in Figure 2a, the pinch-off voltage Vthres is detected through lowering the gate voltage until I = Ithres. (c) Evolution of the pinch-off characteristics in device A after two iterations of the tuning procedure. The target voltage Vtarget = 1.05 V is marked by a red dashed line. After two iterations the spread of the pinch-off voltage ΔVthres is reduced from 153 mV to 20 mV. (d) Evolution of Vthres for each gate while Vstress is increased during the tuning procedure. The red dashed line indicates the target pinch-off voltage Vtarget = 1.05 V. The stressing on each gate is stopped when its pinch-off voltage becomes larger than Vtarget. The coloring of the data points encodes the time evolution of the stress and pinch-off voltages of the gates during each iteration.

  • References


    This article references 56 other publications.

    1. 1
      Zwanenburg, F. A.; Dzurak, A. S.; Morello, A.; Simmons, M. Y.; Hollenberg, L. C. L.; Klimeck, G.; Rogge, S.; Coppersmith, S. N.; Eriksson, M. A. Silicon quantum electronics. Rev. Mod. Phys. 2013, 85, 961,  DOI: 10.1103/RevModPhys.85.961
    2. 2
      Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M. Interfacing spin qubits in quantum dots and donors - hot, dense, and coherent. npj Quantum Inf 2017, 3, 34,  DOI: 10.1038/s41534-017-0038-y
    3. 3
      Scappucci, G.; Kloeffel, C.; Zwanenburg, F. A.; Loss, D.; Myronov, M.; Zhang, J.-J.; De Franceschi, S.; Katsaros, G.; Veldhorst, M. The germanium quantum information route. Nature Reviews Materials 2021, 6, 926,  DOI: 10.1038/s41578-020-00262-z
    4. 4
      Scappucci, G.; Taylor, P. J.; Williams, J. R.; Ginley, T.; Law, S. Crystalline materials for quantum computing: Semiconductor heterostructures and topological insulators exemplars. MRS Bull. 2021, 46, 596,  DOI: 10.1557/s43577-021-00147-8
    5. 5
      Itoh, K. M.; Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 2014, 4, 143157,  DOI: 10.1557/mrc.2014.32
    6. 6
      Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.; Leenstra, A. W.; de Ronde, B.; Dehollain, J. P.; Muhonen, J. T.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Dzurak, A. S. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981,  DOI: 10.1038/nnano.2014.216
    7. 7
      Stano, P.; Loss, D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. Nature Review Physics 2022, 4, 672,  DOI: 10.1038/s42254-022-00484-w
    8. 8
      Dehollain, J. P.; Muhonen, J. T.; Blume-Kohout, R.; Rudinger, K. M.; King Gamble, J.; Nielsen, E.; Laucht, A.; Simmons, S.; Kalra, R.; Dzurak, A. S.; Morello, A. Optimization of a solid-state electron spin qubit using gate set tomography. New J. Phys. 2016, 18, 103018,  DOI: 10.1088/1367-2630/18/10/103018
    9. 9
      Yoneda, J.; Takeda, K.; Otsuka, T.; Nakajima, T.; Delbecq, M. R.; Allison, G.; Honda, T.; Kodera, T.; Oda, S.; Hoshi, Y.; Noritaka, U.; Itoh, K. M.; Tarucha, S. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 2018, 13, 102,  DOI: 10.1038/s41565-017-0014-x
    10. 10
      Lawrie, W. I. L.; Russ, M.; van Riggelen, F.; Hendrickx, N. W.; de Snoo, S. L.; Sammak, A.; Vandersypen, L. M. K.; Scappucci, G.; Veldhorst, M. Simultaneous driving of semiconductor spin qubits at the fault-tolerant threshold. arXiv, 2109.07837 (2021).
    11. 11
      Mądzik, M.; Asaad, S.; Youssry, A.; Joecker, B.; Rudinger, K. M.; Nielsen, E.; Young, K. C.; Proctor, T. J.; Baczewski, A. D.; Laucht, A.; Schmitt, V.; Hudson, F. E.; Itoh, K. M.; Jakob, A. M.; Johnson, B. C.; Jamieson, D. N.; Dzurak, A. S.; Ferrie, C.; Blume-Kohout, R.; Morello, A. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 2022, 601, 348,  DOI: 10.1038/s41586-021-04292-7
    12. 12
      Noiri, A.; Takeda, K.; Nakajima, T.; Kobayashi, T.; Sammak, A.; Scappucci, G.; Tarucha, S. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 2022, 601, 338,  DOI: 10.1038/s41586-021-04182-y
    13. 13
      Xue, X.; Russ, M.; Samkharadze, N.; Undseth, B.; Sammak, A.; Scappucci, G.; Vandersypen, L. M. K. Quantum logic with spin qubits crossing the surface code threshold. Nature 2022, 601, 343,  DOI: 10.1038/s41586-021-04273-w
    14. 14
      Hendrickx, N. W.; Lawrie, W. I. L.; Russ, M.; van Riggelen, F.; de Snoo, S. L.; Schouten, R. N.; Sammak, A.; Scappucci, G.; Veldhorst, M. A four-qubit germanium quantum processor. Nature 2021, 591, 580,  DOI: 10.1038/s41586-021-03332-6
    15. 15
      Philips, S. G. J.; Mądzik, M. T.; Amitonov, S. V.; de Snoo, S. L.; Russ, M.; Kalhor, N.; Volk, C.; Lawrie, W. I. L.; Brousse, D.; Tryputen, L.; Paquelet Wuetz, B.; Sammak, A.; Veldhorst, M.; Scappucci, G.; Vandersypen, L. M. K. Universal control of a six-qubit quantum processor in silicon. Nature 2022, 609, 919924,  DOI: 10.1038/s41586-022-05117-x
    16. 16
      Petit, L.; Eenink, H. G. J.; Russ, M.; Lawrie, W. I. L.; Hendrickx, N. W.; Phillips, S. G. J.; Clarke, J. S.; Vandersypen, L. M. K.; Veldhorst, M. Universal quantum logic in hot silicon qubits. Nature 2020, 580, 355,  DOI: 10.1038/s41586-020-2170-7
    17. 17
      Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. Operation of a silicon quantum processor unit cell above one kelvin. Nature 2020, 580, 350,  DOI: 10.1038/s41586-020-2171-6
    18. 18
      Camenzind, L. C.; Geyer, S.; Fuhrer, A.; Warburton, R. J.; Zumbühl, D. M.; Kuhlmann, A. V. A hole spin qubit in a fin field-effect transistor above 4 Kelvin. Nature Electronics 2022, 5, 178,  DOI: 10.1038/s41928-022-00722-0
    19. 19
      Ansaloni, F.; Chatterjee, A.; Bohuslavskyi, H.; Bertrand, B.; Hutin, L.; Vinet, M.; Kuemmeth, F. Single-electron operations in a foundry-fabricated array of quantum dots. Nat. Commun. 2020, 11, 6399,  DOI: 10.1038/s41467-020-20280-3
    20. 20
      Zwerver, A.-M. J.; Krähenmann, T.; Watson, T. F.; Lampert, L.; George, H. C.; Pillarisetty, R.; Bojarski, S. A.; Amin, P.; Amitonov, S. V.; Boter, J. M.; Caudillo, R.; Corras-Serrano, D.; Dehollain, J. P.; Droulers, G.; Henry, E. M.; Kotlyar, R.; Lodari, M.; Lüthi, F.; Michalak, D. J.; Mueller, B. K.; Neyens, S.; Roberts, J.; Samkharadze, N.; Zheng, G.; Zietz, O. K.; Scappucci, G.; Veldhorst, M.; Vandersypen, L. M. K.; Clarke, J. S. Qubits made by advanced semiconductor manufacturing. Nature Electronics 2022, 5, 184,  DOI: 10.1038/s41928-022-00727-9
    21. 21
      Bavdaz, P. L.; Eenink, H. G. J.; van Staveren, J.; Lodari, M.; Almudever, C. G.; Clarke, J. S.; Sebastiano, F.; Veldhorst, M.; Scappucci, G. A quantum dot crossbar with sublinear scaling of interconnects at cryogenic temperature. npj Quantum Information 2022, 8, 86,  DOI: 10.1038/s41534-022-00597-1
    22. 22
      Hill, C. D.; Peretz, E.; Hile, S. J.; House, M. G.; Fuechsle, M.; Rogge, S.; Simmons, M. Y.; Hollenberg, L. C. L. A surface code quantum computer in silicon. Science Advances 2015, 1, e1500707  DOI: 10.1126/sciadv.1500707
    23. 23
      Veldhorst, M.; Eenink, H. G. J.; Yang, C. H.; Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 2017, 8, 1766,  DOI: 10.1038/s41467-017-01905-6
    24. 24
      Li, R.; Petit, L.; Franke, D. P.; Dehollain, J. P.; Helsen, J.; Steudtner, M.; Thomas, N. K.; Yoscovits, Z. R.; Singh, K. J.; Wehner, S.; Vandersypen, L. M. K.; Clarke, J. S.; Veldhorst, M. A crossbar network for silicon quantum dot qubits. Science Advances 2018, 4, eaar3960  DOI: 10.1126/sciadv.aar3960
    25. 25
      Thorbeck, T.; Zimmerman, N. M. Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Advances 2015, 5, 087107,  DOI: 10.1063/1.4928320
    26. 26
      Stein, R. M.; Barcikowski, Z. S.; Pookpanratana, S. J.; Pomeroy, J. M.; Stewart, M. D., Jr. Alternatives to aluminum gates for silicon quantum devices: Defects and strain. J. Appl. Phys. 2021, 130, 115102,  DOI: 10.1063/5.0061369
    27. 27
      Lawrie, W. I. L.; Eenink, H. G. J.; Hendrickx, N. W.; Boter, J. M.; Petit, L.; Amitonov, S. V.; Lodari, M.; Paquelet Wuetz, B.; Volk, C.; Philips, S. G. J.; Droulers, G.; Kalhor, N.; van Riggelen, F.; Brousse, D.; Sammak, A.; Vandersypen, L. M. K.; Scappucci, G.; Veldhorst, M. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 2020, 116, 080501,  DOI: 10.1063/5.0002013
    28. 28
      Borsoi, F.; Hendrickx, N. W.; John, V.; Motz, S.; van Riggelen, F.; Sammak, A.; de Snoo, S. L.; Scappucci, G.; Veldhorst, M. Shared control of a 16 semiconductor quantum dot crossbar array. arXiv, 2209.06609 (2022).
    29. 29
      Zajac, D. M.; Hazard, T. M.; Mi, X.; Nielsen, E.; Petta, J. R. Scalable gate architecture for a one-dimensional array of semiconductor spin qubits. Physical Review Applied 2016, 6, 054013,  DOI: 10.1103/PhysRevApplied.6.054013
    30. 30
      Mills, A. R.; Zajac, D. M.; Gullans, M. J.; Schupp, F. J.; Hazard, T. M.; Petta, J. R. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 2019, 10, 1063,  DOI: 10.1038/s41467-019-08970-z
    31. 31
      Dodson, J. P.; Holman, N.; Thorgrimsson, B.; Neyens, S. F.; MacQuarrie, E. R.; McJunkin, T.; Foote, R. H.; Edge, L. F.; Coppersmith, S. N.; Eriksson, M. A. Fabrication process and failure analysis for robust quantum dots in silicon. Nanotechnology 2020, 31, 505001,  DOI: 10.1088/1361-6528/abb559
    32. 32
      Ha, W.; Ha, S. D.; Choi, M. D.; Tang, Y.; Schmitz, A. E.; Levendorf, M. P.; Lee, K.; Chappell, J. M.; Adams, T. S.; Hulbert, D. R.; Acuna, E.; Noah, R. S.; Matten, J. W.; Jura, M. P.; Wright, J. A.; Rakher, M. T.; Borselli, M. G. A flexible design platform for Si/SiGe exchange-only qubits with low disorder. Nano Lett. 2022, 22, 1443,  DOI: 10.1021/acs.nanolett.1c03026
    33. 33
      Lu, T. M.; Lee, C.-H.; Huang, S.-H.; Tsui, D. C.; Liu, C. W. Upper limit of two-dimensional electron density in enhancement-mode Si/SiGe heterostructure field-effect transistors. Appl. Phys. Lett. 2011, 99, 153510,  DOI: 10.1063/1.3652909
    34. 34
      Huang, C.-T.; Li, J.-Y.; Chou, K. S.; Sturm, J. C. Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer. Appl. Phys. Lett. 2014, 104, 243510,  DOI: 10.1063/1.4884650
    35. 35
      Laroche, D.; Huang, S. H.; Nielsen, E.; Chuang, Y.; Li, J.-Y.; Liu, C. W.; Lu, T. M. Scattering mechanisms in shallow undoped Si/SiGe quantum wells. AIP Advances 2015, 5, 107106,  DOI: 10.1063/1.4933026
    36. 36
      Su, Y.-H.; Chuang, Y.; Liu, C.-Y.; Li, J.-Y.; Lu, T.-M. Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures. Physical Review Materials 2017, 1, 044601,  DOI: 10.1103/PhysRevMaterials.1.044601
    37. 37
      Chou, K.-Y.; Hsu, N.-W.; Su, Y.-H.; Chou, C.-T.; Chiu, P.-Y.; Chuang, Y.; Li, J.-Y. Temperature dependence of dc transport characteristics for a two-dimensional electron gas in an undoped Si/SiGe heterostructure. Appl. Phys. Lett. 2018, 112, 083502,  DOI: 10.1063/1.5018636
    38. 38
      Su, Y.-H.; Chou, K.-Y.; Chuang, Y.; Lu, T.-M.; Li, J.-Y. Electron mobility enhancement in an undoped Si/SiGe heterostructure by remote carrier screening. J. Appl. Phys. 2019, 125, 235705,  DOI: 10.1063/1.5094848
    39. 39
      Degli Esposti, D.; Paquelet Wuetz, B.; Fezzi, V.; Lodari, M.; Sammak, A.; Scappucci, G. Wafer-scale low-disorder 2DEG in 28Si/SiGe without an epitaxial Si cap. Appl. Phys. Lett. 2022, 120, 184003,  DOI: 10.1063/5.0088576
    40. 40
      Paquelet Wuetz, B.; Losert, M. P.; Koelling, S.; Stehouwer, L. E. A.; Zwerver, A.-M. J.; Philips, S. G. J.; Mądzik, M. T.; Xue, X.; Zheng, G.; Lodari, M.; Amitonov, S. V.; Samkharadze, N.; Sammak, A.; Vandersypen, L. M. K.; Rahman, R.; Coppersmith, S. N.; Moutanabbir, O.; Friesen, M.; Scappucci, G. Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots. Nat. Commun. 2022, 13, 7730,  DOI: 10.1038/s41467-022-35458-0
    41. 41
      Ershov, M.; Saxena, S.; Karbasi, H.; Winters, S.; Minehane, S.; Babcock, J.; Lindley, R.; Clifton, P.; Redford, M.; Shibkov, A. Dynamic recovery of negative bias temperature instability in p-type metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 2003, 83, 1647,  DOI: 10.1063/1.1604480
    42. 42
      Kaczer, B.; Grasser, T.; Roussel, J.; J., Martin-Martinez; R., O’Connor; O’Sullivan, B. J.; Groeseneken, G. Ubiquitous relaxation in BTI stressing─new evaluation and insights, in 2008 IEEE International Reliability Physics Symposium , 2008; pp 2027.
    43. 43
      Lelis, A. J.; Green, R.; Habersat, D. B.; El, M. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron Devices 2015, 62, 316,  DOI: 10.1109/TED.2014.2356172
    44. 44
      Franco, J.; Alian, A.; Kaczer, B.; Lin, D.; Ivanov, T.; Pourghaderi, A.; Martens, K.; Mols, Y.; Zhou, D.; Waldron, N.; Sioncke, S.; Kauerauf, T.; Collaert, N.; Thean, A.; Heyns, M.; Groeseneken, G. Suitability of high-k gate oxides for III–V devices: A PBTI study in In0.53Ga0.47As devices with Al2O3, in 2014 IEEE International Reliability Physics Symposium , 2014; pp 6A.2.16A.2.6.
    45. 45
      Neyens, S. F.; MacQuarrie, E. R.; Dodson, J. P.; Corrigan, J.; Holman, N.; Thorgrimsson, B.; Palma, M.; McJunkin, T.; Edge, L. F.; Friesen, M.; Coppersmith, S. N.; Eriksson, M. A. Measurements of capacitive coupling within a quadruple-quantum-dot array. Physical Review Applied 2019, 12, 064049,  DOI: 10.1103/PhysRevApplied.12.064049
    46. 46
      Takeda, K.; Noiri, A.; Nakajima, T.; Yoneda, J.; Kobayashi, T.; Tarucha, S. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 2021, 16, 965,  DOI: 10.1038/s41565-021-00925-0
    47. 47
      Goetzberger, A.; Heine, V.; Nicollian, E. H. Surface states in silicon from charge in the oxide coating. Appl. Phys. Lett. 1968, 12, 95,  DOI: 10.1063/1.1651913
    48. 48
      Poindexter, E. H.; Caplan, P. J. Electron spin resonance of inherent and process induced defects near the Si/SiO2 interface of oxidized silicon wafers. Journal of Vacuum Science & Technology A 1988, 6, 1352,  DOI: 10.1116/1.575701
    49. 49
      Lenahan, P. M.; Conley, J. F., Jr. What can electron paramagnetic resonance tell us about the Si/SiO2 system?. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1998, 16, 2134,  DOI: 10.1116/1.590301
    50. 50
      Stesmans, A.; Nguyen Hoang, T.; Afanas’ev, V. V. Hydrogen interaction kinetics of Ge dangling bonds at the Si0.25Ge0.75/SiO2 interface. J. Appl. Phys. 2014, 116, 044501,  DOI: 10.1063/1.4880739
    51. 51
      Kerber, A.; Cartier, E.; Groeseneken, G.; Maes, H. E.; Schwalke, U. Stress induced charge trapping effects in SiO2/Al2O3 gate stacks with TiN electrodes. J. Appl. Phys. 2003, 94, 6627,  DOI: 10.1063/1.1621718
    52. 52
      Pioro-Ladrière, M.; Davies, J. H.; Long, A. R.; Sachrajda, A. S.; Gaudreau, L.; Zawadzki, P.; Lapointe, J.; Gupta, J.; Wasilewski, Z.; Studenikin, S. Origin of switching noise in GaAsAlx/Ga1-xAs lateral gated devices. Phys. Rev. B 2005, 72, 115331,  DOI: 10.1103/PhysRevB.72.115331
    53. 53
      Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; Wiley: 2006; pp 484486.
    54. 54
      Vanheusden, K.; Warren, W. L.; Fleetwood, D. M.; Schwank, J. R.; Shaneyfelt, M. R.; Draper, B. L.; Winokur, P. S.; Devine, R. A. B.; Archer, L. B.; Brown, G. A.; Wallace, R. M. Chemical kinetics of mobile-proton generation and annihilation in SiO2 thin films. Appl. Phys. Lett. 1998, 73, 674,  DOI: 10.1063/1.121944
    55. 55
      Hoffmann, K. System Integration: From Transistor Design to Large Scale Integrated Circuits; Wiley: 2004; pp 339340 and 345352.
    56. 56
      Meyer, M.; Déprez, C.; van Abswoude, T. R.; Meijer, I. N.; Liu, D.; Wang, C.; Karwal, S.; Oosterhout, S.; Borsoi, F.; Sammak, A.; Hendrickx, N. W.; Scappucci, G.; Veldhorst, M. Dataset underlying the manuscript: Electrical control of uniformity in quantum dot devices. Zenodo.org , 2022.
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04446.

    • Materials and device fabrication details, description of the experimental setup, details on the experimental procedures, SEM images of devices nominally identical with those used in this work, presentation of ten consecutive hysteresis cycles, hysteresis cycles obtained in Ge/SiGe single hole transistor structures, full schematics of the stress voltage sequence employed for tuning the plunger gate pinch-off voltages in a linear array, stability of the four plunger pinch-off characteristics after the tuning procedure presented, analysis of the effect of stress voltages on coulomb-blockade oscillations, table of samples investigated and corresponding reversal points (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.