ACS Publications. Most Trusted. Most Cited. Most Read
Hysteresis-Free Nanoplasmonic Pd–Au Alloy Hydrogen Sensors
My Activity
    Letter

    Hysteresis-Free Nanoplasmonic Pd–Au Alloy Hydrogen Sensors
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
    Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2015, 15, 5, 3563–3570
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b01053
    Published April 27, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The recent market introduction of hydrogen fuel cell cars and the prospect of a hydrogen economy have drastically accelerated the need for safe and accurate detection of hydrogen. In this Letter, we investigate the use of arrays of nanofabricated Pd–Au alloy nanoparticles as plasmonic optical hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0–40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details on the nanofabrication, extinction spectra, complete sets of isotherms, readout parameter analysis for all investigated alloy compositions, and derivation of the sensor accuracy. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b01053.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 167 publications.

    1. Viktor Martvall, Henrik Klein Moberg, Athanasios Theodoridis, David Tomeček, Pernilla Ekborg-Tanner, Sara Nilsson, Giovanni Volpe, Paul Erhart, Christoph Langhammer. Accelerating Plasmonic Hydrogen Sensors for Inert Gas Environments by Transformer-Based Deep Learning. ACS Sensors 2025, Article ASAP.
    2. Guitao Chen, Haijun Luo, Weijin Qian, Mingliang Dong, Weijun Huang, Changkun Dong. Metal- and Nitrogen-Codoped Carbon Nanotube Field Emitters for Low-Pressure Hydrogen Sensing. ACS Applied Nano Materials 2024, 7 (23) , 27264-27274. https://doi.org/10.1021/acsanm.4c05288
    3. Yeong Jae Kim, Seonyong Lee, Sungkyun Choi, Tae Hoon Eom, Sung Hwan Cho, Sohyeon Park, Sung Hyuk Park, Jae Young Kim, Jaehyun Kim, Gi Baek Nam, Jung-El Ryu, Seon Ju Park, Soo Min Lee, Gun-Do Lee, Jihyun Kim, Ho Won Jang. Highly Durable Chemoresistive Micropatterned PdAu Hydrogen Sensors: Performance and Mechanism. ACS Sensors 2024, 9 (10) , 5363-5373. https://doi.org/10.1021/acssensors.4c01599
    4. Lars J. Bannenberg, Isa M. Veeneman, Folkert I. B. Straus, Hsin-Yu Chen, Christy J. Kinane, Stephen Hall, Michel A. Thijs, Herman Schreuders. Thin Film TaFe, TaCo, and TaNi as Potential Optical Hydrogen Sensing Materials. ACS Omega 2024, 9 (40) , 41978-41989. https://doi.org/10.1021/acsomega.4c06955
    5. Mingyu Cheng, Xiangxin Lin, Xinyi Chen, Chong Chen, Gang Zhang, Bin Ai. Enhancing Plasmonic Hydrogen Sensing Through Heterogeneous Multilayer Configurations with Quantitative Mechanism Analysis. ACS Applied Nano Materials 2024, 7 (12) , 14203-14212. https://doi.org/10.1021/acsanm.4c01687
    6. Timothy M. Swager, Thomas N. Pioch, Haosheng Feng, Harrison M. Bergman, Shao-Xiong Lennon Luo, John J. Valenza, II. Critical Sensing Modalities for Hydrogen: Technical Needs and Status of the Field to Support a Changing Energy Landscape. ACS Sensors 2024, 9 (5) , 2205-2227. https://doi.org/10.1021/acssensors.4c00251
    7. Min-Seung Jo, Ki-Hoon Kim, Jae-Shin Lee, Sung-Ho Kim, Jae-Young Yoo, Kwang-Wook Choi, Beom-Jun Kim, Dae-Sung Kwon, Ilseon Yoo, Jae-Soon Yang, Myung-Kun Chung, So-Yoon Park, Min-Ho Seo, Jun-Bo Yoon. Ultrafast (∼0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire. ACS Nano 2023, 17 (23) , 23649-23658. https://doi.org/10.1021/acsnano.3c06806
    8. Carl Andersson, Olga Serebrennikova, Christopher Tiburski, Svetlana Alekseeva, Joachim Fritzsche, Christoph Langhammer. A Microshutter for the Nanofabrication of Plasmonic Metal Alloys with Single Nanoparticle Composition Control. ACS Nano 2023, 17 (16) , 15978-15988. https://doi.org/10.1021/acsnano.3c04147
    9. Iwan Darmadi, Ida Östergren, Sarah Lerch, Anja Lund, Kasper Moth-Poulsen, Christian Müller, Christoph Langhammer. Bulk-Processed Plasmonic Plastic Nanocomposite Materials for Optical Hydrogen Detection. Accounts of Chemical Research 2023, 56 (13) , 1850-1861. https://doi.org/10.1021/acs.accounts.3c00182
    10. Iwan Darmadi, Jordi Piella, Alicja Stolaś, Carl Andersson, Christopher Tiburski, Kasper Moth-Poulsen, Christoph Langhammer. Plasma Cleaning of Cationic Surfactants from Pd Nanoparticle Surfaces: Implications for Hydrogen Sorption. ACS Applied Nano Materials 2023, 6 (10) , 8168-8177. https://doi.org/10.1021/acsanm.3c00141
    11. Xiaoyi She, Qiankun Yao, Qiushun Zou, Guowei Yang, Yang Shen, Chongjun Jin. Tunable Fabry–Pérot Resonator with Dynamic Structural Color: A Visual and Ultrasensitive Hydrogen Sensor. ACS Applied Materials & Interfaces 2023, 15 (12) , 16244-16252. https://doi.org/10.1021/acsami.2c22961
    12. Lars J. Bannenberg, Herman Schreuders, Nathan van Beugen, Christy Kinane, Stephen Hall, Bernard Dam. Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applications. ACS Applied Materials & Interfaces 2023, 15 (6) , 8033-8045. https://doi.org/10.1021/acsami.2c20112
    13. Pernilla Ekborg-Tanner, J. Magnus Rahm, Victor Rosendal, Maria Bancerek, Tuomas P. Rossi, Tomasz J. Antosiewicz, Paul Erhart. Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen. ACS Applied Nano Materials 2022, 5 (8) , 10225-10236. https://doi.org/10.1021/acsanm.2c01189
    14. Min-Seung Jo, Ki-Hoon Kim, Kwang-Wook Choi, Jae-Shin Lee, Jae-Young Yoo, Sung-Ho Kim, Heejeong Jin, Min-Ho Seo, Jun-Bo Yoon. Wireless and Linear Hydrogen Detection up to 4% with High Sensitivity through Phase-Transition-Inhibited Pd Nanowires. ACS Nano 2022, 16 (8) , 11957-11967. https://doi.org/10.1021/acsnano.2c01783
    15. Christopher Tiburski, Ferry Anggoro Ardy Nugroho, Christoph Langhammer. Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination. ACS Nano 2022, 16 (4) , 6233-6243. https://doi.org/10.1021/acsnano.2c00035
    16. Irem Tanyeli, Iwan Darmadi, Martin Sech, Christopher Tiburski, Joachim Fritzsche, Olof Andersson, Christoph Langhammer. Nanoplasmonic NO2 Sensor with a Sub-10 Parts per Billion Limit of Detection in Urban Air. ACS Sensors 2022, 7 (4) , 1008-1018. https://doi.org/10.1021/acssensors.1c02463
    17. Abhishek Kumar, Thomas Thundat, Mark T. Swihart. Ultrathin Palladium Nanowires for Fast and Hysteresis-Free H2 Sensing. ACS Applied Nano Materials 2022, 5 (4) , 5895-5905. https://doi.org/10.1021/acsanm.2c01211
    18. Daniel K. Angell, Briley Bourgeois, Michal Vadai, Jennifer A. Dionne. Lattice-Resolution, Dynamic Imaging of Hydrogen Absorption into Bimetallic AgPd Nanoparticles. ACS Nano 2022, 16 (2) , 1781-1790. https://doi.org/10.1021/acsnano.1c04602
    19. Xiaoyi She, Qiankun Yao, Guowei Yang, Yang Shen, Chongjun Jin. Suspended Palladium/Polymer Bilayer for High-Contrast and Fast Hydrogen Sensors. ACS Sensors 2022, 7 (1) , 116-122. https://doi.org/10.1021/acssensors.1c01778
    20. Eric M. Lopato, Stefan Bernhard. Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions. Energy & Fuels 2021, 35 (23) , 18957-18981. https://doi.org/10.1021/acs.energyfuels.1c02168
    21. Lars J. Bannenberg, Bart Boshuizen, Ferry Anggoro Ardy Nugroho, Herman Schreuders. Hydrogenation Kinetics of Metal Hydride Catalytic Layers. ACS Applied Materials & Interfaces 2021, 13 (44) , 52530-52541. https://doi.org/10.1021/acsami.1c13240
    22. Lucy J. T. Metzroth, Elisa M. Miller, Andrew G. Norman, Sadegh Yazdi, Gerard Michael Carroll. Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification. Nano Letters 2021, 21 (21) , 9131-9137. https://doi.org/10.1021/acs.nanolett.1c02903
    23. Sarah Lerch, Alicja Stolaś, Iwan Darmadi, Xin Wen, Michał Strach, Christoph Langhammer, Kasper Moth-Poulsen. Robust Colloidal Synthesis of Palladium–Gold Alloy Nanoparticles for Hydrogen Sensing. ACS Applied Materials & Interfaces 2021, 13 (38) , 45758-45767. https://doi.org/10.1021/acsami.1c15315
    24. Iwan Darmadi, Sarah Zulfa Khairunnisa, David Tomeček, Christoph Langhammer. Optimization of the Composition of PdAuCu Ternary Alloy Nanoparticles for Plasmonic Hydrogen Sensing. ACS Applied Nano Materials 2021, 4 (9) , 8716-8722. https://doi.org/10.1021/acsanm.1c01242
    25. Pernilla Ekborg-Tanner, Paul Erhart. Hydrogen-Driven Surface Segregation in Pd Alloys from Atomic-Scale Simulations. The Journal of Physical Chemistry C 2021, 125 (31) , 17248-17260. https://doi.org/10.1021/acs.jpcc.1c00575
    26. Ida Östergren, Amir Masoud Pourrahimi, Iwan Darmadi, Robson da Silva, Alicja Stolaś, Sarah Lerch, Barbara Berke, Manuel Guizar-Sicairos, Marianne Liebi, Giacomo Foli, Vincenzo Palermo, Matteo Minelli, Kasper Moth-Poulsen, Christoph Langhammer, Christian Müller. Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing. ACS Applied Materials & Interfaces 2021, 13 (18) , 21724-21732. https://doi.org/10.1021/acsami.1c01968
    27. Minh T. Pham, Hoang M. Luong, Huy T. Pham, Tyler Guin, Yiping Zhao, George K. Larsen, Tho D. Nguyen. Pd80Co20 Nanohole Arrays Coated with Poly(methyl methacrylate) for High-Speed Hydrogen Sensing with a Part-per-Billion Detection Limit. ACS Applied Nano Materials 2021, 4 (4) , 3664-3674. https://doi.org/10.1021/acsanm.1c00169
    28. Qi Xiao, Calum Kinnear, Timothy U. Connell, Muhammad Kalim Kashif, Christopher D. Easton, Aaron Seeber, Laure Bourgeois, Gus. O. Bonin, Noel W. Duffy, Anthony S. R. Chesman, Daniel E. Gómez. Dual Photolytic Pathways in an Alloyed Plasmonic Near-Perfect Absorber: Implications for Photoelectrocatalysis. ACS Applied Nano Materials 2021, 4 (3) , 2702-2712. https://doi.org/10.1021/acsanm.0c03341
    29. Zhi-Jun Zhao, Junseong Ahn, Jiwoo Ko, Yongrok Jeong, Moonjeong Bok, Soon Hyoung Hwang, Hyeok-Joong Kang, Sohee Jeon, Jungrak Choi, Inkyu Park, Jun-Ho Jeong. Shape-Controlled and Well-Arrayed Heterogeneous Nanostructures via Melting Point Modulation at the Nanoscale. ACS Applied Materials & Interfaces 2021, 13 (2) , 3358-3368. https://doi.org/10.1021/acsami.0c18122
    30. James M. Hodges, Yi Xia, Christos D. Malliakas, Tyler J. Slade, Chris Wolverton, Mercouri G. Kanatzidis. Mixed-Valent Copper Chalcogenides: Tuning Structures and Electronic Properties Using Multiple Anions. Chemistry of Materials 2020, 32 (23) , 10146-10154. https://doi.org/10.1021/acs.chemmater.0c03620
    31. Iwan Darmadi, Ferry Anggoro Ardy Nugroho, Christoph Langhammer. High-Performance Nanostructured Palladium-Based Hydrogen Sensors—Current Limitations and Strategies for Their Mitigation. ACS Sensors 2020, 5 (11) , 3306-3327. https://doi.org/10.1021/acssensors.0c02019
    32. Iwan Darmadi, Alicja Stolaś, Ida Östergren, Barbara Berke, Ferry Anggoro Ardy Nugroho, Matteo Minelli, Sarah Lerch, Irem Tanyeli, Anja Lund, Olof Andersson, Vladimir P. Zhdanov, Marianne Liebi, Kasper Moth-Poulsen, Christian Müller, Christoph Langhammer. Bulk-Processed Pd Nanocube–Poly(methyl methacrylate) Nanocomposites as Plasmonic Plastics for Hydrogen Sensing. ACS Applied Nano Materials 2020, 3 (8) , 8438-8445. https://doi.org/10.1021/acsanm.0c01907
    33. Chan Ho Park, Won-Tae Koo, Young Jun Lee, Yoon Hwa Kim, Jiyoung Lee, Ji-Soo Jang, Hongseok Yun, Il-Doo Kim, Bumjoon J. Kim. Hydrogen Sensors Based on MoS2 Hollow Architectures Assembled by Pickering Emulsion. ACS Nano 2020, 14 (8) , 9652-9661. https://doi.org/10.1021/acsnano.0c00821
    34. Michael E. Smith, Angela L. Stastny, John A. Lynch, Zhao Yu, Peng Zhang, William R. Heineman. Indicator Dyes and Catalytic Nanoparticles for Irreversible Visual Hydrogen Sensing. Analytical Chemistry 2020, 92 (15) , 10651-10658. https://doi.org/10.1021/acs.analchem.0c01769
    35. Florian Sterl, Nikolai Strohfeldt, Steffen Both, Ediz Herkert, Thomas Weiss, Harald Giessen. Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors. ACS Sensors 2020, 5 (4) , 917-927. https://doi.org/10.1021/acssensors.9b02436
    36. Keerthi G. Nair, Vishnuraj Ramakrishnan, Rajesh Unnathpadi, Karthikeyan. K. Karuppanan, Biji Pullithadathil. Unraveling Hydrogen Adsorption Kinetics of Bimetallic Au–Pt Nanoisland-Functionalized Carbon Nanofibers for Room-Temperature Gas Sensor Applications. The Journal of Physical Chemistry C 2020, 124 (13) , 7144-7155. https://doi.org/10.1021/acs.jpcc.9b11147
    37. Alicja Stolaś, Iwan Darmadi, Ferry Anggoro Ardy Nugroho, Kasper Moth-Poulsen, Christoph Langhammer. Impact of Surfactants and Stabilizers on Palladium Nanoparticle–Hydrogen Interaction Kinetics: Implications for Hydrogen Sensors. ACS Applied Nano Materials 2020, 3 (3) , 2647-2653. https://doi.org/10.1021/acsanm.0c00020
    38. Kevin J. Palm, Joseph B. Murray, Joshua P. McClure, Marina S. Leite, Jeremy N. Munday. In Situ Optical and Stress Characterization of Alloyed PdxAu1–x Hydrides. ACS Applied Materials & Interfaces 2019, 11 (48) , 45057-45067. https://doi.org/10.1021/acsami.9b14244
    39. Takaaki Beni, Naoki Yamasaku, Takuma Kurotsu, Naoki To, Shinji Okazaki, Taro Arakawa, Armandas Balčytis, Gediminas Seniutinas, Saulius Juodkazis, Yoshiaki Nishijima. Metamaterial for Hydrogen Sensing. ACS Sensors 2019, 4 (9) , 2389-2394. https://doi.org/10.1021/acssensors.9b00980
    40. Duncan T. L. Alexander, Daniel Forrer, Enrico Rossi, Elefterios Lidorikis, Stefano Agnoli, Gabriel D. Bernasconi, Jérémy Butet, Olivier J. F. Martin, Vincenzo Amendola. Electronic Structure-Dependent Surface Plasmon Resonance in Single Au–Fe Nanoalloys. Nano Letters 2019, 19 (8) , 5754-5761. https://doi.org/10.1021/acs.nanolett.9b02396
    41. Iwan Darmadi, Ferry Anggoro Ardy Nugroho, Shima Kadkhodazadeh, Jakob B. Wagner, Christoph Langhammer. Rationally Designed PdAuCu Ternary Alloy Nanoparticles for Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensing. ACS Sensors 2019, 4 (5) , 1424-1432. https://doi.org/10.1021/acssensors.9b00610
    42. Lars Johannes Bannenberg, Ferry Anggoro Ardy Nugroho, Herman Schreuders, Ben Norder, Thu Trang Trinh, Nina-Juliane Steinke, Ad A. van Well, Christoph Langhammer, Bernard Dam. Direct Comparison of PdAu Alloy Thin Films and Nanoparticles upon Hydrogen Exposure. ACS Applied Materials & Interfaces 2019, 11 (17) , 15489-15497. https://doi.org/10.1021/acsami.8b22455
    43. Luping Tang, Wei Wu, Longbing He, Kaihao Yu, Tao Xu, Qiubo Zhang, Lei Zhang, Litao Sun. Novel Interface in CuAg Nanostructure Induced by Size Effect. The Journal of Physical Chemistry Letters 2019, 10 (8) , 1973-1980. https://doi.org/10.1021/acs.jpclett.9b00484
    44. Shima Kadkhodazadeh, Ferry Anggoro Ardy Nugroho, Christoph Langhammer, Marco Beleggia, Jakob B. Wagner. Optical Property–Composition Correlation in Noble Metal Alloy Nanoparticles Studied with EELS. ACS Photonics 2019, 6 (3) , 779-786. https://doi.org/10.1021/acsphotonics.8b01791
    45. Muhan Cao, Qipeng Liu, Min Chen, Lei Chen, Di Yang, Huicheng Hu, Le He, Guanhua Zhang, Qiao Zhang. Fully Alloying AuAg Nanorods in a Photothermal Nano-Oven: Superior Plasmonic Property and Enhanced Chemical Stability. ACS Omega 2018, 3 (12) , 18623-18629. https://doi.org/10.1021/acsomega.8b03020
    46. Kevin J. Palm, Joseph B. Murray, Tarun C. Narayan, Jeremy N. Munday. Dynamic Optical Properties of Metal Hydrides. ACS Photonics 2018, 5 (11) , 4677-4686. https://doi.org/10.1021/acsphotonics.8b01243
    47. Ferry Anggoro Ardy Nugroho, Iwan Darmadi, Vladimir P. Zhdanov, Christoph Langhammer. Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles. ACS Nano 2018, 12 (10) , 9903-9912. https://doi.org/10.1021/acsnano.8b02835
    48. Guoxiang Hu, Qing Tang, Dongil Lee, Zili Wu, and De-en Jiang . Metallic Hydrogen in Atomically Precise Gold Nanoclusters. Chemistry of Materials 2017, 29 (11) , 4840-4847. https://doi.org/10.1021/acs.chemmater.7b00776
    49. Peng Chen, Nhung Thi Tran, Xinglin Wen, Qihua Xiong, and Bo Liedberg . Inflection Point of the Localized Surface Plasmon Resonance Peak: A General Method to Improve the Sensitivity. ACS Sensors 2017, 2 (2) , 235-242. https://doi.org/10.1021/acssensors.6b00633
    50. Joachim Fritzsche, David Albinsson, Michael Fritzsche, Tomasz J. Antosiewicz, Fredrik Westerlund, and Christoph Langhammer . Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels. Nano Letters 2016, 16 (12) , 7857-7864. https://doi.org/10.1021/acs.nanolett.6b04124
    51. Mercedes Victoria, Ruud J. Westerwaal, Bernard Dam, and Jacobus L. M. van Mechelen . Amorphous Metal-Hydrides for Optical Hydrogen Sensing: The Effect of Adding Glassy Ni–Zr to Mg–Ni–H. ACS Sensors 2016, 1 (3) , 222-226. https://doi.org/10.1021/acssensors.5b00265
    52. Ferry A. A. Nugroho, Beniamino Iandolo, Jakob B. Wagner, and Christoph Langhammer . Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics. ACS Nano 2016, 10 (2) , 2871-2879. https://doi.org/10.1021/acsnano.5b08057
    53. Eredzhep Menumerov, Bryan A. Marks, Dmitriy A. Dikin, Francis X. Lee, Robert D. Winslow, Saurav Guru, Devika Sil, Eric Borguet, Parsaoran Hutapea, Robert A. Hughes, and Svetlana Neretina . Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation. ACS Sensors 2016, 1 (1) , 73-80. https://doi.org/10.1021/acssensors.5b00102
    54. Ferry A. A. Nugroho, Chao Xu, Niklas Hedin, and Christoph Langhammer . UV–Visible and Plasmonic Nanospectroscopy of the CO2 Adsorption Energetics in a Microporous Polymer. Analytical Chemistry 2015, 87 (20) , 10161-10165. https://doi.org/10.1021/acs.analchem.5b03108
    55. Mohammed M. Alkhabet, Saad H. Girei, Zaid Khalaf Al-Isawi, Omar Salah F. Shareef, Ammar Hatem Farhan, Omar Altalebi, Ahmed L. Khalaf, Jaafar A. Jaafar, Mohd H. Yaacob. Palladium (Pd) coated fiber optic hydrogen sensors: A review. Materials Science in Semiconductor Processing 2025, 188 , 109204. https://doi.org/10.1016/j.mssp.2024.109204
    56. Yuxia Wang, Yongjun Zhang, Yaxin Wang, Fan Zhang, Hexing Ren, Renxian Gao, Kun Zhang, Fengyi Zhang, Rufei Cui, Xiaoyu Zhao. SERS substrate of Ag decorated flexible wrinkled nanostage and anti-counterfeiting application. Applied Surface Science 2025, 685 , 162071. https://doi.org/10.1016/j.apsusc.2024.162071
    57. D.J. Verhoeff, H. Schreuders, L.J. Bannenberg. Tantalum-palladium alloy based optical micro-mirror hydrogen sensor. Sensors and Actuators B: Chemical 2025, 157 , 137229. https://doi.org/10.1016/j.snb.2025.137229
    58. Christoph Langhammer, Carl Andersson, Jonathan Zimmermann, Joachim Fritzsche, Eugen Rabkin. Hydride Formation Pressures and Kinetics in Individual Pd Nanoparticles with Systematically Varied Levels of Plastic Deformation. 2024https://doi.org/10.21203/rs.3.rs-5631157/v1
    59. David Tomeček, Henrik Klein Moberg, Sara Nilsson, Athanasios Theodoridis, Iwan Darmadi, Daniel Midtvedt, Giovanni Volpe, Olof Andersson, Christoph Langhammer. Neural network enabled nanoplasmonic hydrogen sensors with 100 ppm limit of detection in humid air. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45484-9
    60. Avantika Chauhan, Arka Bikash Dey, Florian Bertram, Vipin Chawla, Mukul Gupta, Akula Umamaheswara Rao, Yogendra Kumar Mishra, Amit Kumar Chawla, Devesh Kumar Avasthi. A comprehensive study on H2 loading/deloading with PdAg alloy thin films using in-situ synchrotron radiation X-ray diffraction. Materials Today Communications 2024, 41 , 111079. https://doi.org/10.1016/j.mtcomm.2024.111079
    61. Zhuo Chen, Peng Yuan, Cailing Chen, Xinhuilan Wang, Jinrong Wang, Jiaqi Jia, Bambar Davaasuren, Zhiping Lai, Niveen M. Khashab, Kuo‐Wei Huang, Osman M. Bakr, Jun Yin, Khaled N. Salama. Balancing Pd–H Interactions: Thiolate‐Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing. Advanced Materials 2024, 36 (51) https://doi.org/10.1002/adma.202404291
    62. Mingliang Dong, Weijin Qian, Youqing Tu, Guitao Chen, Weijun Huang, Haijun Luo, Changkun Dong. Low-pressure hydrogen sensing mechanism based on the field emission of defect-controlled ZnO nanorods. Journal of Materials Chemistry C 2024, 12 (43) , 17419-17428. https://doi.org/10.1039/D4TC01951B
    63. Jiamin Li, Shenghong Li, Shihao Lu, Xuhui Geng, Yafeng Guan. Selective detection of H2 by Pt-MCF/ZSA bilayer sensor prepared in situ via EHD jet printing. Sensors and Actuators B: Chemical 2024, 418 , 136324. https://doi.org/10.1016/j.snb.2024.136324
    64. Xinjia Zhang, Zhao Zhang, Chengmin Xu, Xiaofei Xing, Mingxing Wei, Boyuan Cao, Tong Liu. Ti/Cr regulated and strategic Ce doped V-Ti-Cr-Mn-Fe high-entropy alloys with extraordinary reversible hydrogen storage properties at ambient temperature. Chemical Engineering Journal 2024, 499 , 156643. https://doi.org/10.1016/j.cej.2024.156643
    65. Chao Li, Fengshuang Zheng, Xuhong Mi, Boxin Wei, Xuemin Zhang. Pd-based eye-readable H2 sensors: Principles, developments, and perspectives. Optics & Laser Technology 2024, 176 , 110955. https://doi.org/10.1016/j.optlastec.2024.110955
    66. H.S. Dewi, K.P. Dissanayake, H. Schreuders, R.M. Groves, L.J. Bannenberg. Metal hydride hydrogen sensing materials from 28 °C to 270 °C. International Journal of Hydrogen Energy 2024, 84 , 606-614. https://doi.org/10.1016/j.ijhydene.2024.08.128
    67. Yulin Chen, Yifei Yang, Chuanhui Liang, Yunxi Yao, Jun Chen. Palladium-based optical fiber Bragg grating hydrogen sensors: A comprehensive review. Optics & Laser Technology 2024, 175 , 110850. https://doi.org/10.1016/j.optlastec.2024.110850
    68. Vala Kafil, Benjamin Sreenan, Mustafa Hadj-Nacer, Yan Wang, Jihwan Yoon, Miles Greiner, Pengbo Chu, Xiaoliang Wang, M. Sami Fadali, Xiaoshan Zhu. Review of noble metal and metal-oxide-semiconductor based chemiresistive hydrogen sensors. Sensors and Actuators A: Physical 2024, 373 , 115440. https://doi.org/10.1016/j.sna.2024.115440
    69. Nobutomo Nakamura, Kazushi Yoshikawa, Akio Ishii. Enhancement of hydrogen response by forming an Au submonolayer on nanogap Pd nanoparticles. Applied Physics Letters 2024, 125 (2) https://doi.org/10.1063/5.0204024
    70. Akira Nagakubo, Tokiya Matsukura, Hirotsugu Ogi. Sensitivity enhancement of hydrogen-gas sensor by sub nm Au on Pd surface of a wireless quartz resonator. Japanese Journal of Applied Physics 2024, 63 (7) , 074002. https://doi.org/10.35848/1347-4065/ad61a7
    71. Ying Chen, Yucheng Hou, Gennady Govor, Olga Demidenko, Yujing Li. Hydrogen Absorption in Palladium‐Based Nanocrystals for Electrocatalysis Investigation. ChemElectroChem 2024, https://doi.org/10.1002/celc.202400071
    72. Handika Sandra Dewi, Kasun P. W. Dissanayake, Herman Schreuders, Lars J. Bannenberg, Roger M. Groves, , , . Towards hydrogen fueled aircraft: metal hydrides for optical hydrogen sensors operating above room temperature. 2024, 13. https://doi.org/10.1117/12.3010123
    73. Guang-Kun Ren, Yuansen Li, Meiqi Wei, Linsen Zhou, Jun Chen, Zhijie Wei, Xingwen Feng, Yinke Liu, Yan Shi. Tuning the response trend of anaerobic ambience used Pd-based hydrogen sensor by engineering electronic band. Sensors and Actuators A: Physical 2024, 368 , 115087. https://doi.org/10.1016/j.sna.2024.115087
    74. Meiying Li, Kang Yang. The Refractive Index Sensing Performance of Au and Ag Nanoparticles Under Different Surrounding Environment. Particle & Particle Systems Characterization 2024, 41 (4) https://doi.org/10.1002/ppsc.202300143
    75. Tuong Van Tran, Dong-Seog Kim, Thanh Duc Le, Geun-Jae Oh, Gi-Seung Shin, Yeon-Tae Yu. Alloy core composition effect of Pd-Augr-alloy@ZnO core–shell nanoparticles on hydrogen gas sensing performance. Chemical Engineering Journal 2024, 483 , 149050. https://doi.org/10.1016/j.cej.2024.149050
    76. Qingrun Li, Lin Wang, Anshan Xiao, Liang Zhu, Zhe Yang. Hydrogen sensing towards palladium-based nanocomposites: A review. International Journal of Hydrogen Energy 2024, 44 https://doi.org/10.1016/j.ijhydene.2024.01.001
    77. Avantika Chauhan, Arka Bikash Dey, Florian Bertram, Shikha Wadhwa, Ratnesh K. Pandey, Mukul Gupta, Vipin Chawla, Akula Umamaheswara Rao, Amit K. Chawla, Devesh Kumar Avasthi. Temperature dependent interaction of hydrogen with PdAg nanocomposite thin films revealed by in-situ synchrotron XRD. Materials Chemistry and Physics 2023, 310 , 128468. https://doi.org/10.1016/j.matchemphys.2023.128468
    78. Huihui Zhang, Yang Fu, Hien Trang Nguyen, Bronwyn Fox, Joong Hee Lee, Alan Kin-Tak Lau, Hua Zheng, Han Lin, Tianyi Ma, Baohua Jia. Material challenges in green hydrogen ecosystem. Coordination Chemistry Reviews 2023, 494 , 215272. https://doi.org/10.1016/j.ccr.2023.215272
    79. Azhar Ali Haidry, Yinwen Ji, Adil Raza, Hao Zhu, Ali Zavabeti, Bilge Saruhan. Elucidating the hydrogen adsorption kinetics on Pt/TiO2/Pt based highly efficient sensors. Materials Research Bulletin 2023, 167 , 112415. https://doi.org/10.1016/j.materresbull.2023.112415
    80. Pil Gyu Choi, Yoshitake Masuda. Surface modification of nanosheet-type tin oxide with Au-Pd for hydrogen gas sensing. Journal of Alloys and Compounds 2023, 960 , 170888. https://doi.org/10.1016/j.jallcom.2023.170888
    81. Guotao Chen, Chao Li, Longhao Lu, Pengcheng Li, Shunsheng Ye, Tieqiang Wang, Yu Fu, Xuemin Zhang. Promoting the discoloration of PdO in low concentration H2 by using PdAu bimetallic catalyst for eye-readable hydrogen leakage detection. Sensors and Actuators B: Chemical 2023, 393 , 134199. https://doi.org/10.1016/j.snb.2023.134199
    82. Bangjun Ma, Pengfei Yang, Chunli Jiang, Qifa Pan, Changan Chen. Wafer-scale hysteresis-free plasmonic hydrogen sensors based on Pd–Au alloy nanoarrays. International Journal of Hydrogen Energy 2023, 48 (80) , 31392-31399. https://doi.org/10.1016/j.ijhydene.2023.04.245
    83. Ki‐Joong Kim, Jeffrey T. Culp, Jeffrey Wuenschell, Roman A. Shugayev, Paul R. Ohodnicki, Ali K. Sekizkardes. Sorption‐Induced Fiber Optic Plasmonic Gas Sensing via Small Grazing Angle of Incidence. Advanced Materials 2023, 35 (39) https://doi.org/10.1002/adma.202301293
    84. Xiaoyi She, Qiankun Yao, Yang Yang, Chandra Babu Ballipalli, Yang Shen, Chongjun Jin. Low-Cost and Fast Hydrogen Alarm System With Optical Readout Based on Suspended Palladium Film. IEEE Sensors Journal 2023, 23 (14) , 15376-15381. https://doi.org/10.1109/JSEN.2023.3281908
    85. Clément Occelli, Tomas Fiorido, Carine Perrin-Pellegrino, Jean-Luc Seguin. Sensors for anaerobic hydrogen measurement: A comparative study between a resistive PdAu based sensor and a commercial thermal conductivity sensor. International Journal of Hydrogen Energy 2023, 48 (46) , 17729-17741. https://doi.org/10.1016/j.ijhydene.2023.01.193
    86. Majid Zarei, Seyedeh M. Hamidi, K. -W. -A. Chee. Colorimetric Plasmonic Hydrogen Gas Sensor Based on One-Dimensional Nano-Gratings. Crystals 2023, 13 (2) , 363. https://doi.org/10.3390/cryst13020363
    87. Akhilesh Kumar Pathak, Sneha Verma, Natsima Sakda, Charusluk Viphavakit, Ratchapak Chitaree, B. M. Azizur Rahman. Recent Advances in Optical Hydrogen Sensor including Use of Metal and Metal Alloys: A Review. Photonics 2023, 10 (2) , 122. https://doi.org/10.3390/photonics10020122
    88. Ferry Anggoro Ardy Nugroho, Ping Bai, Iwan Darmadi, Gabriel W. Castellanos, Joachim Fritzsche, Christoph Langhammer, Jaime Gómez Rivas, Andrea Baldi. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33466-8
    89. Zheng Zhang, Gang Song, Gaoyan Duan, Peilin Lang. Highly integrated hydrogen sensor based on inverse surface plasmon polaritons. Europhysics Letters 2022, 140 (6) , 65002. https://doi.org/10.1209/0295-5075/aca822
    90. Xiaoyi She, Guowei Yang, Yang Shen, Chongjun Jin. Visual hydrogenation of palladium membranes on an elastic substrate and their applications in hydrogen sensing. Nano Select 2022, 3 (12) , 1549-1556. https://doi.org/10.1002/nano.202200157
    91. Muhammad Saad Salman, Qiwen Lai, Xiaoxuan Luo, Chulaluck Pratthana, Nigel Rambhujun, Mehdi Costalin, Ting Wang, Prabal Sapkota, Wei Liu, Aiden Grahame, Joseph Tupe, Kondo-Francois Aguey-Zinsou. The power of multifunctional metal hydrides: A key enabler beyond hydrogen storage. Journal of Alloys and Compounds 2022, 920 , 165936. https://doi.org/10.1016/j.jallcom.2022.165936
    92. Avantika Chauhan, Mukul Gupta, Manan Mehta, Amit Kumar Chawla, Devesh Kumar Avasthi. Synthesis of Pd-Ag Alloy Nano-composite Thin Films at Room Temperature by DC Magnetron Co-Sputtering. 2022, 290-292. https://doi.org/10.1109/EExPolytech56308.2022.9950935
    93. Jie Li, Guang-Kun Ren, Yu Tian, Fengyun Ding, Zhijie Wei, Yinke Liu, Linsen Zhou, Wen Fang, Jun Chen, Xiaohong Chen, Jiangfeng Song, Yan Shi. Boosting room temperature response of Pd-based hydrogen sensor by constructing in situ nanoparticles. Physica E: Low-dimensional Systems and Nanostructures 2022, 144 , 115464. https://doi.org/10.1016/j.physe.2022.115464
    94. Hyeong-Min Kim, Hyo-Jun Kim, Seung-Chul Yang, Jae-Hyoung Park, Seung-Ki Lee. Fiber optic localized surface plasmon resonance hydrogen sensor based on gold nanoparticles capped with palladium. Journal of Industrial and Engineering Chemistry 2022, 111 , 281-288. https://doi.org/10.1016/j.jiec.2022.04.008
    95. Bin Ai, Yujing Sun, Yiping Zhao. Plasmonic Hydrogen Sensors. Small 2022, 18 (25) https://doi.org/10.1002/smll.202107882
    96. Jakob Reichstein, Simon Schötz, Moritz Macht, Sven Maisel, Nina Stockinger, Carlos Cuadrado Collados, Katrin Schubert, Dominik Blaumeiser, Susanne Wintzheimer, Andreas Görling, Matthias Thommes, Dirk Zahn, Jörg Libuda, Tanja Bauer, Karl Mandel. Supraparticles for Bare‐Eye H 2 Indication and Monitoring: Design, Working Principle, and Molecular Mobility. Advanced Functional Materials 2022, 32 (22) https://doi.org/10.1002/adfm.202112379
    97. Yang Gao, Qiao Lu, Peijian Yan, Pengfei Tian, Minghui Zhu, Biao Xiao, Fuzhen Xuan. Theory-guided design of Pd/C nanocomposite for H2 sensing at room-temperature. Applied Surface Science 2022, 581 , 152367. https://doi.org/10.1016/j.apsusc.2021.152367
    98. Qian Li, Shuang Yang, Xingyu Lu, Tieqiang Wang, Xuemin Zhang, Yu Fu, Wei Qi. Controllable Fabrication of PdO‐PdAu Ternary Hollow Shells: Synergistic Acceleration of H 2 ‐Sensing Speed via Morphology Regulation and Electronic Structure Modulation. Small 2022, 18 (15) https://doi.org/10.1002/smll.202106874
    99. Haoran Chen, Hongfei Wang, Kwok-yin Wong, Dangyuan Lei. High-Q localized surface plasmon resonance based on bound states in the continuum for enhanced refractive index sensing. Optics Letters 2022, 47 (3) , 609. https://doi.org/10.1364/OL.445453
    100. Andrei Enache, Florin Draghici, Florin Mitu, Razvan Pascu, Gheorghe Pristavu, Mihaela Pantazica, Gheorghe Brezeanu. PLL-Based Readout Circuit for SiC-MOS Capacitor Hydrogen Sensors in Industrial Environments. Sensors 2022, 22 (4) , 1462. https://doi.org/10.3390/s22041462
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2015, 15, 5, 3563–3570
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b01053
    Published April 27, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    4334

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.