ACS Publications. Most Trusted. Most Cited. Most Read
Coupling Two Distant Double Quantum Dots with a Microwave Resonator
My Activity
    Letter

    Coupling Two Distant Double Quantum Dots with a Microwave Resonator
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
    Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
    §iTHES Research Group and CEMS, RIKEN, Wako-shi, Saitama, 351-0198, Japan
    Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, United States
    # Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 90095, United States
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2015, 15, 10, 6620–6625
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b02400
    Published September 1, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We fabricated a hybrid device with two distant graphene double quantum dots (DQDs) and a microwave resonator. A nonlinear response is observed in the resonator reflection amplitude when the two DQDs are jointly tuned to the vicinity of the degeneracy points. This observation can be well fitted by the Tavis–Cummings (T–C) model which describes two two-level systems coupling with one photonic field. Furthermore, the correlation between the DC currents in the two DQDs is studied. A nonzero cross-current correlation is observed which has been theoretically predicted to be an important sign of nonlocal coupling between two distant systems. Our results explore T–C physics in electronic transport and also contribute to the study of nonlocal transport and future implementations of remote electronic entanglement.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b02400.

    • Further information on sample fabrication and measurement setup, the transport properties, T–C model (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 71 publications.

    1. Max J. Ruckriegel, Lisa M. Gächter, David Kealhofer, Mohsen Bahrami Panah, Chuyao Tong, Christoph Adam, Michele Masseroni, Hadrien Duprez, Rebekka Garreis, Kenji Watanabe, Takashi Taniguchi, Andreas Wallraff, Thomas Ihn, Klaus Ensslin, Wei Wister Huang. Electric Dipole Coupling of a Bilayer Graphene Quantum Dot to a High-Impedance Microwave Resonator. Nano Letters 2024, 24 (24) , 7508-7514. https://doi.org/10.1021/acs.nanolett.4c01791
    2. Yan Li, Shu-Xiao Li, Fei Gao, Hai-Ou Li, Gang Xu, Ke Wang, Di Liu, Gang Cao, Ming Xiao, Ting Wang, Jian-Jun Zhang, Guang-Can Guo, Guo-Ping Guo. Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator. Nano Letters 2018, 18 (3) , 2091-2097. https://doi.org/10.1021/acs.nanolett.8b00272
    3. Guang-Wei Deng, Dong Zhu, Xin-He Wang, Chang-Ling Zou, Jiang-Tao Wang, Hai-Ou Li, Gang Cao, Di Liu, Yan Li, Ming Xiao, Guang-Can Guo, Kai-Li Jiang, Xing-Can Dai, and Guo-Ping Guo . Strongly Coupled Nanotube Electromechanical Resonators. Nano Letters 2016, 16 (9) , 5456-5462. https://doi.org/10.1021/acs.nanolett.6b01875
    4. Debabrata Mondal, K. Sengupta, S. Sinha. Emergence of a quasiergodic steady state in a dissipative Tavis-Cummings array. Physical Review A 2024, 110 (4) https://doi.org/10.1103/PhysRevA.110.042207
    5. Yi-Ting Chuang, Liang-Yan Hsu. Microscopic theory of exciton–polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions. The Journal of Chemical Physics 2024, 160 (11) https://doi.org/10.1063/5.0192704
    6. A. Kudlis, D. Novokreschenov, I. Iorsh, I. V. Tokatly. Nonperturbative effects of deep strong light-matter interaction in a mesoscopic cavity-QED system. Physical Review A 2023, 108 (5) https://doi.org/10.1103/PhysRevA.108.L051701
    7. Lei-Lei Nian, Shiqian Hu, Long Xiong, Jing-Tao Lü, Bo Zheng. Photon-assisted electron transport across a quantum phase transition. Physical Review B 2023, 108 (8) https://doi.org/10.1103/PhysRevB.108.085430
    8. Devvrat Tiwari, Subhashish Banerjee. A study of the quasi-probability distributions of the Tavis–Cummings model under different quantum channels. Annals of Physics 2023, 455 , 169390. https://doi.org/10.1016/j.aop.2023.169390
    9. Lei-Lei Nian, Bo Zheng, Jing-Tao Lü. Electrically driven photon statistics engineering in quantum-dot circuit quantum electrodynamics. Physical Review B 2023, 107 (24) https://doi.org/10.1103/PhysRevB.107.L241405
    10. Zhiyuan Dong, Wei Cui, Guofeng Zhang. On the dynamics of a quantum coherent feedback network of cavity-mediated double quantum dot qubits. Journal of the Franklin Institute 2023, 360 (7) , 4572-4596. https://doi.org/10.1016/j.jfranklin.2023.03.001
    11. Zhiyuan Dong, Guofeng Zhang, Ai-Guo Wu, Re-Bing Wu. On the Dynamics of the Tavis–Cummings Model. IEEE Transactions on Automatic Control 2023, 68 (4) , 2048-2063. https://doi.org/10.1109/TAC.2022.3169582
    12. Xinxing Li, Jinggao Sui, Jingyue Fang. Single-Electron Transport and Detection of Graphene Quantum Dots. Nanomaterials 2023, 13 (5) , 889. https://doi.org/10.3390/nano13050889
    13. Yong-Qiang Xu, Si-Si Gu, Ting Lin, Bao-Chuan Wang, Hai-Ou Li, Gang Cao, Guo-Ping Guo. Coupling and readout of semiconductor quantum dots with a superconducting microwave resonator. Science China Physics, Mechanics & Astronomy 2023, 66 (3) https://doi.org/10.1007/s11433-022-2023-6
    14. Hui Chen, Zi-Fan Zhao, Wei-Jie Li, Ze-Di Cheng, Jiao-Jiao Suo, Bo-Lin Li, Meng-Lin Guo, Bo-Yu Fan, Qiang Zhou, You Wang, Hai-Zhi Song, Xiao-Bin Niu, Xiao-Yu Li, Konstantin Yu. Arutyunov, Guang-Can Guo, Guang-Wei Deng. Gate-tunable bolometer based on strongly coupled graphene mechanical resonators. Optics Letters 2023, 48 (1) , 81. https://doi.org/10.1364/OL.476010
    15. Sishen Xie, Jianguo Hou, Qikun Xue, Tao Xiang, Changpu Sun, Xueming Yang, Wei Lu, Mu Wang. Major Research Achievements. 2023, 39-106. https://doi.org/10.1007/978-981-99-1361-9_3
    16. Yi-Ting Chuang, Ming-Wei Lee , Liang-Yan Hsu. Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics. Frontiers in Physics 2022, 10 https://doi.org/10.3389/fphy.2022.980167
    17. Jiang Cao, Guido Gandus, Tarun Agarwal, Mathieu Luisier, Youseung Lee. Dynamics of van der Waals charge qubit in two-dimensional bilayer materials: Ab initio quantum transport and qubit measurement. Physical Review Research 2022, 4 (4) https://doi.org/10.1103/PhysRevResearch.4.043073
    18. Zhilong Jia, Yaobin Fu, Zhen Cao, Wanqing Cheng, Yongjie Zhao, Menghan Dou, Peng Duan, Weicheng Kong, Gang Cao, Haiou Li, Guoping Guo. Superconducting and Silicon-Based Semiconductor Quantum Computers: A review. IEEE Nanotechnology Magazine 2022, 16 (4) , 10-19. https://doi.org/10.1109/MNANO.2022.3175394
    19. Nathan M. Myers, Obinna Abah, Sebastian Deffner. Quantum thermodynamic devices: From theoretical proposals to experimental reality. AVS Quantum Science 2022, 4 (2) https://doi.org/10.1116/5.0083192
    20. Fang‐Ming Jing, Zhuo‐Zhi Zhang, Guo‐Quan Qin, Gang Luo, Gang Cao, Hai‐Ou Li, Xiang‐Xiang Song, Guo‐Ping Guo. Gate‐Controlled Quantum Dots Based on 2D Materials. Advanced Quantum Technologies 2022, 5 (6) , 2100162. https://doi.org/10.1002/qute.202100162
    21. Patrick Harvey-Collard, Jurgen Dijkema, Guoji Zheng, Amir Sammak, Giordano Scappucci, Lieven M. K. Vandersypen. Coherent Spin-Spin Coupling Mediated by Virtual Microwave Photons. Physical Review X 2022, 12 (2) https://doi.org/10.1103/PhysRevX.12.021026
    22. Xiao-Dong Tan, Le Zhang, Xun-Feng Yuan, Shu-Ting Li. Dynamics of classical and quantum correlations in a zigzag graphene nanoribbon under noisy environments. Quantum Information Processing 2022, 21 (3) https://doi.org/10.1007/s11128-022-03439-3
    23. Yi Yu, Antoine Maxime Delgoffe, Alessio Miranda, Alexey Lyasota, Benjamin Dwir, Alok Rudra, Eli Kapon. Remote excitation between quantum emitters mediated by an optical Fano resonance. Optica 2021, 8 (12) , 1605. https://doi.org/10.1364/OPTICA.442594
    24. Waqar Khan, Patrick P. Potts, Sebastian Lehmann, Claes Thelander, Kimberly A. Dick, Peter Samuelsson, Ville F. Maisi. Efficient and continuous microwave photoconversion in hybrid cavity-semiconductor nanowire double quantum dot diodes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25446-1
    25. Guang-Wei Deng, Loïc Henriet, Da Wei, Shu-Xiao Li, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, Marco Schiró, Karyn Le Hur, Guo-Ping Guo. Kondo induced π -phase shift of microwave photons in a circuit quantum electrodynamics architecture. Physical Review B 2021, 104 (12) https://doi.org/10.1103/PhysRevB.104.125407
    26. Alexandra Mîrzac, Sergiu Carlig, Mihai A. Macovei. Microwave multiphoton conversion via coherently driven permanent dipole systems. Physical Review A 2021, 103 (4) https://doi.org/10.1103/PhysRevA.103.043719
    27. Baochuan Wang, Ting Lin, Haiou Li, Sisi Gu, Mingbo Chen, Guangcan Guo, Hongwen Jiang, Xuedong Hu, Gang Cao, Guoping Guo. Correlated spectrum of distant semiconductor qubits coupled by microwave photons. Science Bulletin 2021, 66 (4) , 332-338. https://doi.org/10.1016/j.scib.2020.10.005
    28. Marlon S. Domínguez, H. Vinck-Posada, Edgar A. Gómez. Entanglement generation between two solid-state qubits mediated by microwave photons. Physics Letters A 2021, 388 , 127045. https://doi.org/10.1016/j.physleta.2020.127045
    29. Lin-Jie Fan, Jin-Shun Bi, Xue Fan, Gao-Bo Xu, Yan-Nan Xu, Kai Xi, Zhan-Gang Zhang. Cryogenic Characterization of Nano-scale Bulk FinFETs. 2020, 1-3. https://doi.org/10.1109/ICSICT49897.2020.9278248
    30. Gang Xu, Yan Li, Fei Gao, Hai-Ou Li, He Liu, Ke Wang, Gang Cao, Ting Wang, Jian-Jun Zhang, Guang-Can Guo, Guo-Ping Guo. Dipole coupling of a hole double quantum dot in germanium hut wire to a microwave resonator. New Journal of Physics 2020, 22 (8) , 083068. https://doi.org/10.1088/1367-2630/aba85a
    31. F. Borjans, X. Croot, S. Putz, X. Mi, S. M. Quinn, A. Pan, J. Kerckhoff, E. J. Pritchett, C. A. Jackson, L. F. Edge, R. S. Ross, T. D. Ladd, M. G. Borselli, M. F. Gyure, J. R. Petta. Split-gate cavity coupler for silicon circuit quantum electrodynamics. Applied Physics Letters 2020, 116 (23) https://doi.org/10.1063/5.0006442
    32. Abdel-Baset A. Mohamed, Mostafa Hashem, Moataz M. Elkhateeb, Abdel-Shafy F. Obada. Generating non-locality correlation via 2-photon resonant interaction of dissipative two-qubit system with coherent field. The European Physical Journal D 2020, 74 (6) https://doi.org/10.1140/epjd/e2020-10115-7
    33. Maximilian Russ, Csaba G Péterfalvi, Guido Burkard. Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator. Journal of Physics: Condensed Matter 2020, 32 (16) , 165301. https://doi.org/10.1088/1361-648X/ab613f
    34. Guido Burkard, Michael J. Gullans, Xiao Mi, Jason R. Petta. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nature Reviews Physics 2020, 2 (3) , 129-140. https://doi.org/10.1038/s42254-019-0135-2
    35. Weici Liu, Faqiang Wang, Ruisheng Liang. Waiting Time Distributions of Transport through a Two-Channel Quantum System. Applied Sciences 2020, 10 (5) , 1772. https://doi.org/10.3390/app10051772
    36. Guang-Wei Deng, Nan Xu, Wei-Jie Li. Gate-Defined Quantum Dots: Fundamentals and Applications. 2020, 107-133. https://doi.org/10.1007/978-3-030-35813-6_4
    37. A.-B. A. Mohamed, H. Eleuch. Non-classical correlations beyond Bell’s inequality violation in qubit-pairs with an intrinsic noise. Results in Physics 2019, 15 , 102780. https://doi.org/10.1016/j.rinp.2019.102780
    38. Mattia Mantovani, Wolfgang Belzig, Gianluca Rastelli, Robert Hussein. Single-photon pump by Cooper-pair splitting. Physical Review Research 2019, 1 (3) https://doi.org/10.1103/PhysRevResearch.1.033098
    39. Walid. M. Fahmy, Khalid F. A. Hussein, Abd-El-Hadi A. Ammar. Co-Planar Waveguide Resonator to Mediate Coupling between Superconducting Quantum Bits. 2019, 156-160. https://doi.org/10.1109/ACCS-PEIT48329.2019.9062858
    40. Faqiang Wang, Weici Liu, Xiaolei Wang, Zhongchao Wei, Hongyun Meng, Ruisheng Liang. Photon Counting Statistics of a Microwave Cavity Coupled with Double Quantum Dots. Applied Sciences 2019, 9 (22) , 4934. https://doi.org/10.3390/app9224934
    41. A.-B.A. Mohamed, H. Eleuch, C.H. Raymond Ooi. Quantum coherence and entanglement partitions for two driven quantum dots inside a coherent micro cavity. Physics Letters A 2019, 383 (29) , 125905. https://doi.org/10.1016/j.physleta.2019.125905
    42. Xiaolong Liu, Mark C. Hersam. 2D materials for quantum information science. Nature Reviews Materials 2019, 4 (10) , 669-684. https://doi.org/10.1038/s41578-019-0136-x
    43. Valeriu Moldoveanu, Ion Viorel Dinu, Andrei Manolescu, Vidar Gudmundsson. Backaction effects in cavity-coupled quantum conductors. Physical Review B 2019, 100 (12) https://doi.org/10.1103/PhysRevB.100.125416
    44. Michael Ridley, Michael Sentef, Riku Tuovinen. Electron Traversal Times in Disordered Graphene Nanoribbons. Entropy 2019, 21 (8) , 737. https://doi.org/10.3390/e21080737
    45. T. L. van den Berg, P. Samuelsson. Charge-photon transport statistics and short-time correlations in a single quantum dot–resonator system with an arbitrarily large coupling parameter. Physical Review B 2019, 100 (3) https://doi.org/10.1103/PhysRevB.100.035408
    46. A.-B. A. Mohamed, H. Eleuch. Dynamics of Skew-Information and Bell’s Inequality Correlations for Two Coupled Dipole Qubits with 2-Photon Transition. International Journal of Theoretical Physics 2019, 58 (5) , 1698-1710. https://doi.org/10.1007/s10773-019-04068-w
    47. Mauro Cirio, Nathan Shammah, Neill Lambert, Simone De Liberato, Franco Nori. Multielectron Ground State Electroluminescence. Physical Review Letters 2019, 122 (19) https://doi.org/10.1103/PhysRevLett.122.190403
    48. Xiao-Feng Yi, Peng Xu, Qi Yao, Xianfu Quan. Quantum repeater without Bell measurements in double-quantum-dot systems. Quantum Information Processing 2019, 18 (3) https://doi.org/10.1007/s11128-019-2185-x
    49. Xin Zhang, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, Guo-Ping Guo. Semiconductor quantum computation. National Science Review 2019, 6 (1) , 32-54. https://doi.org/10.1093/nsr/nwy153
    50. Gang Luo, Zhuo-Zhi Zhang, Guang-Wei Deng, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, Lin Tian, Guo-Ping Guo. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-02854-4
    51. Zhen Li, Gang Cao, Haiou Li, Ming Xiao, Guoping Guo. Fast Quantum Control of Semiconductor Qubit. 2018, 61-66. https://doi.org/10.1109/CICTA.2018.8705720
    52. A.-B. A. Mohamed, A.-S. F. Obada. Non-classical correlations in two quantum dots coupled in a coherent resonator field under decoherence. Quantum Information Processing 2018, 17 (10) https://doi.org/10.1007/s11128-018-2052-1
    53. D. J. van Woerkom, P. Scarlino, J. H. Ungerer, C. Müller, J. V. Koski, A. J. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Wallraff. Microwave Photon-Mediated Interactions between Semiconductor Qubits. Physical Review X 2018, 8 (4) https://doi.org/10.1103/PhysRevX.8.041018
    54. Yan Li, Shu-Xiao Li, Hai-Ou Li, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture. Chinese Physics B 2018, 27 (7) , 076105. https://doi.org/10.1088/1674-1056/27/7/076105
    55. Enrique P Blair, Géza Tóth, Craig S Lent. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment. Journal of Physics: Condensed Matter 2018, 30 (19) , 195602. https://doi.org/10.1088/1361-648X/aab98d
    56. Yan Li, Shu-Xiao Li, Fei Gao, Hai-Ou Li, Gang Xu, Ke Wang, He Liu, Gang Cao, Ming Xiao, Ting Wang, Jian-Jun Zhang, Guo-Ping Guo. Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot. Journal of Applied Physics 2018, 123 (17) https://doi.org/10.1063/1.5026946
    57. Neill Lambert, Mauro Cirio, Matthieu Delbecq, Giles Allison, Marian Marx, Seigo Tarucha, Franco Nori. Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED. Physical Review B 2018, 97 (12) https://doi.org/10.1103/PhysRevB.97.125429
    58. Xin Zhang, Hai-Ou Li, Ke Wang, Gang Cao, Ming Xiao, Guo-Ping Guo. Qubits based on semiconductor quantum dots. Chinese Physics B 2018, 27 (2) , 020305. https://doi.org/10.1088/1674-1056/27/2/020305
    59. . Driven dissipative dynamics and topology of quantum impurity systems. Comptes Rendus. Physique 2018https://doi.org/10.1016/j.crhy.2018.04.003
    60. Thien Nguyen, Charles D. Hill, Lloyd C. L. Hollenberg, Matthew R. James. Fan-out Estimation in Spin-based Quantum Computer Scale-up. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-13308-0
    61. Audrey Cottet, Matthieu C Dartiailh, Matthieu M Desjardins, Tino Cubaynes, Lauriane C Contamin, Matthieu Delbecq, Jérémie J Viennot, Laure E Bruhat, Benoit Douçot, Takis Kontos. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena. Journal of Physics: Condensed Matter 2017, 29 (43) , 433002. https://doi.org/10.1088/1361-648X/aa7b4d
    62. Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures. Frontiers of Physics 2017, 12 (4) https://doi.org/10.1007/s11467-017-0652-3
    63. Haonan Xiong, Wentao Jiang, Yipu Song, Luming Duan. Bound state properties of ABC -stacked trilayer graphene quantum dots. Journal of Physics: Condensed Matter 2017, 29 (21) , 215002. https://doi.org/10.1088/1361-648X/aa6aac
    64. Clement H. Wong, Maxim G. Vavilov. Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot. Physical Review A 2017, 95 (1) https://doi.org/10.1103/PhysRevA.95.012325
    65. , , , Guang-Wei Deng, Guo-Ping Guo, Guang-Can Guo. On-chip quantum optics with quantum dots and superconducting resonators. 2016, 1002909. https://doi.org/10.1117/12.2244957
    66. Bijay Kumar Agarwalla, Manas Kulkarni, Shaul Mukamel, Dvira Segal. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach. Physical Review B 2016, 94 (3) https://doi.org/10.1103/PhysRevB.94.035434
    67. Udson C. Mendes, Christophe Mora. Electron-photon interaction in a quantum point contact coupled to a microwave resonator. Physical Review B 2016, 93 (23) https://doi.org/10.1103/PhysRevB.93.235450
    68. Kristen Kaasbjerg, Antti-Pekka Jauho. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures. Physical Review Letters 2016, 116 (19) https://doi.org/10.1103/PhysRevLett.116.196801
    69. Mauro Cirio, Simone De Liberato, Neill Lambert, Franco Nori. Ground State Electroluminescence. Physical Review Letters 2016, 116 (11) https://doi.org/10.1103/PhysRevLett.116.113601
    70. Shu-Xiao Li, Dong Zhu, Xin-He Wang, Jiang-Tao Wang, Guang-Wei Deng, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, Kai-Li Jiang, Xing-Can Dai, Guo-Ping Guo. Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale 2016, 8 (31) , 14809-14813. https://doi.org/10.1039/C6NR02853E
    71. Neill Lambert, Franco Nori, Christian Flindt. Bistable Photon Emission from a Solid-State Single-Atom Laser. Physical Review Letters 2015, 115 (21) https://doi.org/10.1103/PhysRevLett.115.216803

    Nano Letters

    Cite this: Nano Lett. 2015, 15, 10, 6620–6625
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b02400
    Published September 1, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2707

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.