ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires

View Author Information
Walter Schottky Institut and Physik-Department and Institute for Advanced Study, Technische Universität München, D-85748 Garching, Germany
Nanosystems Initiative Munich (NIM), Schellingstr. 4, D-80799 München, Germany
§ Institute of Physics, Universität Augsburg, Universitätsstr. 1, D-86135 Augsburg, Germany
Cite this: Nano Lett. 2015, 15, 10, 6869–6874
Publication Date (Web):September 10, 2015
Copyright © 2015 American Chemical Society

    Article Views





    Read OnlinePDF (1 MB)
    Supporting Info (1)»


    Abstract Image

    We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs core–shell nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photothermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core–shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors.

    Supporting Information

    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b02766.

    • Nanowire growth parameters; energy dispersive X-ray spectroscopy on a GaAs QW nanowire; time-integrated photocurrent measurement and structure of a contacted GaAs QW nanowire; thermionic emission and tunneling from the QW into the core through the AlGaAs barrier (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 34 publications.

    1. Giorgos Boras, Xuezhe Yu, H. Aruni Fonseka, George Davis, Anton V. Velichko, James A. Gott, Haotian Zeng, Shiyao Wu, Patrick Parkinson, Xiulai Xu, David Mowbray, Ana M. Sanchez, Huiyun Liu. Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates. The Journal of Physical Chemistry C 2021, 125 (26) , 14338-14347.
    2. Chen Li, Yongfa Cheng, Bang Li, Feng Cheng, Luying Li, Tianyu Qi, Shuangfeng Jia, Xin Yan, Xia Zhang, Jianbo Wang, Yihua Gao. Study of Charge Distributions and Electrical Properties in GaAs/AlGaAs Single Quantum Well/Nanowire Heterostructures. The Journal of Physical Chemistry C 2019, 123 (44) , 26888-26894.
    3. Jonas Lähnemann, Megan O. Hill, Jesús Herranz, Oliver Marquardt, Guanhui Gao, Ali Al Hassan, Arman Davtyan, Stephan O. Hruszkewycz, Martin V. Holt, Chunyi Huang, Irene Calvo-Almazán, Uwe Jahn, Ullrich Pietsch, Lincoln J. Lauhon, Lutz Geelhaar. Correlated Nanoscale Analysis of the Emission from Wurtzite versus Zincblende (In,Ga)As/GaAs Nanowire Core–Shell Quantum Wells. Nano Letters 2019, 19 (7) , 4448-4457.
    4. Maximilian M. Sonner, Anna Sitek, Lisa Janker, Daniel Rudolph, Daniel Ruhstorfer, Markus Döblinger, Andrei Manolescu, Gerhard Abstreiter, Jonathan J. Finley, Achim Wixforth, Gregor Koblmüller, Hubert J. Krenner. Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells. Nano Letters 2019, 19 (5) , 3336-3343.
    5. Kidong Park, Jinha Lee, Doyeon Kim, Jaemin Seo, Jung Ah Lee, In Hye Kwak, Ik Seon Kwon, Jae Pyoung Ahn, Jeunghee Park. GaAsSe Ternary Alloy Nanowires for Enhanced Photoconductivity. The Journal of Physical Chemistry C 2019, 123 (6) , 3908-3915.
    6. Nari Jeon, Daniel Ruhstorfer, Markus Döblinger, Sonja Matich, Bernhard Loitsch, Gregor Koblmüller, Lincoln Lauhon. Connecting Composition-Driven Faceting with Facet-Driven Composition Modulation in GaAs–AlGaAs Core–Shell Nanowires. Nano Letters 2018, 18 (8) , 5179-5185.
    7. Christian Pöpsel, Jonathan Becker, Nari Jeon, Markus Döblinger, Thomas Stettner, Yeanitza Trujillo Gottschalk, Bernhard Loitsch, Sonja Matich, Marcus Altzschner, Alexander W. Holleitner, Jonathan J. Finley, Lincoln J. Lauhon, Gregor Koblmüller. He-Ion Microscopy as a High-Resolution Probe for Complex Quantum Heterostructures in Core–Shell Nanowires. Nano Letters 2018, 18 (6) , 3911-3919.
    8. Anna Sitek, Miguel Urbaneja Torres, Kristinn Torfason, Vidar Gudmundsson, Andrea Bertoni, Andrei Manolescu. Excitons in Core–Shell Nanowires with Polygonal Cross Sections. Nano Letters 2018, 18 (4) , 2581-2589.
    9. Mohammad Karimi, Vishal Jain, Magnus Heurlin, Ali Nowzari, Laiq Hussain, David Lindgren, Jan Eric Stehr, Irina A. Buyanova, Anders Gustafsson, Lars Samuelson, Magnus T. Borgström, and Håkan Pettersson . Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors. Nano Letters 2017, 17 (6) , 3356-3362.
    10. Xiaoming Yuan, Dhruv Saxena, Philippe Caroff, Fan Wang, Mark Lockrey, Sudha Mokkapati, Hark Hoe Tan, and Chennupati Jagadish . Strong Amplified Spontaneous Emission from High Quality GaAs1–xSbx Single Quantum Well Nanowires. The Journal of Physical Chemistry C 2017, 121 (15) , 8636-8644.
    11. Paul Seifert, Kristina Vaklinova, Klaus Kern, Marko Burghard, and Alexander Holleitner . Surface State-Dominated Photoconduction and THz Generation in Topological Bi2Te2Se Nanowires. Nano Letters 2017, 17 (2) , 973-979.
    12. Maria Timofeeva, Alexei Bouravleuv, George Cirlin, Igor Shtrom, Ilya Soshnikov, Marc Reig Escalé, Anton Sergeyev, and Rachel Grange . Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires. Nano Letters 2016, 16 (10) , 6290-6297.
    13. Jörg B. Kinzel, Florian J. R. Schülein, Matthias Weiß, Lisa Janker, Dominik D. Bühler, Michael Heigl, Daniel Rudolph, Stefanie Morkötter, Markus Döblinger, Max Bichler, Gerhard Abstreiter, Jonathan J. Finley, Achim Wixforth, Gregor Koblmüller, and Hubert J. Krenner . The Native Material Limit of Electron and Hole Mobilities in Semiconductor Nanowires. ACS Nano 2016, 10 (5) , 4942-4953.
    14. Jonas Lähnemann, Martien Den Hertog, Pascal Hille, Marı́a de la Mata, Thierry Fournier, Jörg Schörmann, Jordi Arbiol, Martin Eickhoff, and Eva Monroy . UV Photosensing Characteristics of Nanowire-Based GaN/AlN Superlattices. Nano Letters 2016, 16 (5) , 3260-3267.
    15. Shan Wang, Haolin Li, Jilong Tang, Yubin Kang, Xiaohua Wang, Rui Chen, Zhipeng Wei. Crystal phase control in self-catalyzed GaAs nanowires grown on pre-etched Si substrates. Materials Advances 2023, 4 (18) , 4250-4257.
    16. Nicklas Anttu. Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications. Crystals 2023, 13 (9) , 1292.
    17. Yubin Kang, Fengyuan Lin, Jilong Tang, Qian Dai, Xiaobing Hou, Bingheng Meng, Dongyue Wang, Le Wang, Zhipeng Wei. Controlling the morphology and wavelength of self-assembled coaxial GaAs/Ga(As)Sb/GaAs single quantum-well nanowires. Physical Chemistry Chemical Physics 2023, 409
    18. Kristjan Ottar Klausen, Anna Sitek, Sigurdur I. Erlingsson, Andrei Manolescu. Electron-hole coherence in core-shell nanowires with partial proximity-induced superconductivity. Physical Review B 2023, 107 (3)
    19. Maximilian M Sonner, Maximilian Gnedel, Johannes C Berlin, Daniel Rudolph, Gregor Koblmüller, Hubert J Krenner. Sub-nanosecond acousto-electric carrier redistribution dynamics and transport in polytypic GaAs nanowires. Nanotechnology 2021, 32 (50) , 505209.
    20. Hossein Anabestani, Rassel Shazzad, Md Fahim Al Fattah, Joel Therrien, Dayan Ban. Review on GaAsSb nanowire potentials for future 1D heterostructures: Properties and applications. Materials Today Communications 2021, 28 , 102542.
    21. Bowen Zhang, Zhaogang Nie, Bo Wang, Dengkui Wang, Jilong Tang, Xiaohua Wang, Jiahua Zhang, Guichuan Xing, Wenchun Zhang, Zhipeng Wei. Ultrafast carrier relaxation dynamics of photoexcited GaAs and GaAs/AlGaAs nanowire array. Physical Chemistry Chemical Physics 2020, 22 (44) , 25819-25826.
    22. Anders Gustafsson, Nian Jiang, Changlin Zheng, Joanne Etheridge, Qiang Gao, Hark Hoe Tan, Chennupati Jagadish, Jennifer Wong-Leung. Cathodoluminescence visualisation of local thickness variations of GaAs/AlGaAs quantum-well tubes on nanowires. Nanotechnology 2020, 31 (42) , 424001.
    23. K. Sarkar, Pooja Devi, Ki-Hyun Kim, Praveen Kumar. III-V nanowire-based ultraviolet to terahertz photodetectors: Device strategies, recent developments, and future possibilities. TrAC Trends in Analytical Chemistry 2020, 130 , 115989.
    24. Marcus Müller, Frank Bertram, Peter Veit, Bernhard Loitsch, Julia Winnerl, Sonja Matich, Jonathan J. Finley, Gregor Koblmüller, Jürgen Christen. Nanoscale mapping of carrier recombination in GaAs/AlGaAs core-multishell nanowires by cathodoluminescence imaging in a scanning transmission electron microscope. Applied Physics Letters 2019, 115 (24)
    25. Anna Sitek, Miguel Urbaneja Torres, Andrei Manolescu. Corner and side localization of electrons in irregular hexagonal semiconductor shells. Nanotechnology 2019, 30 (45) , 454001.
    26. Jieqing Huang, Qiuhong Tan, Zijing Zhang, Qianjin Wang, Xiaobo Feng, Yingkai Liu. Photoconductive properties of Er-CdSe nanobelt detectors. Journal of Materials Science 2019, 54 (1) , 560-570.
    27. Haolin Li, Jilong Tang, Yubin Kang, Haixia Zhao, Dan Fang, Xuan Fang, Rui Chen, Zhipeng Wei. Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Applied Physics Letters 2018, 113 (23)
    28. Xuelu Hu, Huawei Liu, Xiao Wang, Xuehong Zhang, Zhengping Shan, Weihao Zheng, Honglai Li, Xiaoxia Wang, Xiaoli Zhu, Ying Jiang, Qinglin Zhang, Xiujuan Zhuang, Anlian Pan. Wavelength Selective Photodetectors Integrated on a Single Composition‐Graded Semiconductor Nanowire. Advanced Optical Materials 2018, 6 (12)
    29. Hassan Ali, Yunyan Zhang, Jing Tang, Kai Peng, Sibai Sun, Yue Sun, Feilong Song, Attia Falak, Shiyao Wu, Chenjiang Qian, Meng Wang, Zhanchun Zuo, Kui‐Juan Jin, Ana M. Sanchez, Huiyun Liu, Xiulai Xu. High‐Responsivity Photodetection by a Self‐Catalyzed Phase‐Pure p‐GaAs Nanowire. Small 2018, 14 (17)
    30. C. Kastl, C. Karnetzky, A. Brenneis, F. Langrieger, Alexander Holleitner. Topological Insulators as Ultrafast Auston Switches in On-Chip THz-Circuits. IEEE Journal of Selected Topics in Quantum Electronics 2017, 23 (4) , 1-5.
    31. Andreas Brenneis, Felix Schade, Simon Drieschner, Florian Heimbach, Helmut Karl, Jose A. Garrido, Alexander W. Holleitner. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions. Scientific Reports 2016, 6 (1)
    32. Lu Wang, Yue Dong, Yan Zhang, Zheye Zhang, Kai Chi, Hao Yuan, Anshun Zhao, Jinghua Ren, Fei Xiao, Shuai Wang. PtAu alloy nanoflowers on 3D porous ionic liquid functionalized graphene-wrapped activated carbon fiber as a flexible microelectrode for near-cell detection of cancer. NPG Asia Materials 2016, 8 (12) , e337-e337.
    33. Ivano Giuntoni, Lutz Geelhaar, Jürgen Bruns, Henning Riechert. Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform. Optics Express 2016, 24 (16) , 18417.
    34. T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, J. J. Finley. Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control. Applied Physics Letters 2016, 108 (1)

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect