ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Nanostructured Carbon Allotropes with Weyl-like Loops and Points

View Author Information
School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, China
Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
§ Research Laboratory for Quantum Materials and EPD Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore
Department of Physics, Beihang University, Beijing 100191, China
Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Cite this: Nano Lett. 2015, 15, 10, 6974–6978
Publication Date (Web):October 1, 2015
https://doi.org/10.1021/acs.nanolett.5b02978
Copyright © 2015 American Chemical Society

Article Views

4133

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)

Abstract

Abstract Image

Carbon allotropes are subject of intense investigations for their superb structural, electronic, and chemical properties, but not for topological band properties because of the lack of strong spin–orbit coupling (SOC). Here, we show that conjugated p-orbital interactions, common to most carbon allotropes, can in principle produce a new type of topological band structure, forming the so-called Weyl-like semimetal in the absence of SOC. Taking a structurally stable interpenetrated graphene network (IGN) as example, we show, by first-principles calculations and tight-binding modeling, that its Fermi surface is made of two symmetry-protected Weyl-like loops with linear dispersion along perpendicular directions. These loops are reduced to Weyl-like points upon breaking of the inversion symmetry. Because of the topological properties of these band-structure anomalies, remarkably, at a surface terminated by vacuum there emerges a flat band in the loop case and two Fermi arcs in the point case. These topological carbon materials may also find applications in the fields of catalysts.

Cited By

This article is cited by 279 publications.

  1. Majid EL Kassaoui, Mohammed Loulidi, Abdelilah Benyoussef, Abdallah El Kenz, Omar Mounkachi. Tuning Hydrogen Storage Properties of Li- and Na-Decorated 3D Carbon-Honeycomb through a Physisorption Process. Energy & Fuels 2023, Article ASAP.
  2. Ali Sufyan, J. Andreas Larsson. Topological Nodal Surface and Quadratic Dirac Semimetal States and van Hove Singularities in ScH3 and LuH3 Superconductors. ACS Omega 2023, 8 (10) , 9607-9613. https://doi.org/10.1021/acsomega.3c00207
  3. Tong Zhou, Mingyu Tong, Xiangnan Xie, Yayun Yu, Xiegang Zhu, Zhen-Yu Wang, Tian Jiang. Quantum Transport Signatures of a Close Candidate for a Type II Nodal-Line Semimetal. The Journal of Physical Chemistry Letters 2020, 11 (15) , 6475-6481. https://doi.org/10.1021/acs.jpclett.0c01726
  4. Shi-Zhang Chen, Siwen Li, Yuanping Chen, Wenhui Duan. Nodal Flexible-surface Semimetals: Case of Carbon Nanotube Networks. Nano Letters 2020, 20 (7) , 5400-5407. https://doi.org/10.1021/acs.nanolett.0c01786
  5. Lei Jin, Xiaoming Zhang, Tingli He, Weizhen Meng, Xuefang Dai, Guodong Liu. Intermetallic α-FeSi2: Realization of Type-I, Type-II, and Hybrid Nodal Line States in a Single Material via Tunable Valleys. The Journal of Physical Chemistry C 2020, 124 (23) , 12311-12317. https://doi.org/10.1021/acs.jpcc.0c02967
  6. Weizhen Meng, Xiaoming Zhang, Tingli He, Lei Jin, Xuefang Dai, Guodong Liu. Crystal Structures, Electronic Structures, and Topological Signatures in Equiatomic TT′X Compounds (T = Sc, Zr, Hf; T′ = Co, Pt, Pd, Ir, Rh; X = Al, Ga, Sn). The Journal of Physical Chemistry C 2020, 124 (13) , 7378-7385. https://doi.org/10.1021/acs.jpcc.0c00303
  7. Xiaoming Zhang, Botao Fu, Lei Jin, Xuefang Dai, Guodong Liu, Yugui Yao. Topological Nodal Line Electrides: Realization of an Ideal Nodal Line State Nearly Immune from Spin–Orbit Coupling. The Journal of Physical Chemistry C 2019, 123 (42) , 25871-25876. https://doi.org/10.1021/acs.jpcc.9b08446
  8. Xiaoyin Li, Jie Liu, Fancy Qian Wang, Qian Wang, P. Jena. Rational Design of Porous Nodal-Line Semimetallic Carbon for K-Ion Battery Anode Materials. The Journal of Physical Chemistry Letters 2019, 10 (20) , 6360-6367. https://doi.org/10.1021/acs.jpclett.9b02484
  9. Jian-Tao Wang, Yuting Qian, Hongming Weng, Enge Wang, Changfeng Chen. Three-Dimensional Crystalline Modification of Graphene in all-sp2 Hexagonal Lattices with or without Topological Nodal Lines. The Journal of Physical Chemistry Letters 2019, 10 (10) , 2515-2521. https://doi.org/10.1021/acs.jpclett.9b00844
  10. Le Shi, Ao Xu, Tianshou Zhao. Three-Dimensional Carbon-Honeycomb as Nanoporous Lithium and Sodium Deposition Scaffold. The Journal of Physical Chemistry C 2018, 122 (37) , 21262-21268. https://doi.org/10.1021/acs.jpcc.8b07691
  11. Xiaoming Zhang, Lei Jin, Xuefang Dai, Guifeng Chen, Guodong Liu. Ideal Inner Nodal Chain Semimetals in Li2XY (X = Ca, Ba; Y = Si, Ge) Materials. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5358-5363. https://doi.org/10.1021/acs.jpclett.8b02204
  12. Cong Chen, Zefeng Su, Xiaoming Zhang, Ziyu Chen, and Xian-Lei Sheng . From Multiple Nodal Chain to Dirac/Weyl Semimetal and Topological Insulator in Ternary Hexagonal Materials. The Journal of Physical Chemistry C 2017, 121 (51) , 28587-28593. https://doi.org/10.1021/acs.jpcc.7b11075
  13. Xiaoming Zhang, Lei Jin, Xuefang Dai, and Guodong Liu . Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg3Bi2. The Journal of Physical Chemistry Letters 2017, 8 (19) , 4814-4819. https://doi.org/10.1021/acs.jpclett.7b02129
  14. Xian-Lei Sheng, Zhi-Ming Yu, Rui Yu, Hongming Weng, and Shengyuan A. Yang . d Orbital Topological Insulator and Semimetal in the Antifluorite Cu2S Family: Contrasting Spin Helicities, Nodal Box, and Hybrid Surface States. The Journal of Physical Chemistry Letters 2017, 8 (15) , 3506-3511. https://doi.org/10.1021/acs.jpclett.7b01390
  15. Honghong Zhang, Yuee Xie, Chengyong Zhong, Zhongwei Zhang, and Yuanping Chen . Tunable Type-I and Type-II Dirac Fermions in Graphene with Nitrogen Line Defects. The Journal of Physical Chemistry C 2017, 121 (22) , 12476-12482. https://doi.org/10.1021/acs.jpcc.7b03711
  16. Honghong Zhang, Yuee Xie, Zhongwei Zhang, Chengyong Zhong, Yafei Li, Zhongfang Chen, and Yuanping Chen . Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet. The Journal of Physical Chemistry Letters 2017, 8 (8) , 1707-1713. https://doi.org/10.1021/acs.jpclett.7b00452
  17. Kun Bu, Jian-Tao Wang. Topological states in the polymerized carbon nanotubes. Physics Letters A 2023, 480 , 128936. https://doi.org/10.1016/j.physleta.2023.128936
  18. ShunYe GAO, Tian QIAN, LeXian YANG, ZhongKai LIU, YuLin CHEN. Angle-resolved photoemission spectroscopy studies oftopological semimetals. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (6) , 267007. https://doi.org/10.1360/SSPMA-2022-0413
  19. Kun Bu, Jian-Tao Wang. Topological nodal line semimetal with large nodal ring in an all- s p 2 hybridized carbon network formed by all-ten-membered carbon rings. Physical Review B 2023, 107 (24) https://doi.org/10.1103/PhysRevB.107.245111
  20. Hui Zhao, Hailong Wang, Hui Pan. Magneto-optical conductivity of nodal loop semimetals. Physics Letters A 2023, 466 , 128694. https://doi.org/10.1016/j.physleta.2023.128694
  21. Lirong Wang, Ying Yang, Jianhua Wang, Wei Liu, Ying Liu, Jialin Gong, Guodong Liu, Xiaotian Wang, Zhenxiang Cheng, Xiaoming Zhang. Excellent catalytic performance toward the hydrogen evolution reaction in topological semimetals. EcoMat 2023, 5 (4) https://doi.org/10.1002/eom2.12316
  22. A. Alexandradinata, Leonid Glazman. Fermiology of Topological Metals. Annual Review of Condensed Matter Physics 2023, 14 (1) , 261-309. https://doi.org/10.1146/annurev-conmatphys-040721-021331
  23. Jin Cao, Hao-Ran Chang, Xiaolong Feng, Yugui Yao, Shengyuan A. Yang. Plasmons in a two-dimensional nonsymmorphic nodal-line semimetal. Physical Review B 2023, 107 (11) https://doi.org/10.1103/PhysRevB.107.115168
  24. Ningning Jia, Yongting Shi, Zhiheng Lv, Junting Qin, Jiangtao Cai, Xue Jiang, Jijun Zhao, Zhifeng Liu. Tetragonal Mexican-hat dispersion and switchable half-metal state with multiple anisotropic Weyl fermions in penta-graphene. New Journal of Physics 2023, 25 (3) , 033033. https://doi.org/10.1088/1367-2630/acc608
  25. Zeying Zhang, Weikang Wu, Gui-Bin Liu, Zhi-Ming Yu, Shengyuan A. Yang, Yugui Yao. Encyclopedia of emergent particles in 528 magnetic layer groups and 394 magnetic rod groups. Physical Review B 2023, 107 (7) https://doi.org/10.1103/PhysRevB.107.075405
  26. Qian Xia, Qiang Cao, Sheng-Shi Li, Wei-Xiao Ji. Two-Dimensional Nodal-Loop Semimetal in Monolayer Zn4C2. Journal of Electronic Materials 2023, 52 (1) , 477-482. https://doi.org/10.1007/s11664-022-10015-z
  27. João S. Silva, Miguel A. N. Araújo, Miguel Gonçalves, Pedro Ribeiro, Eduardo V. Castro. Delocalization of topological surface states by diagonal disorder in nodal loop semimetals. Physical Review B 2023, 107 (4) https://doi.org/10.1103/PhysRevB.107.045146
  28. Dongyuan Ni, Xiaoyin Li, Wei Sun, Akira Yoshikawa, Yoshiyuki Kawazoe, Qian Wang. Evolution of Weyl-like semi-metallicity in an all-sp2 carbon allotrope. Journal of Physics and Chemistry of Solids 2023, 116 , 111229. https://doi.org/10.1016/j.jpcs.2023.111229
  29. Jiaojiao Zhu, Weikang Wu, Jianzhou Zhao, Hao Chen, Lifa Zhang, Shengyuan A. Yang. Symmetry-enforced nodal chain phonons. npj Quantum Materials 2022, 7 (1) https://doi.org/10.1038/s41535-022-00461-7
  30. Hui Zhao, Yanmei Sun, Hailong Wang, Hui Pan. Magneto-optical conductivity of nodal link semimetals. Journal of Applied Physics 2022, 132 (19) , 193903. https://doi.org/10.1063/5.0125664
  31. Xiaotian Wang, Feng Zhou, Zeying Zhang, Weikang Wu, Zhi-Ming Yu, Shengyuan A. Yang. Single pair of multi-Weyl points in nonmagnetic crystals. Physical Review B 2022, 106 (19) https://doi.org/10.1103/PhysRevB.106.195129
  32. Xin-Yue Kang, Chunmei Zhang, Mingxing Chen, Si Li. Two-dimensional hourglass Weyl nodal loop in monolayer Pb(ClO 2 ) 2 and Sr(ClO 2 ) 2. New Journal of Physics 2022, 24 (11) , 113044. https://doi.org/10.1088/1367-2630/aca429
  33. Ye Tao, Kun Bu, Jian-Tao Wang. Orthorhombic C32: A topological semimetal with nodal ring. Physics Letters A 2022, 451 , 128397. https://doi.org/10.1016/j.physleta.2022.128397
  34. Yi Sun, Licheng Wang, Xiaoyan Li, Xiaojing Yao, Xiaokang Xu, Tianxia Guo, Ailei He, Bing Wang, Yongjun Liu, Xiuyun Zhang. TM 2 B 3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal. Applied Physics Letters 2022, 121 (18) , 183103. https://doi.org/10.1063/5.0113408
  35. Zhen-Long Lv, Hong-Ling Cui, Cai Cheng. A predicted orthogonal semimetallic carbon with negative thermal expansion and compressibility. Physical Chemistry Chemical Physics 2022, 24 (38) , 23497-23506. https://doi.org/10.1039/D2CP02761E
  36. Guogang Liu, Tong Chen, Xiaohui Li, Zhonghui Xu, Xianbo Xiao. Electronic transport in biphenylene network monolayer: Proposals for 2D multifunctional carbon-based nanodevices. Applied Surface Science 2022, 599 , 153993. https://doi.org/10.1016/j.apsusc.2022.153993
  37. Xin-Ke Liu, Xin-Yang Li, Miao-Juan Ren, Pei-Ji Wang, Chang-Wen Zhang. High-Temperature Nodal Ring Semimetal in 2D Honeycomb-Kagome Mn 2 N 3 Lattice. Chinese Physics B 2022, https://doi.org/10.1088/1674-1056/ac921c
  38. Licheng Wang, Xiaojing Yao, Yi Sun, Weikang Wu, Ailei He, Yongjun Liu, Xiuyun Zhang. Robust ferromagnetism and Weyl half-semimetal in a two-dimensional vanadium boride monolayer. Nanoscale 2022, 14 (34) , 12491-12497. https://doi.org/10.1039/D2NR03236H
  39. Tingli He, Xiaoming Zhang, Lirong Wang, Ying Liu, Xuefang Dai, Liying Wang, Guodong Liu. Theoretical realization of fully spin-polarized nodal box with traversing Brillouin zone surface state. Physical Review B 2022, 106 (7) https://doi.org/10.1103/PhysRevB.106.075155
  40. Mohammed M. Obeid, Qiang Sun. Recent advances in topological quantum anode materials for metal-ion batteries. Journal of Power Sources 2022, 540 , 231655. https://doi.org/10.1016/j.jpowsour.2022.231655
  41. Qing-Bo Liu, Zhe-Qi Wang, Hua-Hua Fu. Topological phonons in allotropes of carbon. Materials Today Physics 2022, 24 , 100694. https://doi.org/10.1016/j.mtphys.2022.100694
  42. Dongyuan Ni, Yiheng Shen, Wei Sun, Qian Wang. Design of 3D topological nodal-net porous carbon for sodium-ion battery anodes. Journal of Materials Chemistry A 2022, 10 (14) , 7754-7763. https://doi.org/10.1039/D2TA00652A
  43. Muhammad Rizwan Khan, Kun Bu, Jian-Tao Wang. Topological nodal line semimetal in an all-sp 2 monoclinic carbon. New Journal of Physics 2022, 24 (4) , 043007. https://doi.org/10.1088/1367-2630/ac5e16
  44. Chunyao Song, Lei Jin, Pengbo Song, Hongtao Rong, Wenpei Zhu, Bo Liang, Shengtao Cui, Zhe Sun, Lin Zhao, Youguo Shi, Xiaoming Zhang, Guodong Liu, X. J. Zhou. Spectroscopic evidence for Dirac nodal surfaces and nodal rings in the superconductor NaAlSi. Physical Review B 2022, 105 (16) https://doi.org/10.1103/PhysRevB.105.L161104
  45. Huai Zhang, Weizhen Meng, Ying Liu, Xiaoming Zhang, Jianbo Gao, Xuefang Dai, Guodong Liu. Theoretical study of compounds XSb (X = La, Pr, Nd): Realization of inner nodal chains, nodal line frame, and Dirac points. Computational Materials Science 2022, 206 , 111231. https://doi.org/10.1016/j.commatsci.2022.111231
  46. Sanjeev, Mukhtiyar Singh, Ramesh Kumar, Sunita Srivastava, Tankeshwar Kumar. Structural, electronic and topological properties of NaCaBi and KBaBi compounds. Journal of Physics and Chemistry of Solids 2022, 161 , 110416. https://doi.org/10.1016/j.jpcs.2021.110416
  47. Chong Wang, Zhongyi Zhang, Liqin Zhou, Hongming Weng, Chen Fang, A. Alexandradinata. Diabolical touching point in the magnetic energy levels of topological nodal-line metals. Physical Review B 2022, 105 (4) https://doi.org/10.1103/PhysRevB.105.045141
  48. Heejae Kim. Topology, Symmetry, and Band Theory of Materials. 2022, 7-49. https://doi.org/10.1007/978-981-16-9077-8_2
  49. Priyanka Rani, M. Basheer Ahamed, Kalim Deshmukh. Carbon Nanotubes Embedded in Polymer Nanofibers by Electrospinning. 2022, 943-977. https://doi.org/10.1007/978-3-030-91346-5_12
  50. Weizhen Meng, Ying Liu, Xiaoming Zhang, Xuefang Dai, Guodong Liu. High-order one-dimensional (1D) fermion in ferromagnetic RbFeF3. Computational Materials Science 2022, 201 , 110944. https://doi.org/10.1016/j.commatsci.2021.110944
  51. Xianbo Xiao, Guogang Liu, Tong Chen, Zhonghui Xu. Electronic Transport in Biphenylene Network Monolayer: Proposals for 2d Multifunctional Carbon-Based Nanodevices. SSRN Electronic Journal 2022, https://doi.org/10.2139/ssrn.4100142
  52. Ye Tao, Kun Bu, Jian-Tao Wang. Orthorhombic C32: A Topological Semimetal with Nodal Ring. SSRN Electronic Journal 2022, 17 https://doi.org/10.2139/ssrn.4153654
  53. Jian-Tao Wang, Kun Bu, Yuting Qian, Hongming Weng, Changfeng Chen. Pentagraphite C 8 : An all- s p 2 topological nodal-line semimetal. Physical Review B 2021, 104 (24) https://doi.org/10.1103/PhysRevB.104.245143
  54. Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements. Frontiers of Physics 2021, 16 (6) https://doi.org/10.1007/s11467-021-1075-8
  55. Pei Zhang, Tao Ouyang, Jin Li, Chaoyu He, Yuanping Chen, Chunxiao Zhang, Chao Tang, Jianxin Zhong. Tunable topologically nontrivial states in newly discovered graphyne allotropes: from Dirac nodal grid to Dirac nodal loop. Nanotechnology 2021, 32 (48) , 485705. https://doi.org/10.1088/1361-6528/ac1cbe
  56. Shengru Han, Chaoyu Li, Leyuan Cui, Xin Cui, Tielei Song, Zhifeng Liu. Strain‐Induced Ideal Topological Semimetal in Ort‐B 32 Holding Parallel Arc‐Like Nodal Lines and Anisotropic Multiple Weyl Fermions. physica status solidi (RRL) – Rapid Research Letters 2021, 15 (11) , 2100324. https://doi.org/10.1002/pssr.202100324
  57. Peter Rosenberg, Efstratios Manousakis. Weyl nodal-ring semimetallic behavior and topological superconductivity in crystalline forms of Su-Schrieffer-Heeger chains. Physical Review B 2021, 104 (13) https://doi.org/10.1103/PhysRevB.104.134511
  58. Wenjie Wu, Yuee Xie, Yuanping Chen. Nodal points in three-dimensional carbon networks without inversion symmetry. Physical Review Materials 2021, 5 (10) https://doi.org/10.1103/PhysRevMaterials.5.104201
  59. Liping Qiao, Lianmao Hang, Peng Li, Huan Zhang, Gangyin Yan. Novel carbon-rich B–C compounds in orthorhombic phase: First-principles calculations. Journal of Solid State Chemistry 2021, 300 , 122263. https://doi.org/10.1016/j.jssc.2021.122263
  60. Yang Li, Jihong Xia, Rabah Khenata, Minquan Kuang. First-principle investigation of all types of topological nodal lines in a realistic P6 3 /mmc type titanium selenide. Journal of Physics: Condensed Matter 2021, 33 (28) , 285505. https://doi.org/10.1088/1361-648X/abd999
  61. Zhen-Yuan Yang, Jian Yang, Chen Fang, Zheng-Xin Liu. A Hamiltonian approach for obtaining irreducible projective representations and the k ⋅ p perturbation for anti-unitary symmetry groups. Journal of Physics A: Mathematical and Theoretical 2021, 54 (26) , 265202. https://doi.org/10.1088/1751-8121/abfffc
  62. Sang Wook Kim, Geo Jose, Bruno Uchoa. Hydrodynamic transport and violation of the viscosity-to-entropy ratio bound in nodal-line semimetals. Physical Review Research 2021, 3 (3) https://doi.org/10.1103/PhysRevResearch.3.033003
  63. Qing-Bo Liu, Zhe-Qi Wang, Hua-Hua Fu. Ideal topological nodal-surface phonons in RbTeAu-family materials. Physical Review B 2021, 104 (4) https://doi.org/10.1103/PhysRevB.104.L041405
  64. Tingli He, Xiaoming Zhang, Ying Liu, Xuefang Dai, Liying Wang, Guodong Liu. Potential antiferromagnetic Weyl nodal line state in LiTi 2 O 4 material. Physical Review B 2021, 104 (4) https://doi.org/10.1103/PhysRevB.104.045143
  65. Yanmei Sun, Jing Li, Hui Zhao, Meimei Wu, Hui Pan. Magneto-Optical Transport Properties of Type-II Nodal Line Semimetals. Materials 2021, 14 (11) , 3035. https://doi.org/10.3390/ma14113035
  66. Wei Luo, Wei Chen, Dingyu Xing. Anomalous Andreev reflection on a torus-shaped Fermi surface. Science China Physics, Mechanics & Astronomy 2021, 64 (6) https://doi.org/10.1007/s11433-020-1656-0
  67. T. Yang, Y. Liu, Z. Wu, X. Wang, G. Zhang. Coexistence of different dimensional topological states in stable ternary compound PrSbPt. Materials Today Physics 2021, 18 , 100348. https://doi.org/10.1016/j.mtphys.2021.100348
  68. Zhihai Liu, Luyang Wang, Dao-Xin Yao. Triply degenerate nodal lines in topological and nontopological metals. Physical Review B 2021, 103 (20) https://doi.org/10.1103/PhysRevB.103.205145
  69. Shiva Kargar, Dawood Elhamifar, Ali Zarnegaryan. Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surfaces and Interfaces 2021, 23 , 100946. https://doi.org/10.1016/j.surfin.2021.100946
  70. B. Q. Lv, T. Qian, H. Ding. Experimental perspective on three-dimensional topological semimetals. Reviews of Modern Physics 2021, 93 (2) https://doi.org/10.1103/RevModPhys.93.025002
  71. T. He, X. Zhang, L. Wang, Y. Liu, X. Dai, L Wang, G. Liu. Ideal fully spin-polarized type-II nodal line state in half-metals X2YZ4 (X=K, Cs, Rb, Y Cr, Cu, Z=Cl, F). Materials Today Physics 2021, 17 , 100360. https://doi.org/10.1016/j.mtphys.2021.100360
  72. Muhammad Umer, Raditya Weda Bomantara, Jiangbin Gong. Dynamical characterization of Weyl nodes in Floquet Weyl semimetal phases. Physical Review B 2021, 103 (9) https://doi.org/10.1103/PhysRevB.103.094309
  73. Zeying Zhang, Zhi-Ming Yu, Shengyuan A. Yang. Magnetic higher-order nodal lines. Physical Review B 2021, 103 (11) https://doi.org/10.1103/PhysRevB.103.115112
  74. Pinglan Yan, Tao Ouyang, Chaoyu He, Jin Li, Chunxiao Zhang, Chao Tang, Jianxin Zhong. Newly discovered graphyne allotrope with rare and robust Dirac node loop. Nanoscale 2021, 13 (6) , 3564-3571. https://doi.org/10.1039/D0NR08397F
  75. Tie Yang, Zhenxiang Cheng, Xiaotian Wang, Xiao-Lin Wang. Nodal ring spin gapless semiconductor: New member of spintronic materials. Journal of Advanced Research 2021, 28 , 43-49. https://doi.org/10.1016/j.jare.2020.06.016
  76. Kun Bu, Yuting Qian, Jian-Tao Wang, Hongming Weng. Hybrid nodal chain in an orthorhombic graphene network. Physical Review B 2021, 103 (8) https://doi.org/10.1103/PhysRevB.103.L081108
  77. Qingyang Fan, Chensi Li, Runling Yang, Xinhai Yu, Wei Zhang, Sining Yun. Stability, mechanical, anisotropic and electronic properties of oP8 carbon: A superhard carbon allotrope in orthorhombic phase. Journal of Solid State Chemistry 2021, 294 , 121894. https://doi.org/10.1016/j.jssc.2020.121894
  78. Xiao-Bin Qiang, Hai-Zhou Lu. Quantum transport in topological matters under magnetic fields. Acta Physica Sinica 2021, 70 (2) , 027201. https://doi.org/10.7498/aps.70.20200914
  79. Priyanka Rani, M. Basheer Ahamed, Kalim Deshmukh. Carbon Nanotubes Embedded in Polymer Nanofibers by Electrospinning. 2021, 1-35. https://doi.org/10.1007/978-3-319-70614-6_12-1
  80. Xin-Yang Li, Meng-Han Zhang, Miao-Juan Ren, Chang-Wen Zhang. Emergence of 2D high-temperature nodal-line half-metal in monolayer AgN. Physical Chemistry Chemical Physics 2020, 22 (46) , 27024-27030. https://doi.org/10.1039/D0CP04961A
  81. Yanmei Sun, Hui Zhao, Meimei Wu, Hui Pan. Magneto-optical conductivity of nodal line semimetals. Physica B: Condensed Matter 2020, 599 , 412478. https://doi.org/10.1016/j.physb.2020.412478
  82. Xiaotian Wang, Zhenxiang Cheng, Gang Zhang, Hongkuan Yuan, Hong Chen, Xiao-Lin Wang. Spin-gapless semiconductors for future spintronics and electronics. Physics Reports 2020, 888 , 1-57. https://doi.org/10.1016/j.physrep.2020.08.004
  83. Erjian Cheng, Wei Xia, Xianbiao Shi, Zhenhai Yu, Lin Wang, Limin Yan, Darren C. Peets, Chuchu Zhu, Hao Su, Yong Zhang, Dongzhe Dai, Xia Wang, Zhiqiang Zou, Na Yu, Xufeng Kou, Wenge Yang, Weiwei Zhao, Yanfeng Guo, Shiyan Li. Pressure-induced superconductivity and topological phase transitions in the topological nodal-line semimetal SrAs3. npj Quantum Materials 2020, 5 (1) https://doi.org/10.1038/s41535-020-0240-6
  84. Muhammad Rizwan Khan, Kun Bu, Jun-Shuai Chai, Jian-Tao Wang. Novel electronic properties of monoclinic MP4 (M = Cr, Mo, W) compounds with or without topological nodal line. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-68349-9
  85. Haopeng Zhang, Xiaoming Zhang, Ying Liu, Xuefang Dai, Guang Chen, Guodong Liu. Possibility of fully spin-polarized nodal chain state in several spinel half metals. Physical Review B 2020, 102 (19) https://doi.org/10.1103/PhysRevB.102.195124
  86. Susumu Minami, Fumiyuki Ishii, Motoaki Hirayama, Takuya Nomoto, Takashi Koretsune, Ryotaro Arita. Enhancement of the transverse thermoelectric conductivity originating from stationary points in nodal lines. Physical Review B 2020, 102 (20) https://doi.org/10.1103/PhysRevB.102.205128
  87. Long Xu, Xiaoming Zhang, Weizhen Meng, Tingli He, Ying Liu, Xuefang Dai, Ying Zhang, Guodong Liu. Centrosymmetric TiS as a novel topological electronic material with coexisting type-I, type-II and hybrid nodal line states. Journal of Materials Chemistry C 2020, 8 (40) , 14109-14116. https://doi.org/10.1039/D0TC03600E
  88. Weizhen Meng, Ying Liu, Xiaoming Zhang, Xuefang Dai, Guodong Liu. A nonsymmorphic-symmetry-protected hourglass Weyl node, hybrid Weyl node, nodal surface, and Dirac nodal line in Pd 4 X (X = S, Se) compounds. Physical Chemistry Chemical Physics 2020, 22 (39) , 22399-22407. https://doi.org/10.1039/D0CP03686B
  89. Weizhen Meng, Xiaoming Zhang, Tingli He, Lei Jin, Xuefang Dai, Guodong Liu. Multiple fermionic states with clear nontrivial surface signature in CsCl-type compound ErAs. Computational Materials Science 2020, 183 , 109815. https://doi.org/10.1016/j.commatsci.2020.109815
  90. Haopeng Zhang, Xiaoming Zhang, Tingli He, Xuefang Dai, Ying Liu, Guodong Liu, Liying Wang, Ying Zhang. Three-dimensional Weyl hourglass networks in the nonsymmorphic half-metal Mg 2 VO 4 . Physical Review B 2020, 102 (15) https://doi.org/10.1103/PhysRevB.102.155116
  91. Leyuan Cui, Tielei Song, Jiangtao Cai, Xin Cui, Zhifeng Liu, Jijun Zhao. Three-dimensional borophene: A light-element topological nodal-line semimetal with direction-dependent type-II Weyl fermions. Physical Review B 2020, 102 (15) https://doi.org/10.1103/PhysRevB.102.155133
  92. Hou-Jian Duan, Shi-Han Zheng, Yan-Yan Yang, Chang-Yong Zhu, Ming-Xun Deng, Mou Yang, Rui-Qiang Wang. Anisotropic RKKY interactions in nodal-line semimetals. Physical Review B 2020, 102 (16) https://doi.org/10.1103/PhysRevB.102.165110
  93. Ali Ebrahimian, Reza Asgari, Mehrdad Dadsetani. Topological phases in the α − Li 3 N -type crystal structure of light-element compounds. Physical Review B 2020, 102 (16) https://doi.org/10.1103/PhysRevB.102.165119
  94. Yang Li, Jihong Xia, Rabah Khenata, Minquan Kuang. Perfect Topological Metal CrB2: A One-Dimensional (1D) Nodal Line, a Zero-Dimensional (0D) Triply Degenerate Point, and a Large Linear Energy Range. Materials 2020, 13 (19) , 4321. https://doi.org/10.3390/ma13194321
  95. Hao Guo, Jianzhou Zhao, Cong Chen, Si Li, Wentao Jiang, Haidong Fan, Xiaobao Tian, Shengyuan A. Yang. Nonsymmorphic nodal-line metals in the two-dimensional rare earth monochalcogenides MX (M = Sc, Y; X = S, Se, Te). Journal of Materials Science 2020, 55 (30) , 14883-14892. https://doi.org/10.1007/s10853-020-05082-8
  96. Long Xu, Weizhen Meng, Xiaoming Zhang, Xuefang Dai, Ying Liu, Liying Wang, Guodong Liu. Palladium oxide: an excellent topological electronic material with 0-D and 1-D band crossings and definite nontrivial surface states. Physical Chemistry Chemical Physics 2020, 22 (33) , 18447-18453. https://doi.org/10.1039/D0CP02446E
  97. Takuto Kawakami, Takafumi Nomura, Mikito Koshino. Electronic properties of a graphyne- N monolayer and its multilayer: Even-odd effect and topological nodal line semimetalic phases. Physical Review B 2020, 102 (11) https://doi.org/10.1103/PhysRevB.102.115421
  98. Lei Jin, Xiaoming Zhang, Ying Liu, Xuefang Dai, Xunan Shen, Liying Wang, Guodong Liu. Two-dimensional Weyl nodal-line semimetal in a d 0 ferromagnetic K 2 N monolayer with a high Curie temperature. Physical Review B 2020, 102 (12) https://doi.org/10.1103/PhysRevB.102.125118
  99. Weizhen Meng, Xiaoming Zhang, Xuefang Dai, Guodong Liu. IrSi as a Superior Electronic Material with Novel Topological Properties and Nice Compatibility with Semiconductor Si. physica status solidi (RRL) – Rapid Research Letters 2020, 14 (9) , 2000178. https://doi.org/10.1002/pssr.202000178
  100. Tingli He, Xiaoming Zhang, Ying Liu, Xuefang Dai, Guodong Liu, Zhi-Ming Yu, Yugui Yao. Ferromagnetic hybrid nodal loop and switchable type-I and type-II Weyl fermions in two dimensions. Physical Review B 2020, 102 (7) https://doi.org/10.1103/PhysRevB.102.075133
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect