ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)

View Author Information
Department of Materials Science and Engineering and Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
§ Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
Cite this: Nano Lett. 2016, 16, 1, 459–465
Publication Date (Web):November 23, 2015
https://doi.org/10.1021/acs.nanolett.5b04117
Copyright © 2015 American Chemical Society

    Article Views

    16511

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer–ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10–3 S cm–1 at 60 °C, 4.4 × 10–5 S cm–1 at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b04117.

    • Detailed synthetic procedures, SEM images of SiO2 nanospheres with different sizes, FT-IR and DSC spectra of the solid polymer electrolytes, TEM images of the ex situ PEO–SiO2 composite, SEM images of the in situ CPE, as well as supplementary electrochemical characterizations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 714 publications.

    1. Shuaishuai Yan, Fengxiang Liu, Yu Ou, Hang-Yu Zhou, Yang Lu, Wenhui Hou, Qingbin Cao, Hao Liu, Pan Zhou, Kai Liu. Asymmetric Trihalogenated Aromatic Lithium Salt Induced Lithium Halide Rich Interface for Stable Cycling of All-Solid-State Lithium Batteries. ACS Nano 2023, Article ASAP.
    2. Natarajan Angulakhsmi, Bebin Ambrose, Swamickan Sathya, Murugavel Kathiresan, Gabriele Lingua, Stefania Ferrari, Erathimmanna Bhoje Gowd, Wenyang Wang, Cai Shen, Giuseppe Antonio Elia, Claudio Gerbaldi, Arul Manuel Stephan. Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries. ACS Materials Au 2023, 3 (5) , 528-539. https://doi.org/10.1021/acsmaterialsau.3c00010
    3. Citra Deliana Dewi Sundari, Jotti Karunawan, Sigit Puji Santosa, I Made Arcana, Ferry Iskandar. Role of LiTFSI Salt Content and Salt Crystallization on Carboxymethyl Chitosan-Based Solid Polymer Electrolytes for Stable Li Metal Batteries. ACS Applied Polymer Materials 2023, 5 (9) , 6817-6827. https://doi.org/10.1021/acsapm.3c00814
    4. Zhao Zhang, Lucheng Cai, Pengfei Huang, Zhihao Zhang, Hangjun Ying, Gaorong Han, Wei-Qiang Han. Effect of Organic Functional Groups on Poly(ethylene oxide) Electrolytes for High-Performance Solid-State Lithium-Metal Batteries. ACS Applied Engineering Materials 2023, 1 (8) , 2163-2173. https://doi.org/10.1021/acsaenm.3c00266
    5. Long Hu, Xue Gao, Ziyong Li, Yuxuan Liu, Hui Wang, Jun Liu, Renzong Hu. Layered Polymer Stacking for Stable Interfaces and Dendrite Growth Inhibition in All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2023, 15 (32) , 38485-38495. https://doi.org/10.1021/acsami.3c07794
    6. Ben-Hao Kang, Shuang-Feng Li, Jinlong Yang, Zhong-Ming Li, Yan-Fei Huang. Uniform Lithium Plating for Dendrite-Free Lithium Metal Batteries: Role of Dipolar Channels in Poly(vinylidene fluoride) and PbZrxTi1–xO3 Interface. ACS Nano 2023, 17 (14) , 14114-14122. https://doi.org/10.1021/acsnano.3c04684
    7. S. K. Sharma, J. Mor. Coupled Ion-Conduction Mechanism for Enhanced Ionic Conductivity in Mg2B2O5 Nanowires Enabled Poly(ethylene oxide)-Based Quasi Solid State Electrolytes. The Journal of Physical Chemistry C 2023, 127 (25) , 11854-11863. https://doi.org/10.1021/acs.jpcc.3c02575
    8. Shuqi Dai, Junxia He, Xiupeng Chen, Jinyi Cui, Hongqin Zhao, Rongchun Zhang, Huanyu Lei, Jiafu Yin, Linkun Cai, Fan Ye, Xian Kong, Rongrong Hu, Mingjun Huang. Polythiourea Superionic Conductors for Solid-State Batteries. Macromolecules 2023, 56 (10) , 3660-3667. https://doi.org/10.1021/acs.macromol.3c00116
    9. Yayue He, Mengxiang Ma, Lin Li, Zhenxi Li, Sheng Zhao, Xiao Zhao, Rigoberto Advincula, Ming Tian, Shilun Gao, Huabin Yang, Peng-Fei Cao. Hybrid Dynamic Covalent Network as a Protective Layer and Solid-State Electrolyte for Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (19) , 23765-23776. https://doi.org/10.1021/acsami.3c02728
    10. Yue Zhang, Ying Liu, Wenda Bao, Xiangyu Zhang, Pu Yan, Xuan Yao, Ming-Zhu Chen, Tian-Yi Xie, Lei Cao, Xincan Cai, Haoyuan Li, Yingdong Deng, Lianqi Zhao, Ming-Hua Zeng, Shan Jiang, Yingbo Zhao, Jin Xie. Monolithic Titanium Alkoxide Networks for Lithium-Ion Conductive All-Solid-State Electrolytes. Nano Letters 2023, 23 (9) , 4066-4073. https://doi.org/10.1021/acs.nanolett.3c00940
    11. Sumana Bandyopadhyay, Neelam Gupta, Aashish Joshi, Amit Gupta, Rajiv K. Srivastava, Biplab Kumar Kuila, Bhanu Nandan. Solid Polymer Electrolyte Based on an Ionically Conducting Unique Organic Polymer Framework for All-Solid-State Lithium Batteries. ACS Applied Energy Materials 2023, 6 (8) , 4390-4403. https://doi.org/10.1021/acsaem.3c00436
    12. Qing Zhang, Qifang Sun, Su Wang, Chen Li, Chaoran Xu, Yue Ma, Hongzhou Zhang, Dawei Song, Xixi Shi, Chunliang Li, Lianqi Zhang. Chloride-Reinforced Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (14) , 18252-18261. https://doi.org/10.1021/acsami.2c20734
    13. Lu Liu, Linkun Cai, Haiyan Xiao, Yuyan Lai, Yuan Liu, Xin Zhou, Jiafu Yin, Junsheng Yang, Kun Chen, Panchao Yin. Supramolecular Assembly and Microscopic Dynamics Modulation of Nanoscale Inorganic Cryptand and Polymer Complex for Versatile Design of Flexible Single-Ion Conductors. Nano Letters 2023, 23 (7) , 2669-2676. https://doi.org/10.1021/acs.nanolett.2c05043
    14. YiFan Tang, Yuchuan Xiong, Liping Wu, Xin Xiong, Tao Me, Xianbao Wang. A Solid-State Lithium Battery with PVDF–HFP-Modified Fireproof Ionogel Polymer Electrolyte. ACS Applied Energy Materials 2023, 6 (7) , 4016-4026. https://doi.org/10.1021/acsaem.3c00249
    15. Jiahui Deng, Xuri Zuo, Hong Zhang, Fan Fei, Xuan Zhou, Liqiang Mai, Lin Xu. Lipoic Acid-Assisted In Situ Integration of Ultrathin Solid-State Electrolytes. ACS Applied Energy Materials 2023, 6 (6) , 3321-3328. https://doi.org/10.1021/acsaem.2c03922
    16. Huiyan Wu, Hailong Huang, Lingzhi Cao, Yiyang Liu, Jianxing Dai, Cuilan Ren, Min Ge, Yuan Qian, Shuxian Hu, Xiaobin Fu, Hongtao Liu. Probing the Structure and Dynamics of Na+ Ionic Doped LiF Crystals in Fluoride Eutectic Salt by Solid-State NMR. The Journal of Physical Chemistry C 2023, 127 (6) , 3093-3098. https://doi.org/10.1021/acs.jpcc.2c08059
    17. Wenda Bao, Yue Zhang, Rongliang Shang, Fufei Cong, Haojie Zhao, Yuqing Zuo, Beili Yi, Jin Xie. Incorporating Binary Metal Oxides in Poly(ethylene oxide)-Based Solid Electrolytes by Vapor Phase Infiltration. ACS Applied Materials & Interfaces 2023, 15 (4) , 5317-5325. https://doi.org/10.1021/acsami.2c20860
    18. Yilin Hu, Xiaoxin Xie, Wei Li, Qiu Huang, Hao Huang, Shu-Meng Hao, Li-Zhen Fan, Weidong Zhou. Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries. ACS Sustainable Chemistry & Engineering 2023, 11 (4) , 1253-1277. https://doi.org/10.1021/acssuschemeng.2c05879
    19. Junhong Li, Faqiang Li, Dinggen Li, Dongming Cheng, Zhiyan Wang, Xueting Liu, Haonan Wang, Xianwei Zeng, Yunhui Huang, Henghui Xu. Negatively Charged Laponite Sheets Enhanced Solid Polymer Electrolytes for Long-Cycling Lithium-Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (3) , 4044-4052. https://doi.org/10.1021/acsami.2c19157
    20. Xiaofei Wang, Shuonan Wang, Zhangkuo Han, Hao Liu, Libing Liao. High-Performance Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for Lithium Batteries Based on Halloysite Nanotubes with Polyethylene Oxide Additives. ACS Applied Nano Materials 2022, 5 (12) , 17859-17869. https://doi.org/10.1021/acsanm.2c03819
    21. Xiayue Fan, Cheng Zhong, Jie Liu, Jia Ding, Yida Deng, Xiaopeng Han, Lei Zhang, Wenbin Hu, David P. Wilkinson, Jiujun Zhang. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews 2022, 122 (23) , 17155-17239. https://doi.org/10.1021/acs.chemrev.2c00196
    22. Zhenhua Liu, Tengfei Zhang, Shunlong Ju, Yanda Ji, Zhaotong Hu, Yingtong Lv, Guanglin Xia, Xuebin Yu. Fast Ionic Migration from Bulk to Interface in the Li(NH3)xBH4@SiO2 Composite. ACS Applied Energy Materials 2022, 5 (11) , 14301-14310. https://doi.org/10.1021/acsaem.2c02871
    23. Yun Zhao, Jianhua Yan, Jianyong Yu, Bin Ding. Advances in Nanofibrous Materials for Stable Lithium-Metal Anodes. ACS Nano 2022, 16 (11) , 17891-17910. https://doi.org/10.1021/acsnano.2c09037
    24. Xuewei He, Ang Ye, Xuewei Fu, Wei Yang, Yu Wang. Achieving Low-Energy-Barrier Ion Hopping in Adhesive Composite Polymer Electrolytes by Nanoabsorption. Macromolecules 2022, 55 (16) , 7117-7126. https://doi.org/10.1021/acs.macromol.2c00928
    25. Zhi Gu, Xing Xin, Jing Yang, Dingcheng Guo, Shujiao Yang, Jinghua Wu, Yong Sun, Xiayin Yao. Bilayer NASICON/Polymer Hybrid Electrolyte for Stable Solid-State Li–O2 Batteries. ACS Applied Energy Materials 2022, 5 (7) , 9149-9157. https://doi.org/10.1021/acsaem.2c01717
    26. Yang Li Xiaolin Guo Hui Wang . Solid Composite Electrolytes for Solid-State Alkali Metal Batteries. , 395-423. https://doi.org/10.1021/bk-2022-1413.ch015
    27. Zhengkun Xie Jiajia Wang Xiyan Yue Abuliti Abudula Guoqing Guan . Cationic Solid-State Electrolytes. , 255-274. https://doi.org/10.1021/bk-2022-1413.ch010
    28. Lei He, Wei-Hua Liang, Jian-Hua Cao, Da-Yong Wu. PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries. ACS Applied Energy Materials 2022, 5 (4) , 5277-5286. https://doi.org/10.1021/acsaem.2c00745
    29. Yue Wang, Shiqun Geng, Gaojie Yan, Xiaonan Liu, Xiaojie Zhang, Yi Feng, Jingjing Shi, Xiongwei Qu. A Squaraine-Linked Zwitterionic Covalent Organic Framework Nanosheets Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for Quasi-Solid-State Li–S Batteries. ACS Applied Energy Materials 2022, 5 (2) , 2495-2504. https://doi.org/10.1021/acsaem.1c04009
    30. Jia He, Huixin Chen, Dawei Wang, Qian Zhang, Guiming Zhong, Zhangquan Peng. Interfacial Barrier of Ion Transport in Poly(ethylene oxide)–Li7La3Zr2O12 Composite Electrolytes Illustrated by 6Li-Tracer Nuclear Magnetic Resonance Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13 (6) , 1500-1505. https://doi.org/10.1021/acs.jpclett.1c04085
    31. Hanyu Huo, Kai Huang, Wei Luo, Jintao Meng, Liangyi Zhou, Zhe Deng, Jiayun Wen, Yiming Dai, Zhimei Huang, Yue Shen, Xiangxin Guo, Xiulei Ji, Yunhui Huang. Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic Imaging. ACS Energy Letters 2022, 7 (2) , 650-658. https://doi.org/10.1021/acsenergylett.1c02363
    32. Xuewen Zheng, Jianghai Wei, Weiteng Lin, Kemeng Ji, Chengyang Wang, Mingming Chen. Bridging Li7La3Zr2O12 Nanofibers with Poly(ethylene oxide) by Coordination Bonds to Enhance the Cycling Stability of All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces 2022, 14 (4) , 5346-5354. https://doi.org/10.1021/acsami.1c21131
    33. Recep Bakar, Saeid Darvishi, Tianyu Li, Mertcan Han, Umut Aydemir, Sedat Nizamoglu, Kunlun Hong, Erkan Senses. Effect of Polymer Topology on Microstructure, Segmental Dynamics, and Ionic Conductivity in PEO/PMMA-Based Solid Polymer Electrolytes. ACS Applied Polymer Materials 2022, 4 (1) , 179-190. https://doi.org/10.1021/acsapm.1c01178
    34. Shaolun Cui, Xuewen Wu, Yang Yang, Minfei Fei, Sheng Liu, Guoran Li, Xue-Ping Gao. Heterostructured Gel Polymer Electrolyte Enabling Long-Cycle Quasi-Solid-State Lithium Metal Batteries. ACS Energy Letters 2022, 7 (1) , 42-52. https://doi.org/10.1021/acsenergylett.1c02233
    35. Shicheng Yu, Qi Xu, Xin Lu, Zigeng Liu, Anna Windmüller, Chih-Long Tsai, Annika Buchheit, Hermann Tempel, Hans Kungl, Hans-Dieter Wiemhöfer, Rüdiger-A. Eichel. Single-Ion-Conducting “Polymer-in-Ceramic” Hybrid Electrolyte with an Intertwined NASICON-Type Nanofiber Skeleton. ACS Applied Materials & Interfaces 2021, 13 (51) , 61067-61077. https://doi.org/10.1021/acsami.1c17718
    36. Xiaomin Cai, Jianlong Ding, Ziyun Chi, Wenqiang Wang, Dongya Wang, Gengchao Wang. Rearrangement of Ion Transport Path on Nano-Cross-linker for All-Solid-State Electrolyte with High Room Temperature Ionic Conductivity. ACS Nano 2021, 15 (12) , 20489-20503. https://doi.org/10.1021/acsnano.1c09023
    37. Cai Zuo, Hongping Li, Gong Chen, Jun Yang, Zhixin Xu, Zhigang Xue. Fabrication of Elastic Cyclodextrin-Based Triblock Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials 2021, 4 (9) , 9402-9411. https://doi.org/10.1021/acsaem.1c01625
    38. Sajid Hussain Siyal, Syed Shoaib Ahmad Shah, Tayyaba Najam, Muhammad Sufyan Javed, Muhammad Imran, Jin-Le Lan. Significant Reduction in Interface Resistance and Super-Enhanced Performance of Lithium-Metal Battery by In Situ Construction of Poly(vinylidene fluoride)-Based Solid-State Membrane with Dual Ceramic Fillers. ACS Applied Energy Materials 2021, 4 (8) , 8604-8614. https://doi.org/10.1021/acsaem.1c01820
    39. Rui Xu, Bowen Xiao, Ce Xuan, Shuyu Gao, Jingchao Chai, Shujian Liu, Yang Chen, Yun Zheng, Xin Cheng, Qingzhong Guo, Zhihong Liu. Facile and Powerful In Situ Polymerization Strategy for Sulfur-Based All-Solid Polymer Electrolytes in Lithium Batteries. ACS Applied Materials & Interfaces 2021, 13 (29) , 34274-34281. https://doi.org/10.1021/acsami.1c07805
    40. Junze Guo, Jieping Zheng, Weidong Zhang, Yingying Lu. Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels 2021, 35 (14) , 11118-11140. https://doi.org/10.1021/acs.energyfuels.1c01609
    41. Sohee Kim, Ji Hee Kim, Jae Hee Han, Jang Yong Lee, Soonyong So, Sang Jun Yoon, Hyung-Joong Kim, Kyu Tae Lee, Tae-Ho Kim. Cross-Linked Composite Gel Polymer Electrolyte Based on an H-Shaped Poly(ethylene oxide)–Poly(propylene oxide) Tetrablock Copolymer with SiO2 Nanoparticles for Solid-State Supercapacitor Applications. ACS Omega 2021, 6 (26) , 16924-16933. https://doi.org/10.1021/acsomega.1c01623
    42. Gang Liu, Qujiang Sun, Qian Li, Junli Zhang, Jun Ming. Electrolyte Issues in Lithium–Sulfur Batteries: Development, Prospect, and Challenges. Energy & Fuels 2021, 35 (13) , 10405-10427. https://doi.org/10.1021/acs.energyfuels.1c00990
    43. Yu Ye, Zhi Deng, Lei Gao, Kangdi Niu, Ruo Zhao, Juncao Bian, Shuai Li, Haibin Lin, Jinlong Zhu, Yusheng Zhao. Lithium-Rich Anti-perovskite Li2OHBr-Based Polymer Electrolytes Enabling an Improved Interfacial Stability with a Three-Dimensional-Structured Lithium Metal Anode in All-Solid-State Batteries. ACS Applied Materials & Interfaces 2021, 13 (24) , 28108-28117. https://doi.org/10.1021/acsami.1c04514
    44. Yanjun Xu, Lina Gao, Xianzhang Wu, Shengzhao Zhang, Xiuli Wang, Changdong Gu, Xinhui Xia, Xueqian Kong, Jiangping Tu. Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (20) , 23743-23750. https://doi.org/10.1021/acsami.1c04113
    45. Wen-Qiang Ding, Fei Lv, Ning Xu, Meng-Tao Wu, Jian Liu, Xue-Ping Gao. Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries. ACS Applied Energy Materials 2021, 4 (5) , 4581-4601. https://doi.org/10.1021/acsaem.1c00216
    46. Hui Chen, Chun-Jiao Zhou, Xin-Rong Dong, Min Yan, Jia-Yan Liang, Sen Xin, Xiong-Wei Wu, Yu-Guo Guo, Xian-Xiang Zeng. Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces 2021, 13 (19) , 22978-22986. https://doi.org/10.1021/acsami.1c04115
    47. Morgan E. Taylor, David Clarkson, Steven G. Greenbaum, Matthew J. Panzer. Examining the Impact of Polyzwitterion Chemistry on Lithium Ion Transport in Ionogel Electrolytes. ACS Applied Polymer Materials 2021, 3 (5) , 2635-2645. https://doi.org/10.1021/acsapm.1c00229
    48. Jie Wen, Qiannan Zhao, Xiaoping Jiang, Guipeng Ji, Ronghua Wang, Guanjie Lu, Junfei Long, Ning Hu, Chaohe Xu. Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. ACS Applied Energy Materials 2021, 4 (4) , 3660-3669. https://doi.org/10.1021/acsaem.1c00090
    49. Xiang Zhang, Tengfei Zhang, Yifei Shao, Hailin Cao, Zhenhua Liu, Shuai Wang, Xiaogang Zhang. Composite Electrolytes Based on Poly(Ethylene Oxide) and Lithium Borohydrides for All-Solid-State Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (15) , 5396-5404. https://doi.org/10.1021/acssuschemeng.1c00381
    50. Yang Li, Hui Wang. Composite Solid Electrolytes with NASICON-Type LATP and PVdF–HFP for Solid-State Lithium Batteries. Industrial & Engineering Chemistry Research 2021, 60 (3) , 1494-1500. https://doi.org/10.1021/acs.iecr.0c05075
    51. Tilahun Awoke Zegeye, Wei-Nien Su, Fekadu Wubatu Fenta, Tamene Simachew Zeleke, Shi-Kai Jiang, Bing Joe Hwang. Ultrathin Li6.75La3Zr1.75Ta0.25O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (12) , 11713-11723. https://doi.org/10.1021/acsaem.0c01714
    52. Tianyun Guan, Zhuolin Rong, Fangyi Cheng, Wangqing Zhang, Jun Chen. UV-Cured Interpenetrating Networks of Single-ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (12) , 12532-12539. https://doi.org/10.1021/acsaem.0c02483
    53. Jie Wen, Rui Zhang, Qiannan Zhao, Wei Liu, Guanjie Lu, Xiaolin Hu, Jing Sun, Ronghua Wang, Xiaoping Jiang, Ning Hu, Jilei Liu, Xingjiang Liu, Chaohe Xu. Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries. ACS Applied Materials & Interfaces 2020, 12 (49) , 54637-54643. https://doi.org/10.1021/acsami.0c15692
    54. Xiaolu Tian, Yikun Yi, Binren Fang, Pu Yang, Te Wang, Pei Liu, Long Qu, Mingtao Li, Shanqing Zhang. Design Strategies of Safe Electrolytes for Preventing Thermal Runaway in Lithium Ion Batteries. Chemistry of Materials 2020, 32 (23) , 9821-9848. https://doi.org/10.1021/acs.chemmater.0c02428
    55. Xiaobin Fu, Yiyang Liu, Wei Wang, Ling Han, Jing Yang, Min Ge, Yefeng Yao, Hongtao Liu. Probing the Fast Lithium-Ion Transport in Small-Molecule Solid Polymer Electrolytes by Solid-State NMR. Macromolecules 2020, 53 (22) , 10078-10085. https://doi.org/10.1021/acs.macromol.0c01521
    56. Daxian Cao, Yuyue Zhao, Xiao Sun, Avi Natan, Ying Wang, Pengyang Xiang, Wei Wang, Hongli Zhu. Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond. ACS Energy Letters 2020, 5 (11) , 3468-3489. https://doi.org/10.1021/acsenergylett.0c01905
    57. Yingjie He, Shaojie Chen, Lu Nie, Zhetao Sun, Xinsheng Wu, Wei Liu. Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Letters 2020, 20 (10) , 7136-7143. https://doi.org/10.1021/acs.nanolett.0c02457
    58. Chao Wang, Dafang Huang, Shiheng Li, Jianming Yu, Mingwei Zhu, Nian Liu, Zhenda Lu. Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li+ Conductivity and Mechanical Strength. Nano Letters 2020, 20 (10) , 7397-7404. https://doi.org/10.1021/acs.nanolett.0c02721
    59. Fanyou Zeng, Yuanyuan Sun, Bin Hui, Yanzhi Xia, Yihui Zou, Xiaoli Zhang, Dongjiang Yang. Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (39) , 43805-43812. https://doi.org/10.1021/acsami.0c13039
    60. Qi Zhang, Baoming Liu, Jia Wang, Qifei Li, Dixiong Li, Sijia Guo, Yingbo Xiao, Qinghan Zeng, Wenchao He, Mingyi Zheng, Yifei Ma, Shaoming Huang. The Optimized Interfacial Compatibility of Metal–Organic Frameworks Enables a High-Performance Quasi-Solid Metal Battery. ACS Energy Letters 2020, 5 (9) , 2919-2926. https://doi.org/10.1021/acsenergylett.0c01517
    61. Ke Jiang, Jirong Wang, Cai Zuo, Shaoqiao Li, Sibo Li, Dan He, Haiyan Peng, Xiaolin Xie, Rinaldo Poli, Zhigang Xue. Facile Fabrication of Polymer Electrolytes via Lithium Salt-Accelerated Thiol-Michael Addition for Lithium-Ion Batteries. Macromolecules 2020, 53 (17) , 7450-7459. https://doi.org/10.1021/acs.macromol.0c01302
    62. Yanbiao Zhao, Yang Bai, Weidong Li, Maozhong An, Yongping Bai, Guorong Chen. Design Strategies for Polymer Electrolytes with Ether and Carbonate Groups for Solid-State Lithium Metal Batteries. Chemistry of Materials 2020, 32 (16) , 6811-6830. https://doi.org/10.1021/acs.chemmater.9b04521
    63. Fei Ye, Kaiming Liao, Ran Ran, Zongping Shao. Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy & Fuels 2020, 34 (8) , 9189-9207. https://doi.org/10.1021/acs.energyfuels.0c02111
    64. Chao Lu, Xi Chen. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications. Accounts of Chemical Research 2020, 53 (8) , 1468-1477. https://doi.org/10.1021/acs.accounts.0c00205
    65. Weimin Chen, Xiaoqin Xiong, Rui Zeng, Long Jiang, Zhigao Chen, Zhuangwei Xiao, Long Qie, Faquan Yu, Yunhui Huang. Enhancing the Interfacial Ionic Transport via in Situ 3D Composite Polymer Electrolytes for Solid-State Lithium Batteries. ACS Applied Energy Materials 2020, 3 (7) , 7200-7207. https://doi.org/10.1021/acsaem.0c01269
    66. Rusong Chen, Qinghao Li, Xiqian Yu, Liquan Chen, Hong Li. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews 2020, 120 (14) , 6820-6877. https://doi.org/10.1021/acs.chemrev.9b00268
    67. Shujie Liu, Haoru Shan, Shuhui Xia, Jianhua Yan, Jianyong Yu, Bin Ding. Polymer Template Synthesis of Flexible SiO2 Nanofibers to Upgrade Composite Electrolytes. ACS Applied Materials & Interfaces 2020, 12 (28) , 31439-31447. https://doi.org/10.1021/acsami.0c06922
    68. Xin Gao, Xueli Zheng, Jingyang Wang, Zewen Zhang, Xin Xiao, Jiayu Wan, Yusheng Ye, Lien-Yang Chou, Hiang Kwee Lee, Jiangyan Wang, Rafael A. Vilá, Yufei Yang, Pu Zhang, Lin-Wang Wang, Yi Cui. Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters 2020, 20 (7) , 5496-5503. https://doi.org/10.1021/acs.nanolett.0c02033
    69. Fengrui Zhang, Yiyang Sun, Zhicheng Wang, Daosong Fu, Jing Li, Jianchen Hu, Jingjing Xu, Xiaodong Wu. Highly Conductive Polymeric Ionic Liquid Electrolytes for Ambient-Temperature Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2020, 12 (21) , 23774-23780. https://doi.org/10.1021/acsami.9b22945
    70. Tao Zhang, Huichao Lu, Jun Yang, Zhixin Xu, Jiulin Wang, Shin-ichi Hirano, Yongsheng Guo, Chengdu Liang. Stable Lithium Metal Anode Enabled by a Lithiophilic and Electron/Ion Conductive Framework. ACS Nano 2020, 14 (5) , 5618-5627. https://doi.org/10.1021/acsnano.9b10083
    71. Yangyang Xia, Nuo Xu, Lulu Du, Yu Cheng, Shulai Lei, Shujuan Li, Xiaobin Liao, Wenchao Shi, Lin Xu, Liqiang Mai. Rational Design of Ion Transport Paths at the Interface of Metal–Organic Framework Modified Solid Electrolyte. ACS Applied Materials & Interfaces 2020, 12 (20) , 22930-22938. https://doi.org/10.1021/acsami.0c04387
    72. Zheyi Zou, Yajie Li, Ziheng Lu, Da Wang, Yanhua Cui, Bingkun Guo, Yuanji Li, Xinmiao Liang, Jiwen Feng, Hong Li, Ce-Wen Nan, Michel Armand, Liquan Chen, Kang Xu, Siqi Shi. Mobile Ions in Composite Solids. Chemical Reviews 2020, 120 (9) , 4169-4221. https://doi.org/10.1021/acs.chemrev.9b00760
    73. Pu Yang, Xiangwen Gao, Xiaolu Tian, Chengyong Shu, Yikun Yi, Pei Liu, Te Wang, Long Qu, Bingbing Tian, Mingtao Li, Wei Tang, Bolun Yang, John B. Goodenough. Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO2-Supported Gel Polymer Electrolyte. ACS Energy Letters 2020, 5 (5) , 1681-1688. https://doi.org/10.1021/acsenergylett.0c00412
    74. Binghua Zhou, Mengling Yang, Cai Zuo, Gong Chen, Dan He, Xingping Zhou, Chengmei Liu, Xiaolin Xie, Zhigang Xue. Flexible, Self-Healing, and Fire-Resistant Polymer Electrolytes Fabricated via Photopolymerization for All-Solid-State Lithium Metal Batteries. ACS Macro Letters 2020, 9 (4) , 525-532. https://doi.org/10.1021/acsmacrolett.9b01024
    75. N. Angulakshmi, Yingke Zhou, Shruti Suriyakumar, R. Baby Dhanalakshmi, M. Satishrajan, Subbiah Alwarappan, Mohamed H. Alkordi, A. Manuel Stephan. Microporous Metal–Organic Framework (MOF)-Based Composite Polymer Electrolyte (CPE) Mitigating Lithium Dendrite Formation in All-Solid-State-Lithium Batteries. ACS Omega 2020, 5 (14) , 7885-7894. https://doi.org/10.1021/acsomega.9b04133
    76. Yi Cui, Jiayu Wan, Yusheng Ye, Kai Liu, Lien-Yang Chou, Yi Cui. A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries. Nano Letters 2020, 20 (3) , 1686-1692. https://doi.org/10.1021/acs.nanolett.9b04815
    77. Lingfeng Gao, Chao Li, Weichun Huang, Shan Mei, Han Lin, Qi Ou, Ye Zhang, Jia Guo, Feng Zhang, Shixiang Xu, Han Zhang. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials 2020, 32 (5) , 1703-1747. https://doi.org/10.1021/acs.chemmater.9b04408
    78. Zhong Xu, Tao Yang, Xiang Chu, Hai Su, Zixing Wang, Ningjun Chen, Bingni Gu, Hepeng Zhang, Weili Deng, Haitao Zhang, Weiqing Yang. Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO2 Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Interfaces 2020, 12 (9) , 10341-10349. https://doi.org/10.1021/acsami.9b20128
    79. Shi Wang, Lei Zhang, Qinghui Zeng, Xu Liu, Wen-Yong Lai, Liaoyun Zhang. Cellulose Microcrystals with Brush-Like Architectures as Flexible All-Solid-State Polymer Electrolyte for Lithium-Ion Battery. ACS Sustainable Chemistry & Engineering 2020, 8 (8) , 3200-3207. https://doi.org/10.1021/acssuschemeng.9b06658
    80. Pin Ma, Yanyan Fang, Di Zhang, Hongbo Cheng, Nianqing Fu, Xiaowen Zhou, Shibi Fang, Yuan Lin. Surface Functionalization of TiO2 Nanoparticles Influences the Conductivity of Ionic Liquid-Based Composite Electrolytes. ACS Applied Nano Materials 2020, 3 (1) , 342-350. https://doi.org/10.1021/acsanm.9b01980
    81. Tianyun Guan, Sijia Qian, Yakun Guo, Fangyi Cheng, Wangqing Zhang, Jun Chen. Star Brush Block Copolymer Electrolytes with High Ambient-Temperature Ionic Conductivity for Quasi-Solid-State Lithium Batteries. ACS Materials Letters 2019, 1 (6) , 606-612. https://doi.org/10.1021/acsmaterialslett.9b00423
    82. Guanghai Chen, Ying Bai, Yongsheng Gao, Zhaohua Wang, Kun Zhang, Qiao Ni, Feng Wu, Huajie Xu, Chuan Wu. Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (46) , 43252-43260. https://doi.org/10.1021/acsami.9b16294
    83. Boyu Li, Qingmei Su, Lintao Yu, Dong Wang, Shukai Ding, Miao Zhang, Gaohui Du, Bingshe Xu. Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Interfaces 2019, 11 (45) , 42206-42213. https://doi.org/10.1021/acsami.9b14824
    84. Xia Li, Zhouhong Ren, Mohammad Norouzi Banis, Sixu Deng, Yang Zhao, Qian Sun, Changhong Wang, Xiaofei Yang, Weihan Li, Jianwen Liang, Xiaona Li, Yipeng Sun, Keegan Adair, Ruying Li, Yongfeng Hu, Tsun-Kong Sham, Huan Huang, Li Zhang, Shigang Lu, Jun Luo, Xueliang Sun. Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters 2019, 4 (10) , 2480-2488. https://doi.org/10.1021/acsenergylett.9b01676
    85. Chen Cao, Yu Li, Shaoshan Chen, Cong Peng, Zeyu Li, Lin Tang, Yiyu Feng, Wei Feng. Electrolyte-Solvent-Modified Alternating Copolymer as a Single-Ion Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces 2019, 11 (39) , 35683-35692. https://doi.org/10.1021/acsami.9b10595
    86. Ke Liu, Yang Li, Ruihan Zhang, Maochun Wu, Baoling Huang, Tianshou Zhao. Facile Surface Modification Method To Achieve an Ultralow Interfacial Resistance in Garnet-Based Li Metal Batteries. ACS Applied Energy Materials 2019, 2 (9) , 6332-6340. https://doi.org/10.1021/acsaem.9b00967
    87. Ming Liu, Zhu Cheng, Swapna Ganapathy, Chao Wang, Lucas A. Haverkate, Michał Tułodziecki, Sandeep Unnikrishnan, Marnix Wagemaker. Tandem Interface and Bulk Li-Ion Transport in a Hybrid Solid Electrolyte with Microsized Active Filler. ACS Energy Letters 2019, 4 (9) , 2336-2342. https://doi.org/10.1021/acsenergylett.9b01371
    88. Bo Wang, Mi Tang, Yanchao Wu, Yuan Chen, Cheng Jiang, Shuming Zhuo, Shaolong Zhu, Chengliang Wang. A 2D Layered Natural Ore as a Novel Solid-State Electrolyte. ACS Applied Energy Materials 2019, 2 (8) , 5909-5916. https://doi.org/10.1021/acsaem.9b01046
    89. Haowei Zhai, Tianyao Gong, Bingqing Xu, Qian Cheng, Daniel Paley, Boyu Qie, Tianwei Jin, Zhenxuan Fu, Laiyuan Tan, Yuan-Hua Lin, Ce-Wen Nan, Yuan Yang. Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating. ACS Applied Materials & Interfaces 2019, 11 (32) , 28774-28780. https://doi.org/10.1021/acsami.9b04932
    90. Zhuo Li, Wu-Xin Sha, Xin Guo. Three-Dimensional Garnet Framework-Reinforced Solid Composite Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. ACS Applied Materials & Interfaces 2019, 11 (30) , 26920-26927. https://doi.org/10.1021/acsami.9b07830
    91. Xue Li, Donghao Wang, Hongchun Wang, Hefeng Yan, Zhengliang Gong, Yong Yang. Poly(ethylene oxide)–Li10SnP2S12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces 2019, 11 (25) , 22745-22753. https://doi.org/10.1021/acsami.9b05212
    92. Guangmei Luo, Bing Yuan, Tianyun Guan, Fangyi Cheng, Wangqing Zhang, Jun Chen. Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials 2019, 2 (5) , 3028-3034. https://doi.org/10.1021/acsaem.9b00440
    93. Shufeng Song, Yongmin Wu, Weiping Tang, Fan Deng, Jianyao Yao, Zongwen Liu, Rongjie Hu, Alamusi, Zhaoyin Wen, Li Lu, Ning Hu. Composite Solid Polymer Electrolyte with Garnet Nanosheets in Poly(ethylene oxide). ACS Sustainable Chemistry & Engineering 2019, 7 (7) , 7163-7170. https://doi.org/10.1021/acssuschemeng.9b00143
    94. Pu Hu, Ye Zhang, Xiaowei Chi, Karun Kumar Rao, Fang Hao, Hui Dong, Fangmin Guo, Yang Ren, Lars C. Grabow, Yan Yao. Stabilizing the Interface between Sodium Metal Anode and Sulfide-Based Solid-State Electrolyte with an Electron-Blocking Interlayer. ACS Applied Materials & Interfaces 2019, 11 (10) , 9672-9678. https://doi.org/10.1021/acsami.8b19984
    95. Subir Kumar Patla, Ruma Ray, Sanat Karmakar, Shantanu Das, Sujata Tarafdar. Nanofiller-Induced Ionic Conductivity Enhancement and Relaxation Property Analysis of the Blend Polymer Electrolyte Using Non-Debye Electric Field Relaxation Function. The Journal of Physical Chemistry C 2019, 123 (9) , 5188-5197. https://doi.org/10.1021/acs.jpcc.8b10460
    96. Qinyu Zhu, Xuming Wang, Jan D. Miller. Advanced Nanoclay-Based Nanocomposite Solid Polymer Electrolyte for Lithium Iron Phosphate Batteries. ACS Applied Materials & Interfaces 2019, 11 (9) , 8954-8960. https://doi.org/10.1021/acsami.8b13735
    97. Gen Zhang, You-lee Hong, Yusuke Nishiyama, Songyan Bai, Susumu Kitagawa, Satoshi Horike. Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte. Journal of the American Chemical Society 2019, 141 (3) , 1227-1234. https://doi.org/10.1021/jacs.8b07670
    98. Wei Wei, Zhixin Xu, Lu Xu, Xinlin Zhang, Huiming Xiong, Jun Yang. Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries. ACS Applied Energy Materials 2018, 1 (12) , 6769-6773. https://doi.org/10.1021/acsaem.8b01796
    99. M. Sasikumar, M. Raja, R. Hari Krishna, A. Jagadeesan, P. Sivakumar, S. Rajendran. Influence of Hydrothermally Synthesized Cubic-Structured BaTiO3 Ceramic Fillers on Ionic Conductivity, Mechanical Integrity, and Thermal Behavior of P(VDF–HFP)/PVAc-Based Composite Solid Polymer Electrolytes for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2018, 122 (45) , 25741-25752. https://doi.org/10.1021/acs.jpcc.8b03952
    100. Pengcheng Yao, Bin Zhu, Haowei Zhai, Xiangbiao Liao, Yuxiang Zhu, Weiheng Xu, Qian Cheng, Charles Jayyosi, Zheng Li, Jia Zhu, Kristin M. Myers, Xi Chen, Yuan Yang. PVDF/Palygorskite Nanowire Composite Electrolyte for 4 V Rechargeable Lithium Batteries with High Energy Density. Nano Letters 2018, 18 (10) , 6113-6120. https://doi.org/10.1021/acs.nanolett.8b01421
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect