ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Electrotransfection of Polyamine Folded DNA Origami Structures

View Author Information
Physik-Department E14, Technische Universität München, 85748 Garching, Germany
*Phone: +49 (0)89 289 11611; fax: +49 (0)89 289 11612; e-mail: [email protected]
Cite this: Nano Lett. 2016, 16, 10, 6683–6690
Publication Date (Web):September 9, 2016
https://doi.org/10.1021/acs.nanolett.6b03586
Copyright © 2016 American Chemical Society

    Article Views

    2455

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (<1 mM) concentrations of the condensing agent spermidine. Much like in DNA condensation, the amount of spermidine required for origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information on experimental methods, agarose electrophoretic gel images, TEM micrographs, confocal microscopy images and DNA sequences are given. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.6b03586.

    • Additional details on experimental methods. Figures showing cadnano diagrams of the three DNA origami nanostructures used in this work; class-averaged TEM images of DNA origami nanostructures folded in Spd3+ and agarose gel electrophoresis for screening of Spd3+ concentrations required for folding 50 nM DNA origami nanostructures; circular dichroism spectra of 42HB folded in traditional buffer containing magnesium and in Spd3+; relation between the concentration of folding buffer and concentration of DNA origami nanostructures to be folded; folding reactions and corresponding TEM micrographs for 42HB at different concentrations of Spd3+; negative-stain TEM micrographs of 42HB, tube, and tCRRO folded in traditional buffer containing magnesium (A) and Spd3+; effect of different electric field strengths on the stability of 42HB folded in different buffers; agarose gel electrophoresis showing the stability of Mg nanostructures (42HB) diluted in RPMI and subjected to a range of electric field strengths both in LV and HV mode; agarose gel electrophoresis showing the stability of Spd nanostructures (42HB) diluted in RPMI and subjected to a range of electric field strengths both in LV and HV mode; effect of different electric field strengths on the stability of Mg and Spd nanostructures diluted in high-resistance sample buffers (10% v/v glycerol in water) and using smaller path length cuvettes (0.1 cm); confocal micrographs of Jurkat cells with Atto647N-labelled Spd nanostructures (42HB) internalized via electrotransfection; results from an electroporation experiment with Mg nanostructures and Jurkat cells and with Atto 647N labelled DNA strands in Jurkat cells; cell viability assays; and stability of Spd nanostructures (42HB) in Jurkat lysate. Tables showing sequences of DNA staples for different DNA origami nanostructures generated by cadnano software. (PDF)

    • Video assembled from 30 confocal microscopy z-sections taken from Jurkat cells in 0.5 μm steps (corresponding to Figure 5B). (AVI)

    • Video assembled from 30 confocal microscopy z-sections taken from Jurkat cells in 0.5 μm steps (corresponding to Figure S13). (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Matthias Vogt, Jonathan List, Martin Langecker, Ibon Santiago, Friedrich C. Simmel, Enzo Kopperger. Electrokinetic Torque Generation by DNA Nanorobotic Arms Studied via Single-Molecule Fluctuation Analysis. The Journal of Physical Chemistry B 2023, 127 (50) , 10710-10722. https://doi.org/10.1021/acs.jpcb.3c05959
    2. Sesha Manuguri, Minh-Kha Nguyen, Jacky Loo, Ashwin Karthick Natarajan, Anton Kuzyk. Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-Origami-Based Assemblies. Bioconjugate Chemistry 2023, 34 (1) , 6-17. https://doi.org/10.1021/acs.bioconjchem.2c00311
    3. Divita Mathur, Katherine E. Rogers, Sebastián A. Díaz, Megan E. Muroski, William P. Klein, Okhil K. Nag, Kwahun Lee, Lauren D. Field, James B. Delehanty, Igor L. Medintz. Determining the Cytosolic Stability of Small DNA Nanostructures In Cellula. Nano Letters 2022, 22 (12) , 5037-5045. https://doi.org/10.1021/acs.nanolett.2c00917
    4. Colette J. Whitfield, Meizhou Zhang, Pia Winterwerber, Yuzhou Wu, David Y. W. Ng, Tanja Weil. Functional DNA–Polymer Conjugates. Chemical Reviews 2021, 121 (18) , 11030-11084. https://doi.org/10.1021/acs.chemrev.0c01074
    5. Chuanzhen Zhao, Tianxing Man, Xiaobin Xu, Qing Yang, Wenfei Liu, Steven J. Jonas, Michael A. Teitell, Pei-Yu Chiou, Paul S. Weiss. Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. ACS Materials Letters 2020, 2 (11) , 1475-1483. https://doi.org/10.1021/acsmaterialslett.0c00428
    6. Victor Ezequiel Cuenca, Hernan Martinelli, Maria de los Angeles Ramirez, Hernan Alejandro Ritacco, Patrizia Andreozzi, Sergio Enrique Moya. Polyphosphate Poly(amine) Nanoparticles: Self-Assembly, Thermodynamics, and Stability Studies. Langmuir 2019, 35 (44) , 14300-14309. https://doi.org/10.1021/acs.langmuir.9b02636
    7. Stefano Palazzolo, Mohamad Hadla, Concetta Russo Spena, Samer Bayda, Vinit Kumar, Francesco Lo Re, Muhammad Adeel, Isabella Caligiuri, Flavio Romano, Giuseppe Corona, Vincenzo Canzonieri, Giuseppe Toffoli, Flavio Rizzolio. Proof-of-Concept Multistage Biomimetic Liposomal DNA Origami Nanosystem for the Remote Loading of Doxorubicin. ACS Medicinal Chemistry Letters 2019, 10 (4) , 517-521. https://doi.org/10.1021/acsmedchemlett.8b00557
    8. Dong Wang, Qian Liu, Di Wu, Binfeng He, Jin Li, Chengde Mao, Guansong Wang, Hang Qian. Isothermal Self-Assembly of Spermidine–DNA Nanostructure Complex as a Functional Platform for Cancer Therapy. ACS Applied Materials & Interfaces 2018, 10 (18) , 15504-15516. https://doi.org/10.1021/acsami.8b03464
    9. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
    10. Kunihiko Morihiro, Nicholas Ankenbruck, Bradley Lukasak, and Alexander Deiters . Small Molecule Release and Activation through DNA Computing. Journal of the American Chemical Society 2017, 139 (39) , 13909-13915. https://doi.org/10.1021/jacs.7b07831
    11. Michael W. Hudoba, Yi Luo, Angelita Zacharias, Michael G. Poirier, and Carlos E. Castro . Dynamic DNA Origami Device for Measuring Compressive Depletion Forces. ACS Nano 2017, 11 (7) , 6566-6573. https://doi.org/10.1021/acsnano.6b07097
    12. Mahboobeh Nasiri, Mehrnoosh Bahadorani, Kristen Dellinger, Shyam Aravamudhan, Juan L. Vivero-Escoto, Reza Zadegan. Improving DNA nanostructure stability: A review of the biomedical applications and approaches. International Journal of Biological Macromolecules 2024, 260 , 129495. https://doi.org/10.1016/j.ijbiomac.2024.129495
    13. Kirankumar Krishnamurthy, Arivazhagan Rajendran, Eiji Nakata, Takashi Morii. Near Quantitative Ligation Results in Resistance of DNA Origami Against Nuclease and Cell Lysate. Small Methods 2024, 8 (1) https://doi.org/10.1002/smtd.202300999
    14. Jessica A. Kretzmann, Anna Liedl, Alba Monferrer, Volodymyr Mykhailiuk, Samuel Beerkens, Hendrik Dietz. Gene-encoding DNA origami for mammalian cell expression. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36601-1
    15. Weitong Lu, Tianyu Chen, Dexuan Xiao, Xin Qin, Yang Chen, Sirong Shi. Application and prospects of nucleic acid nanomaterials in tumor therapy. RSC Advances 2023, 13 (37) , 26288-26301. https://doi.org/10.1039/D3RA04081J
    16. Veikko Linko, Adrian Keller. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions. Small 2023, 19 (34) https://doi.org/10.1002/smll.202301935
    17. Marcel Hanke, Emilia Tomm, Guido Grundmeier, Adrian Keller. Effect of Ionic Strength on the Thermal Stability of DNA Origami Nanostructures. ChemBioChem 2023, 24 (12) https://doi.org/10.1002/cbic.202300338
    18. Weijun Wang, Yaxin Chen, Hongwei Yin, Jingrui Lv, Mengling Lin, Zai-Sheng Wu. Center backbone-rigidified DNA polygonal nanostructures and bottom face-templated polyhedral pyramids with structural stability in a complex biological medium. Acta Biomaterialia 2023, 161 , 100-111. https://doi.org/10.1016/j.actbio.2023.03.006
    19. Anastasiya N. Shishparenok, Vitalina V. Furman, Dmitry D. Zhdanov. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers 2023, 15 (7) , 2151. https://doi.org/10.3390/cancers15072151
    20. Souvik Ghosal, Sagar Bag, Sudipta Bhowmik. Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery. Polymers 2023, 15 (8) , 1850. https://doi.org/10.3390/polym15081850
    21. Divita Mathur, Angelica Rose Galvan, Christopher M. Green, Kevin Liu, Igor L. Medintz. Uptake and stability of DNA nanostructures in cells: a cross-sectional overview of the current state of the art. Nanoscale 2023, 15 (6) , 2516-2528. https://doi.org/10.1039/D2NR05868E
    22. Grant A. Knappe, Eike-Christian Wamhoff, Mark Bathe. Functionalizing DNA origami to investigate and interact with biological systems. Nature Reviews Materials 2023, 8 (2) , 123-138. https://doi.org/10.1038/s41578-022-00517-x
    23. Aleksandra Bednarz, Steffan Møller Sønderskov, Mingdong Dong, Victoria Birkedal. Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures. Nanoscale 2023, 15 (3) , 1317-1326. https://doi.org/10.1039/D2NR05780H
    24. Mamta Singh, Dolly Sharma, Manoj Garg, Atul Kumar, Ankur Baliyan, Reshma Rani, Vinit Kumar. Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnology Advances 2022, 61 , 108052. https://doi.org/10.1016/j.biotechadv.2022.108052
    25. Hang Qian, Dong Wang, Binfeng He, Qian Liu, Yu Xu, Di Wu, Chunfa Chen, Wen Zhang, David Tai Leong, Guansong Wang. Assembling defined DNA nanostructures with anticancer drugs: a metformin/DNA complex nanoplatform with a synergistic antitumor effect for KRAS-mutated lung cancer therapy. NPG Asia Materials 2022, 14 (1) https://doi.org/10.1038/s41427-022-00427-y
    26. Qian Liu, Jingruo Xia, Qingtao Yu, Pengcheng Gu, Yue Yuan, Ke Liu, Chaowang Huang, Chunfa Chen, Xiaolan Guo, Hang Qian. Engineering the Surface Properties of DNA Nanostructures by Tuning the Valency of Assembling Species for Biomedical Applications. Macromolecular Bioscience 2022, 22 (11) https://doi.org/10.1002/mabi.202200248
    27. Bang Lin Li, Hang Zhang, Nian Bing Li, Hang Qian, David Tai Leong. Materialistic Interfaces with Nucleic Acids: Principles and Their Impact. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202201172
    28. Chaowang Huang, Qianyi You, Jing Xu, Di Wu, Huaping Chen, Yuhang Guo, Jiancheng Xu, Mingdong Hu, Hang Qian. An mTOR siRNA‐Loaded Spermidine/DNA Tetrahedron Nanoplatform with a Synergistic Anti‐Inflammatory Effect on Acute Lung Injury. Advanced Healthcare Materials 2022, 11 (11) https://doi.org/10.1002/adhm.202200008
    29. Soumya Chandrasekhar, Praneetha Sundar Prakash, Thorsten‐Lars Schmidt. Stability and Stabilization of DNA Nanostructures in Biomedical Applications. 2022, 333-377. https://doi.org/10.1002/9781119682561.ch16
    30. Zhe Li, Yonggang Ke. DNA Nanostructures for Cancer Diagnosis and Therapy. 2022, 379-410. https://doi.org/10.1002/9781119682561.ch17
    31. Enrique Lin-Shiao, Wolfgang G Pfeifer, Brian R Shy, Mohammad Saffari Doost, Evelyn Chen, Vivasvan S Vykunta, Jennifer R Hamilton, Elizabeth C Stahl, Diana M Lopez, Cindy R Sandoval Espinoza, Alexander E Deyanov, Rachel J Lew, Michael G Poirer, Alexander Marson, Carlos E Castro, Jennifer A Doudna. CRISPR–Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Nucleic Acids Research 2022, 50 (3) , 1256-1268. https://doi.org/10.1093/nar/gkac049
    32. Swarup Dey, Chunhai Fan, Kurt V. Gothelf, Jiang Li, Chenxiang Lin, Longfei Liu, Na Liu, Minke A. D. Nijenhuis, Barbara Saccà, Friedrich C. Simmel, Hao Yan, Pengfei Zhan. DNA origami. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-020-00009-8
    33. Dong Wang, Chunfa Chen, Qian Liu, Qianwen Zhao, Di Wu, Yue Yuan, Chaowang Huang, Xiaorong Sun, Chunji Huang, David Tai Leong, Guansong Wang, Hang Qian. Functionalizing DNA nanostructures with natural cationic amino acids. Bioactive Materials 2021, 6 (9) , 2946-2955. https://doi.org/10.1016/j.bioactmat.2021.02.012
    34. Sofia Ojasalo, Petteri Piskunen, Boxuan Shen, Mauri A. Kostiainen, Veikko Linko. Hybrid Nanoassemblies from Viruses and DNA Nanostructures. Nanomaterials 2021, 11 (6) , 1413. https://doi.org/10.3390/nano11061413
    35. Elmar Weinhold, Banani Chakraborty. DNA modification and visualization on an origami-based enzyme nano-factory. Nanoscale 2021, 13 (4) , 2465-2471. https://doi.org/10.1039/D0NR07618J
    36. Ahmed Shaukat, Eduardo Anaya-Plaza, Sofia Julin, Veikko Linko, Tomas Torres, Andrés de la Escosura, Mauri A. Kostiainen. Phthalocyanine–DNA origami complexes with enhanced stability and optical properties. Chemical Communications 2020, 56 (53) , 7341-7344. https://doi.org/10.1039/D0CC01916J
    37. Ray Chang, Qingfeng Yan, Peter Kingshott, Wei-Bor Tsai, Peng-Yuan Wang. Harnessing the perinuclear actin cap (pnAC) to influence nanocarrier trafficking and gene transfection efficiency in skeletal myoblasts using nanopillars. Acta Biomaterialia 2020, 111 , 221-231. https://doi.org/10.1016/j.actbio.2020.05.015
    38. Di Wu, Bang Lin Li, Qianwen Zhao, Qian Liu, Dong Wang, Binfeng He, Zhenghua Wei, David Tai Leong, Guansong Wang, Hang Qian. Assembling Defined DNA Nanostructure with Nitrogen‐Enriched Carbon Dots for Theranostic Cancer Applications. Small 2020, 16 (19) https://doi.org/10.1002/smll.201906975
    39. Mayu Esumi, Shunsuke Sakurai, Makiko Tanaka. The effect of spermidine on guanine decomposition via photoinduced electron transfer in DNA. Organic & Biomolecular Chemistry 2020, 18 (1) , 47-51. https://doi.org/10.1039/C9OB01860C
    40. Megan E. Kizer, Robert J. Linhardt, Arun Richard Chandrasekaran, Xing Wang. A Molecular Hero Suit for In Vitro and In Vivo DNA Nanostructures. Small 2019, 15 (26) https://doi.org/10.1002/smll.201805386
    41. Idit Kopatz, Ran Zalk, Yael Levi-Kalisman, Efrat Zlotkin-Rivkin, Gabriel A. Frank, Stanislav Kler. Packaging of DNA origami in viral capsids. Nanoscale 2019, 11 (21) , 10160-10166. https://doi.org/10.1039/C8NR10113B
    42. Dhanasekaran Balakrishnan, Gerrit D Wilkens, Jonathan G Heddle. Delivering DNA origami to cells. Nanomedicine 2019, 14 (7) , 911-925. https://doi.org/10.2217/nnm-2018-0440
    43. Hale Bila, Eva E. Kurisinkal, Maartje M. C. Bastings. Engineering a stable future for DNA-origami as a biomaterial. Biomaterials Science 2019, 7 (2) , 532-541. https://doi.org/10.1039/C8BM01249K
    44. Emanuela Torelli, Jerzy Wieslaw Kozyra, Jing-Ying Gu, Ulrich Stimming, Luca Piantanida, Kislon Voïtchovsky, Natalio Krasnogor. Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-25270-6
    45. Yong‐An Ren, Han Gao, Xiangyuan Ouyang. Advances in DNA Origami Nanopores: Fabrication, Characterization and Applications. Chinese Journal of Chemistry 2018, 36 (9) , 875-885. https://doi.org/10.1002/cjoc.201800173
    46. Charlotte Kielar, Yang Xin, Boxuan Shen, Mauri A. Kostiainen, Guido Grundmeier, Veikko Linko, Adrian Keller. On the Stability of DNA Origami Nanostructures in Low‐Magnesium Buffers. Angewandte Chemie 2018, 130 (30) , 9614-9618. https://doi.org/10.1002/ange.201802890
    47. Charlotte Kielar, Yang Xin, Boxuan Shen, Mauri A. Kostiainen, Guido Grundmeier, Veikko Linko, Adrian Keller. On the Stability of DNA Origami Nanostructures in Low‐Magnesium Buffers. Angewandte Chemie International Edition 2018, 57 (30) , 9470-9474. https://doi.org/10.1002/anie.201802890
    48. Yongfei Li, Lei Song, Bang Wang, Jianbo He, Yulin Li, Zhaoxiang Deng, Chengde Mao. Universal pH‐Responsive and Metal‐Ion‐Free Self‐Assembly of DNA Nanostructures. Angewandte Chemie 2018, 130 (23) , 7008-7011. https://doi.org/10.1002/ange.201804054
    49. Yongfei Li, Lei Song, Bang Wang, Jianbo He, Yulin Li, Zhaoxiang Deng, Chengde Mao. Universal pH‐Responsive and Metal‐Ion‐Free Self‐Assembly of DNA Nanostructures. Angewandte Chemie International Edition 2018, 57 (23) , 6892-6895. https://doi.org/10.1002/anie.201804054
    50. Saminathan Ramakrishnan, Heini Ijäs, Veikko Linko, Adrian Keller. Structural stability of DNA origami nanostructures under application-specific conditions. Computational and Structural Biotechnology Journal 2018, 16 , 342-349. https://doi.org/10.1016/j.csbj.2018.09.002
    51. Carlos E. Castro, Hendrik Dietz, Björn Högberg. DNA origami devices for molecular-scale precision measurements. MRS Bulletin 2017, 42 (12) , 925-929. https://doi.org/10.1557/mrs.2017.273
    52. Saminathan Ramakrishnan, Georg Krainer, Guido Grundmeier, Michael Schlierf, Adrian Keller. Cation‐Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride. Small 2017, 13 (44) https://doi.org/10.1002/smll.201702100
    53. Henni Auvinen, Hongbo Zhang, Nonappa, Alisa Kopilow, Elina H. Niemelä, Sami Nummelin, Alexandra Correia, Hélder A. Santos, Veikko Linko, Mauri A. Kostiainen. Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility. Advanced Healthcare Materials 2017, 6 (18) https://doi.org/10.1002/adhm.201700692
    54. Anuttara Udomprasert, Thaned Kangsamaksin. DNA origami applications in cancer therapy. Cancer Science 2017, 108 (8) , 1535-1543. https://doi.org/10.1111/cas.13290
    55. Nayan P. Agarwal, Michael Matthies, Fatih N. Gür, Kensuke Osada, Thorsten L. Schmidt. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angewandte Chemie 2017, 129 (20) , 5552-5556. https://doi.org/10.1002/ange.201608873
    56. Nayan P. Agarwal, Michael Matthies, Fatih N. Gür, Kensuke Osada, Thorsten L. Schmidt. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angewandte Chemie International Edition 2017, 56 (20) , 5460-5464. https://doi.org/10.1002/anie.201608873
    57. Vishal Maingi, Jonathan R. Burns, Jaakko J. Uusitalo, Stefan Howorka, Siewert J. Marrink, Mark S. P. Sansom. Stability and dynamics of membrane-spanning DNA nanopores. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms14784
    58. M. Sajfutdinow, K. Uhlig, A. Prager, C. Schneider, B. Abel, D. M. Smith. Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing. Nanoscale 2017, 9 (39) , 15098-15106. https://doi.org/10.1039/C7NR03696E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect