ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Optical Binding of Nanowires

View Author Information
Institute of Scientific Instruments of the CAS, Kràlovopolskà 147, 612 64 Brno, Czech Republic
CNR-IPCF, Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Viale F. Stagno D’Alcontres 37, I-98158 Messina, Italy
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K.
§ H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
Cite this: Nano Lett. 2017, 17, 6, 3485–3492
Publication Date (Web):May 23, 2017
https://doi.org/10.1021/acs.nanolett.7b00494
Copyright © 2017 American Chemical Society

    Article Views

    1353

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (8)»

    Abstract

    Abstract Image

    Multiple scattering of light induces structured interactions, or optical binding forces, between collections of small particles. This has been extensively studied in the case of microspheres. However, binding forces are strongly shape dependent: here, we turn our attention to dielectric nanowires. Using a novel numerical model we uncover rich behavior. The extreme geometry of the nanowires produces a sequence of stationary and dynamic states. In linearly polarized light, thermally stable ladder-like structures emerge. Lower symmetry, sagittate arrangements can also arise, whose configurational asymmetry unbalances the optical forces leading to nonconservative, translational motion. Finally, the addition of circular polarization drives a variety of coordinated rotational states whose dynamics expose fundamental properties of optical spin. These results suggest that optical binding can provide an increased level of control over the positions and motions of nanoparticles, opening new possibilities for driven self-organization and heralding a new field of self-assembling optically driven micromachines.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b00494.

    • Brownian dynamics simulations of ladder structures (AVI)

    • Brownian dynamics simulation of ladder instabilities (AVI)

    • Brownian dynamics simulation of arrow structures (AVI)

    • Dynamic simulation of nanowire pair in circularly polarized light (AVI)

    • Dynamic simulation of nanowire triplet in circularly polarized light (AVI)

    • Brownian dynamics simulation of rotating nanowire pair in circularly polarized light (AVI)

    • Brownian dynamics simulation of rigid nanowire pair in circularly polarized light (AVI)

    • Technical and descriptive details. Detailed movie legends. Optical polarization and torque. Numerical model description. Stability of ladder structures. Stability of arrow structures. Nanowire rotation and precession (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Yixuan Wu, Shangdong Zhao, Guozhang Dai, Shaohua Tao. Optical Force-Induced Nanowire Cut. The Journal of Physical Chemistry Letters 2022, 13 (51) , 11899-11904. https://doi.org/10.1021/acs.jpclett.2c03562
    2. Fei Han, Zijie Yan. Phase Transition and Self-Stabilization of Light-Mediated Metal Nanoparticle Assemblies. ACS Nano 2020, 14 (6) , 6616-6625. https://doi.org/10.1021/acsnano.9b08015
    3. Natalia A. Kostina, Denis A. Kislov, Aliaksandra N. Ivinskaya, Alexey Proskurin, Dmitrii N. Redka, Andrey Novitsky, Pavel Ginzburg, Alexander S. Shalin. Nanoscale Tunable Optical Binding Mediated by Hyperbolic Metamaterials. ACS Photonics 2020, 7 (2) , 425-433. https://doi.org/10.1021/acsphotonics.9b01378
    4. Ivan D. Toftul, Danil F. Kornovan, Mihail I. Petrov. Self-Trapped Nanoparticle Binding via Waveguide Mode. ACS Photonics 2020, 7 (1) , 114-119. https://doi.org/10.1021/acsphotonics.9b01157
    5. Curtis W. Peterson, John Parker, Stuart A. Rice, Norbert F. Scherer. Controlling the Dynamics and Optical Binding of Nanoparticle Homodimers with Transverse Phase Gradients. Nano Letters 2019, 19 (2) , 897-903. https://doi.org/10.1021/acs.nanolett.8b04134
    6. Maria G. Donato, Oto Brzobohatý, Stephen H. Simpson, Alessia Irrera, Antonio A. Leonardi, Maria J. Lo Faro, Vojtěch Svak, Onofrio M. Maragò, Pavel Zemánek. Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams. Nano Letters 2019, 19 (1) , 342-352. https://doi.org/10.1021/acs.nanolett.8b03978
    7. Yuchao Li, Hongbao Xin, Yao Zhang, Hongxiang Lei, Tianhang Zhang, Huapeng Ye, Juan Jose Saenz, Cheng-Wei Qiu, Baojun Li. Living Nanospear for Near-Field Optical Probing. ACS Nano 2018, 12 (11) , 10703-10711. https://doi.org/10.1021/acsnano.8b05235
    8. Delphine Coursault, Nishant Sule, John Parker, Ying Bao, Norbert F. Scherer. Dynamics of the Optically Directed Assembly and Disassembly of Gold Nanoplatelet Arrays. Nano Letters 2018, 18 (6) , 3391-3399. https://doi.org/10.1021/acs.nanolett.8b00199
    9. Xiao Li, Yongyin Cao, Jack Ng. Non-Hermitian non-equipartition theory for trapped particles. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46058-5
    10. Pramitha Praveen Kamath, Souvik Sil, Viet Giang Truong, Síle Nic Chormaic. Particle trapping with optical nanofibers: a review [Invited]. Biomedical Optics Express 2023, 14 (12) , 6172. https://doi.org/10.1364/BOE.503146
    11. Hao-yu Wang, Rui Ma, Gui-dong Liu, Ling-ling Wang, Qi Lin. Optical force conversion and conveyor belt effect with coupled graphene plasmon waveguide modes. Optics Express 2023, 31 (20) , 32422. https://doi.org/10.1364/OE.495863
    12. Hong-Li Su, Xiang Lin, Shan Fu. Clinical application study of silver nanowires combined with a synergistic leukocyte filter in cardioplegia after anesthesia. Materials Express 2022, 12 (12) , 1577-1582. https://doi.org/10.1166/mex.2022.2299
    13. Shiqi Chen, John A. Parker, Curtis W. Peterson, Stuart A. Rice, Norbert F. Scherer, Andrew L. Ferguson. Understanding and design of non-conservative optical matter systems using Markov state models. Molecular Systems Design & Engineering 2022, 7 (10) , 1228-1238. https://doi.org/10.1039/D2ME00087C
    14. Jakob Rieser, Mario A. Ciampini, Henning Rudolph, Nikolai Kiesel, Klaus Hornberger, Benjamin A. Stickler, Markus Aspelmeyer, Uroš Delić. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 2022, 377 (6609) , 987-990. https://doi.org/10.1126/science.abp9941
    15. Xiao Li, Yineng Liu, Zhifang Lin, Jack Ng, C. T. Chan. Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26732-8
    16. D Kislov, O Kushchenko, A S Shalin. Optomechanical interaction between single-walled carbon nanotubes of various structures. Journal of Physics: Conference Series 2021, 2015 (1) , 012066. https://doi.org/10.1088/1742-6596/2015/1/012066
    17. Stephen H. Simpson, Yoshihiko Arita, Kishan Dholakia, Pavel Zemánek. Stochastic Hopf bifurcations in vacuum optical tweezers. Physical Review A 2021, 104 (4) https://doi.org/10.1103/PhysRevA.104.043518
    18. Abhinav Sharma, Shangran Xie, Philip St.J. Russell. Reconfigurable millimeter-range optical binding of dielectric microparticles in hollow-core photonic crystal fiber. Optics Letters 2021, 46 (16) , 3909. https://doi.org/10.1364/OL.421885
    19. Vojtěch Svak, Jana Flajšmanová, Lukáš Chvátal, Martin Šiler, Alexander Jonáš, Jan Ježek, Stephen H. Simpson, Pavel Zemánek, Oto Brzobohatý, , . Optically bound matter levitated in vacuum. 2021, 25. https://doi.org/10.1117/12.2596308
    20. Liyong Cui, Hang Yin. Evanescent wave induced polarization-insensitive self-organization of stratified single-negative materials. New Journal of Physics 2021, 23 (7) , 073037. https://doi.org/10.1088/1367-2630/ac12ae
    21. Vojtěch Svak, Jana Flajšmanová, Lukáš Chvátal, Martin Šiler, Alexandr Jonáš, Jan Ježek, Stephen H. Simpson, Pavel Zemánek, Oto Brzobohatý. Stochastic dynamics of optically bound matter levitated in vacuum. Optica 2021, 8 (2) , 220. https://doi.org/10.1364/OPTICA.404851
    22. John Parker, Curtis W. Peterson, Yuval Yifat, Stuart A. Rice, Zijie Yan, Stephen K. Gray, Norbert F. Scherer. Optical matter machines: angular momentum conversion by collective modes in optically bound nanoparticle arrays. Optica 2020, 7 (10) , 1341. https://doi.org/10.1364/OPTICA.396147
    23. Hongbao Xin, Yuchao Li, Yong‐Chun Liu, Yao Zhang, Yun‐Feng Xiao, Baojun Li. Optical Forces: From Fundamental to Biological Applications. Advanced Materials 2020, 32 (37) https://doi.org/10.1002/adma.202001994
    24. Liyong Cui, Guiqiang Du, Jack Ng. Angle-independent and -dependent optical binding of a one-dimensional photonic hypercrystal. Physical Review A 2020, 102 (2) https://doi.org/10.1103/PhysRevA.102.023502
    25. Yoshihiko Arita, Stephen H. Simpson, Pavel Zemánek, Kishan Dholakia. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Science Advances 2020, 6 (23) https://doi.org/10.1126/sciadv.aaz9858
    26. Kayn A. Forbes, David S. Bradshaw, David L. Andrews. Optical binding of nanoparticles. Nanophotonics 2020, 9 (1) , 1-17. https://doi.org/10.1515/nanoph-2019-0361
    27. Jia-Chen Zhang, Wei-Xing Yu, Fa-Jun Xiao, Jian-Lin Zhao, , . Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica 2020, 69 (18) , 184206. https://doi.org/10.7498/aps.69.20200214
    28. A. V. Korotun, Ya. V. Karandas. Energy Characteristics of Metal Nanowires with Periodically Modulated Surface. Ukrainian Journal of Physics 2019, 64 (9) , 848. https://doi.org/10.15407/ujpe64.9.848
    29. R M Abraham Ekeroth. Optical forces and torques exerted on coupled silica nanospheres: novel contributions due to multiple scattering. Journal of Optics 2019, 21 (4) , 045001. https://doi.org/10.1088/2040-8986/ab0533
    30. Michael O'Donnell, Simon Hanna, , , . Optical forces on patterned particles. 2019, 46. https://doi.org/10.1117/12.2511857
    31. Natalia Kostina, Mihail Petrov, Aliaksandra Ivinskaya, Sergey Sukhov, Andrey Bogdanov, Ivan Toftul, Manuel Nieto-Vesperinas, Pavel Ginzburg, Alexander Shalin. Optical binding via surface plasmon polariton interference. Physical Review B 2019, 99 (12) https://doi.org/10.1103/PhysRevB.99.125416
    32. Oto Brzobohatý, Lukáš Chvátal, Pavel Zemánek. Optomechanical properties of optically self-arranged colloidal waveguides. Optics Letters 2019, 44 (3) , 707. https://doi.org/10.1364/OL.44.000707
    33. Oto Brzobohatý, Lukáš Chvátal, Alexandr Jonáš, Martin Šiler, Jan Kaňka, Jan Ježek, Pavel Zemánek. Tunable soft-matter optofluidic waveguides assembled by light. 2019, AW5E.1. https://doi.org/10.1364/OMA.2019.AW5E.1
    34. Yuval Yifat, Delphine Coursault, Curtis W. Peterson, John Parker, Ying Bao, Stephen K. Gray, Stuart A. Rice, Norbert F. Scherer. Reactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterers. Light: Science & Applications 2018, 7 (1) https://doi.org/10.1038/s41377-018-0105-y
    35. Qijun Luan, Xiang Han, Guangzong Xiao, Wei Xiong, Hui Luo. Coupling effects in position observations due to residual misalignments of imaging axes in counter-propagating dual-beam optical traps. Optics Communications 2018, 426 , 642-647. https://doi.org/10.1016/j.optcom.2018.05.057
    36. Paolo Polimeno, Alessandro Magazzù, Maria Antonia Iatì, Francesco Patti, Rosalba Saija, Cristian Degli Esposti Boschi, Maria Grazia Donato, Pietro G. Gucciardi, Philip H. Jones, Giovanni Volpe, Onofrio M. Maragò. Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer 2018, 218 , 131-150. https://doi.org/10.1016/j.jqsrt.2018.07.013
    37. Carlo Bradac. Nanoscale Optical Trapping: A Review. Advanced Optical Materials 2018, 6 (12) https://doi.org/10.1002/adom.201800005

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect