ACS Publications. Most Trusted. Most Cited. Most Read
Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer
My Activity
    Letter

    Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
    Institute of Strength Physics and Materials Science, Tomsk 634055, Russia
    Tomsk State University, Tomsk 634050, Russia
    § Saint Petersburg State University, Saint Petersburg 198504, Russia
    Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal, 4, 20018 San Sebastián/Donostia, Basque Country, Spain
    Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
    # Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
    UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
    Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
    Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
    Department of Materials Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
    Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU, Apdo. 1072, 20080 San Sebastián, Basque Country, Spain
    Centro de Física de Materiales, CFM-MPC, Centro Mixto CSIC-UPV/EHU, Apdo.1072, 20080 San Sebastián/Donostia, Basque Country, Spain
    *E-mail: [email protected]. Phone: +81 (0)3 5734 2365. Fax: +81 (0)3 5734 2365.
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2017, 17, 6, 3493–3500
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b00560
    Published May 26, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBi2Se4/Bi2Se3 heterostructure, which was fabricated by self-assembling a MnBi2Se4 layer on top of the Bi2Se3 surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBi2Se4/Bi2Se3 heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any other significant changes in the rest of the band structure. It can be considered as a result of the direct interaction of the surface Dirac cone and the magnetic layer rather than a magnetic proximity effect. This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = −1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future “topotronics” devices.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b00560.

    • Additional details on ARPES, SARPES, ab inito calculations, SQUID, and XMCD measurements (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 138 publications.

    1. Zhiqi Chen, Runhan Li, Yingxi Bai, Ning Mao, Mahmoud Zeer, Dongwook Go, Ying Dai, Baibiao Huang, Yuriy Mokrousov, Chengwang Niu. Topology-Engineered Orbital Hall Effect in Two-Dimensional Ferromagnets. Nano Letters 2024, 24 (16) , 4826-4833. https://doi.org/10.1021/acs.nanolett.3c05129
    2. Jie Li, Ruqian Wu. Electrically Tunable Topological Phase Transition in van der Waals Heterostructures. Nano Letters 2023, 23 (6) , 2173-2178. https://doi.org/10.1021/acs.nanolett.2c04708
    3. Hamed Vakili, Samiran Ganguly, George J. de Coster, Mahesh R. Neupane, Avik W. Ghosh. Low Power In-Memory Computation with Reciprocal Ferromagnet/Topological Insulator Heterostructures. ACS Nano 2022, 16 (12) , 20222-20228. https://doi.org/10.1021/acsnano.2c05645
    4. Hadas Shtrikman, Man Suk Song, Magdalena A. Załuska-Kotur, Ryszard Buczko, Xi Wang, Beena Kalisky, Perla Kacman, Lothar Houben, Haim Beidenkopf. Intrinsic Magnetic (EuIn)As Nanowire Shells with a Unique Crystal Structure. Nano Letters 2022, 22 (22) , 8925-8931. https://doi.org/10.1021/acs.nanolett.2c03012
    5. Ryota Akiyama, Ryo Ishikawa, Kazuhiro Akutsu-Suyama, Ryosuke Nakanishi, Yuta Tomohiro, Kazumi Watanabe, Kazuki Iida, Masanori Mitome, Shuji Hasegawa, Shinji Kuroda. Direct Probe of the Ferromagnetic Proximity Effect at the Interface of SnTe/Fe Heterostructure by Polarized Neutron Reflectometry. The Journal of Physical Chemistry Letters 2022, 13 (35) , 8228-8235. https://doi.org/10.1021/acs.jpclett.2c01478
    6. Ilya I. Klimovskikh, Dmitry A. Estyunin, Tatyana P. Makarova, Oleg E. Tereshchenko, Konstantin A. Kokh, Alexander M. Shikin. Electronic Structure of Pb Adsorbed Surfaces of Intrinsic Magnetic Topological Insulators. The Journal of Physical Chemistry Letters 2022, 13 (29) , 6628-6634. https://doi.org/10.1021/acs.jpclett.2c01245
    7. Ido Levy, Candice Forrester, Haiming Deng, Manuel Roldan-Gutierrez, Martha R. McCartney, David J. Smith, Christophe Testelin, Lia Krusin-Elbaum, Maria C. Tamargo. Compositional Control and Optimization of Molecular Beam Epitaxial Growth of (Sb2Te3)1–x(MnSb2Te4)x Magnetic Topological Insulators. Crystal Growth & Design 2022, 22 (5) , 3007-3015. https://doi.org/10.1021/acs.cgd.1c01453
    8. Takuya Takashiro, Ryota Akiyama, Ivan A. Kibirev, Andrey V. Matetskiy, Ryosuke Nakanishi, Shunsuke Sato, Takuro Fukasawa, Taisuke Sasaki, Haruko Toyama, Kota L. Hiwatari, Andrey V. Zotov, Alexander A. Saranin, Toru Hirahara, Shuji Hasegawa. Soft-Magnetic Skyrmions Induced by Surface-State Coupling in an Intrinsic Ferromagnetic Topological Insulator Sandwich Structure. Nano Letters 2022, 22 (3) , 881-887. https://doi.org/10.1021/acs.nanolett.1c02952
    9. E. K. Petrov, A. Ernst, T. V. Menshchikova, E. V. Chulkov. Intrinsic Magnetic Topological Insulator State Induced by the Jahn–Teller Effect. The Journal of Physical Chemistry Letters 2021, 12 (37) , 9076-9085. https://doi.org/10.1021/acs.jpclett.1c02396
    10. Chi Xuan Trang, Qile Li, Yuefeng Yin, Jinwoong Hwang, Golrokh Akhgar, Iolanda Di Bernardo, Antonija Grubišić-Čabo, Anton Tadich, Michael S. Fuhrer, Sung-Kwan Mo, Nikhil V. Medhekar, Mark T. Edmonds. Crossover from 2D Ferromagnetic Insulator to Wide Band Gap Quantum Anomalous Hall Insulator in Ultrathin MnBi2Te4. ACS Nano 2021, 15 (8) , 13444-13452. https://doi.org/10.1021/acsnano.1c03936
    11. Tiancong Zhu, Alexander J. Bishop, Tong Zhou, Menglin Zhu, Dante J. O’Hara, Alexander A. Baker, Shuyu Cheng, Robert C. Walko, Jacob J. Repicky, Tao Liu, Jay A. Gupta, Chris M. Jozwiak, Eli Rotenberg, Jinwoo Hwang, Igor Žutić, Roland K. Kawakami. Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBi2Se4. Nano Letters 2021, 21 (12) , 5083-5090. https://doi.org/10.1021/acs.nanolett.1c00141
    12. S. V. Eremeev, I. P. Rusinov, Yu. M. Koroteev, A. Yu. Vyazovskaya, M. Hoffmann, P. M. Echenique, A. Ernst, M. M. Otrokov, E. V. Chulkov. Topological Magnetic Materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals Compounds Family. The Journal of Physical Chemistry Letters 2021, 12 (17) , 4268-4277. https://doi.org/10.1021/acs.jpclett.1c00875
    13. Alexander Zeugner, Frederik Nietschke, Anja U. B. Wolter, Sebastian Gaß, Raphael C. Vidal, Thiago R. F. Peixoto, Darius Pohl, Christine Damm, Axel Lubk, Richard Hentrich, Simon K. Moser, Celso Fornari, Chul Hee Min, Sonja Schatz, Katharina Kißner, Maximilian Ünzelmann, Martin Kaiser, Francesco Scaravaggi, Bernd Rellinghaus, Kornelius Nielsch, Christian Hess, Bernd Büchner, Friedrich Reinert, Hendrik Bentmann, Oliver Oeckler, Thomas Doert, Michael Ruck, Anna Isaeva. Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4. Chemistry of Materials 2019, 31 (8) , 2795-2806. https://doi.org/10.1021/acs.chemmater.8b05017
    14. Yusheng Hou, Ruqian Wu. Axion Insulator State in a Ferromagnet/Topological Insulator/Antiferromagnet Heterostructure. Nano Letters 2019, 19 (4) , 2472-2477. https://doi.org/10.1021/acs.nanolett.9b00047
    15. Sergey V. Eremeev, Mikhail M. Otrokov, Evgueni V. Chulkov. New Universal Type of Interface in the Magnetic Insulator/Topological Insulator Heterostructures. Nano Letters 2018, 18 (10) , 6521-6529. https://doi.org/10.1021/acs.nanolett.8b03057
    16. Danielle M. Hamann, Dylan Bardgett, Dmitri Leo M. Cordova, Liese A. Maynard, Erik C. Hadland, Alexander C. Lygo, Suzannah R. Wood, Marco Esters, David C. Johnson. Sub-Monolayer Accuracy in Determining the Number of Atoms per Unit Area in Ultrathin Films Using X-ray Fluorescence. Chemistry of Materials 2018, 30 (18) , 6209-6216. https://doi.org/10.1021/acs.chemmater.8b02591
    17. Shilei Zhang, Florian Kronast, Gerrit van der Laan, and Thorsten Hesjedal . Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure. Nano Letters 2018, 18 (2) , 1057-1063. https://doi.org/10.1021/acs.nanolett.7b04537
    18. Nezhat Pournaghavi, Banasree Sadhukhan, Anna Delin. Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-024-80694-7
    19. Tappei Kawakami, Kosuke Nakayama, Katsuaki Sugawara, Takafumi Sato. In-situ topotactic chemical reaction for spectroscopies. Electronic Structure 2024, 6 (3) , 033001. https://doi.org/10.1088/2516-1075/ad5acb
    20. Lakshmi Pullasseri, Luiz H. Santos. Chern bands with higher-order Van Hove singularities on topological moiré surface states. Physical Review B 2024, 110 (11) https://doi.org/10.1103/PhysRevB.110.115125
    21. I.I. Klimovskikh, S.V. Eremeev, D.A. Estyunin, S.O. Filnov, K. Shimada, V.A. Golyashov, N.Yu. Solovova, O.E. Tereshchenko, K.A. Kokh, A.S. Frolov, A.I. Sergeev, V.S. Stolyarov, V. Mikšić Trontl, L. Petaccia, G. Di Santo, M. Tallarida, J. Dai, S. Blanco-Canosa, T. Valla, A.M. Shikin, E.V. Chulkov. Interfacing two-dimensional and magnetic topological insulators: Bi bilayer on MnBi 2 Te 4 -family materials. Materials Today Advances 2024, 23 , 100511. https://doi.org/10.1016/j.mtadv.2024.100511
    22. R. Fukushima, V. N. Antonov, M. M. Otrokov, T. T. Sasaki, R. Akiyama, K. Sumida, K. Ishihara, S. Ichinokura, K. Tanaka, Y. Takeda, D. P. Salinas, S. V. Eremeev, E. V. Chulkov, A. Ernst, T. Hirahara. Direct evidence of induced magnetic moment in Se and the role of misplaced Mn in MnBi 2 Se 4 -based intrinsic magnetic topological insulator heterostructures. Physical Review Materials 2024, 8 (8) https://doi.org/10.1103/PhysRevMaterials.8.084202
    23. Salma Khatun, Onyedikachi Alanwoko, Vimukthi Pathirage, Caique C. de Oliveira, Raphael M. Tromer, Pedro A. S. Autreto, Douglas S. Galvao, Matthias Batzill. Solid State Reaction Epitaxy, A New Approach for Synthesizing Van der Waals heterolayers: The Case of Mn and Cr on Bi 2 Se 3. Advanced Functional Materials 2024, 34 (28) https://doi.org/10.1002/adfm.202315112
    24. Mattia Fanetti, Katja Ferfolja, Sandra Gardonio, Matjaž Valant. The interface between Pt and Bi2Se3: Instability and formation of a new ordered phase. Applied Surface Science Advances 2024, 21 , 100610. https://doi.org/10.1016/j.apsadv.2024.100610
    25. Shuji Hasegawa. Surface and interface physics driven by quantum materials. Applied Physics Express 2024, 17 (5) , 050101. https://doi.org/10.35848/1882-0786/ad4468
    26. Shenda He, Ruirong Kang, Pan Zhou, Pengbo Lyu, Lizhong Sun. Excellent intrinsic Chern insulators: monolayer PdTaX 2 (X = Se, Te). Journal of Materials Chemistry C 2024, 12 (11) , 4062-4069. https://doi.org/10.1039/D3TC04120D
    27. Piotr Pigoń, Anna Dyrdał. Electronic and topological properties of a topological insulator sandwiched between ferromagnetic insulators. Journal of Magnetism and Magnetic Materials 2024, 593 , 171795. https://doi.org/10.1016/j.jmmm.2024.171795
    28. Chaowei Hu, Tiema Qian, Ni Ni. Recent progress in MnBi2 n Te3 n +1 intrinsic magnetic topological insulators: crystal growth, magnetism and chemical disorder. National Science Review 2024, 11 (2) https://doi.org/10.1093/nsr/nwad282
    29. Takahiro Chiba, Takashi Komine, Tomosuke Aono. Ultrastrong-coupled magnon–polariton in a dynamical inductor based on magnetic-insulator/topological-insulator bilayers. Applied Physics Letters 2024, 124 (1) https://doi.org/10.1063/5.0173898
    30. Jie Li, Peiru Yang, Wei Ren, Ruqian Wu. Pressure-induced switching between topological phases in magnetic van der Waals heterostructures. Physical Review B 2024, 109 (3) https://doi.org/10.1103/PhysRevB.109.035419
    31. Jaime Sánchez-Barriga, Oliver J. Clark, Oliver Rader. Angle-resolved photoemission of topological materials. 2024, 334-369. https://doi.org/10.1016/B978-0-323-90800-9.00274-2
    32. Surasree Sadhukhan, Sudipta Kanungo. Atomistic designing of 2D quantum materials heterostructures CdF/CrI 3 for Berry curvature driven tunable intrinsic anomalous Hall state. Journal of Physics: Condensed Matter 2023, 35 (45) , 455601. https://doi.org/10.1088/1361-648X/aceba8
    33. Wen-Ti Guo, Ningjing Yang, Zhigao Huang, Jian-Min Zhang. Novel magnetic topological insulator FeBi 2 Te 4 with controllable topological quantum phase. Journal of Materials Chemistry C 2023, 11 (36) , 12307-12319. https://doi.org/10.1039/D3TC01890C
    34. Takashi Komine, Takahiro Chiba. Numerical analysis of voltage-controlled magnetization switching operation in magnetic-topological-insulator-based devices. Applied Physics Letters 2023, 123 (10) https://doi.org/10.1063/5.0162297
    35. Lu Huang, Wen-Ti Guo, Jiefeng Ye, Rui-Qi Liu, Jian-Min Zhang. Tunable topological states in antiferromagnetic MnSb 4 Se 7 material. Physica Scripta 2023, 98 (8) , 085944. https://doi.org/10.1088/1402-4896/ace487
    36. Tatiana P. Estyunina, Alexander M. Shikin, Dmitry A. Estyunin, Alexander V. Eryzhenkov, Ilya I. Klimovskikh, Kirill A. Bokai, Vladimir A. Golyashov, Konstantin A. Kokh, Oleg E. Tereshchenko, Shiv Kumar, Kenya Shimada, Artem V. Tarasov. Evolution of Mn1−xGexBi2Te4 Electronic Structure under Variation of Ge Content. Nanomaterials 2023, 13 (14) , 2151. https://doi.org/10.3390/nano13142151
    37. JiaYuan HU, XiangRui LIU, Chang LIU, Dong QIAN. ARPES studies of the band structures of topological insulators. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (6) , 267008. https://doi.org/10.1360/SSPMA-2022-0299
    38. P. Kagerer, C. I. Fornari, S. Buchberger, T. Tschirner, L. Veyrat, M. Kamp, A. V. Tcakaev, V. Zabolotnyy, S. L. Morelhão, B. Geldiyev, S. Müller, A. Fedorov, E. Rienks, P. Gargiani, M. Valvidares, L. C. Folkers, A. Isaeva, B. Büchner, V. Hinkov, R. Claessen, H. Bentmann, F. Reinert. Two-dimensional ferromagnetic extension of a topological insulator. Physical Review Research 2023, 5 (2) https://doi.org/10.1103/PhysRevResearch.5.L022019
    39. Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials. Frontiers of Physics 2023, 18 (2) https://doi.org/10.1007/s11467-022-1250-6
    40. E. K. Petrov, I. V. Silkin, V. M. Kuznetsov, T. V. Men'shchikova, E. V Chulkov. Vanadium-Containing Planar Heterostructures Based on Topological Insulators. Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki 2023, 117 (3-4 (2)) , 235-241. https://doi.org/10.31857/S1234567823030096
    41. E. K. Petrov, I. V. Silkin, V. M. Kuznetsov, T. V. Menshchikova, E. V. Chulkov. Vanadium-Containing Planar Heterostructures Based on Topological Insulators. JETP Letters 2023, 117 (3) , 228-233. https://doi.org/10.1134/S0021364022603293
    42. Ryota AKIYAMA, Takuya TAKASHIRO, Shinji KURODA, Shuji HASEGAWA. Concerted Effects of Topological Insulators and Ferromagnetism. Vacuum and Surface Science 2023, 66 (1) , 28-33. https://doi.org/10.1380/vss.66.28
    43. S. Chen, Y. Han, M. Kolmer, J. Hall, M. Hupalo, J. W. Evans, M. C. Tringides. Targeted Dy intercalation under graphene/SiC for tuning its electronic band structure. Physical Review B 2023, 107 (4) https://doi.org/10.1103/PhysRevB.107.045408
    44. Alexandra Yu. Vyazovskaya, Evgeniy K. Petrov, Yury M. Koroteev, Mihovil Bosnar, Igor V. Silkin, Evgueni V. Chulkov, Mikhail M. Otrokov. Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators. Nanomaterials 2023, 13 (1) , 38. https://doi.org/10.3390/nano13010038
    45. Siamak Pooyan, Mir Vahid Hosseini. Enhanced and stable spin Hall conductivity in a disordered time-reversal and inversion symmetry broken topological insulator thin film. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-19756-7
    46. M. Garnica, M. M. Otrokov, P. Casado Aguilar, I. I. Klimovskikh, D. Estyunin, Z. S. Aliev, I. R. Amiraslanov, N. A. Abdullayev, V. N. Zverev, M. B. Babanly, N. T. Mamedov, A. M. Shikin, A. Arnau, A. L. Vázquez de Parga, E. V. Chulkov, R. Miranda. Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). npj Quantum Materials 2022, 7 (1) https://doi.org/10.1038/s41535-021-00414-6
    47. Yuya Asaka, Tatsuki Kikuchi, Yuki Fuseya. Long-range permeation of wave function and superficial surface state due to strong quantum size effects in topological Bi/BiSb heterojunctions. Physical Review B 2022, 106 (24) https://doi.org/10.1103/PhysRevB.106.245303
    48. Yuichi Motoyama, Kazuyoshi Yoshimi, Izumi Mochizuki, Harumichi Iwamoto, Hayato Ichinose, Takeo Hoshi. Data-analysis software framework 2DMAT and its application to experimental measurements for two-dimensional material structures. Computer Physics Communications 2022, 280 , 108465. https://doi.org/10.1016/j.cpc.2022.108465
    49. Kazuki Sumida, Shotaro Kusaka, Yukiharu Takeda, Katsuyoshi Kobayashi, Toru Hirahara. Formation of monolayer V 5 Se 8 from multilayer VSe 2 films via V- and Se-desorption. Physical Review B 2022, 106 (19) https://doi.org/10.1103/PhysRevB.106.195421
    50. Mengke Liu, Chao Lei, Hyunsue Kim, Yanxing Li, Lisa Frammolino, Jiaqiang Yan, Allan H. Macdonald, Chih-Kang Shih. Visualizing the interplay of Dirac mass gap and magnetism at nanoscale in intrinsic magnetic topological insulators. Proceedings of the National Academy of Sciences 2022, 119 (42) https://doi.org/10.1073/pnas.2207681119
    51. T. TAKASHIRO, R. AKIYAMA, I. A. KIBIREV, A. V. MATETSKIY, R. NAKANISHI, S. SATO, T. FUKASAWA, T. SASAKI, H. TOYAMA, K. L. HIWATARI, A. V. ZOTOV, A. A. SARANIN, T. HIRAHARA, S. HASEGAWA. Electrical Observation of Soft-magnetic Skyrmions in the Sandwich Structure Including Topological Insulator with Self-assembled Ferromagnetic Atomic Layers. Vacuum and Surface Science 2022, 65 (9) , 405-410. https://doi.org/10.1380/vss.65.405
    52. Yuan Gao, Huiping Li, Wenguang Zhu. Prediction of quantum anomalous Hall effect in CrI 3 /ScCl 2 bilayer heterostructure. Chinese Physics B 2022, 31 (10) , 107304. https://doi.org/10.1088/1674-1056/ac67cb
    53. Sugata Chowdhury, Kevin F. Garrity, Francesca Tavazza. Recent Advances in Weyl Semimetal ( MnBi 2 Se 4 ) and Axion Insulator ( MnBi 2 Te 4 ). 2022, 239-260. https://doi.org/10.1002/9783527833689.ch10
    54. S. V. Eremeev, M. M. Otrokov, A. Ernst, E. V. Chulkov. Magnetic ordering and topology in Mn 2 Bi 2 Te 5 and Mn 2 Sb 2 Te 5 van der Waals materials. Physical Review B 2022, 105 (19) https://doi.org/10.1103/PhysRevB.105.195105
    55. T. P. Makarova, D. A. Estyunin, S. O. Fil’nov, D. A. Glazkova, D. A. Pudikov, A. G. Rybkin, A. A. Gogina, Z. S. Aliev, I. R. Amiraslanov, N. T. Mamedov, K. A. Kokh, O. E. Tereshchenko, A. M. Shikin, M. M. Otrokov, E. V. Chulkov, I. I. Klimovskikh. Impact of Co Atoms on the Electronic Structure of Bi2Te3 and MnBi2Te4 Topological Insulators. Journal of Experimental and Theoretical Physics 2022, 134 (5) , 607-614. https://doi.org/10.1134/S1063776122030086
    56. Qile Li, Chi Xuan Trang, Weikang Wu, Jinwoong Hwang, David Cortie, Nikhil Medhekar, Sung‐Kwan Mo, Shengyuan A. Yang, Mark T. Edmonds. Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure. Advanced Materials 2022, 34 (21) https://doi.org/10.1002/adma.202107520
    57. B. Andrei Bernevig, Claudia Felser, Haim Beidenkopf. Progress and prospects in magnetic topological materials. Nature 2022, 603 (7899) , 41-51. https://doi.org/10.1038/s41586-021-04105-x
    58. Evgeniy K. Petrov, Vladimir M. Kuznetsov, Sergey V. Eremeev. MnBi2Se4-Based Magnetic Modulated Heterostructures. Magnetism 2022, 2 (1) , 1-9. https://doi.org/10.3390/magnetism2010001
    59. Shanfei Zhang, Hao Wu, Li Yang, Gaojie Zhang, Yuanmiao Xie, Liang Zhang, Wenfeng Zhang, Haixin Chang. Two-dimensional magnetic atomic crystals. Materials Horizons 2022, 9 (2) , 559-576. https://doi.org/10.1039/D1MH01155C
    60. Kazuki Sumida, Yukiharu Takeda, Shotaro Kusaka, Katsuyoshi Kobayashi, Toru Hirahara. Short-range magnetic interaction in a monolayer 1 T − VSe 2 film revealed by element-specific x-ray magnetic circular dichroism. Physical Review Materials 2022, 6 (1) https://doi.org/10.1103/PhysRevMaterials.6.014006
    61. Masataka Mogi. Magnetic Proximity Induced Quantum Anomalous Hall Effect. 2022, 39-65. https://doi.org/10.1007/978-981-19-2137-7_4
    62. Gustav Bihlmayer, Paul Noël, Denis V. Vyalikh, Evgueni V. Chulkov, Aurélien Manchon. . Nature Reviews Physics 2022, 642. https://doi.org/10.1038/s42254-022-00490-y
    63. A. K. Kaveev, S. M. Suturin, V. A. Golyashov, K. A. Kokh, S. V. Eremeev, D. A. Estyunin, A. M. Shikin, A. V. Okotrub, A. N. Lavrov, E. F. Schwier, O. E. Tereshchenko. Band gap opening in the BiSbTeSe 2 topological surface state induced by ferromagnetic surface reordering. Physical Review Materials 2021, 5 (12) https://doi.org/10.1103/PhysRevMaterials.5.124204
    64. Ping Li, Yuwei You, Kai Huang, Weidong Luo. Quantum anomalous Hall effect in Cr 2 Ge 2 Te 6 /Bi 2 Se 3 /Cr 2 Ge 2 Te 6 heterostructures. Journal of Physics: Condensed Matter 2021, 33 (46) , 465003. https://doi.org/10.1088/1361-648X/ac2117
    65. Vinod K Gangwar, Shiv Kumar, Mahima Singh, Prajyoti Singh, Labanya Ghosh, Debarati Pal, Prashant Shahi, Yoshiya Uwatoko, Eike F Schwier, K Shimada, Durgesh Kumar Sharma, Sudhir Kumar, Sandip Chatterjee. Observation of antiferromagnetic ordering from muon spin resonance study and the Kondo effect in a Dy-doped Bi 2 Se 3 topological insulator. Journal of Physics D: Applied Physics 2021, 54 (45) , 455302. https://doi.org/10.1088/1361-6463/ac128f
    66. N. Pournaghavi, A. Pertsova, A. H. MacDonald, C. M. Canali. Nonlocal sidewall response and deviation from exact quantization of the topological magnetoelectric effect in axion-insulator thin films. Physical Review B 2021, 104 (20) https://doi.org/10.1103/PhysRevB.104.L201102
    67. Su Kong Chong, Vikram V. Deshpande. Van der Waals heterostructures based on three-dimensional topological insulators. Current Opinion in Solid State and Materials Science 2021, 25 (5) , 100939. https://doi.org/10.1016/j.cossms.2021.100939
    68. Regina Galceran, Bo Tian, Junzhu Li, Frédéric Bonell, Matthieu Jamet, Céline Vergnaud, Alain Marty, Jose H. García, Juan F. Sierra, Marius V. Costache, Stephan Roche, Sergio O. Valenzuela, Aurélien Manchon, Xixiang Zhang, Udo Schwingenschlögl. Control of spin–charge conversion in van der Waals heterostructures. APL Materials 2021, 9 (10) https://doi.org/10.1063/5.0054865
    69. Chen Chen, Le Fang, Guodong Zhao, Xingen Liu, Jian Wang, Lee A. Burton, Yunwei Zhang, Wei Ren. A high-temperature quantum anomalous Hall effect in electride gadolinium monohalides. Journal of Materials Chemistry C 2021, 9 (30) , 9539-9544. https://doi.org/10.1039/D1TC01513C
    70. Semonti Bhattacharyya, Golrokh Akhgar, Matthew Gebert, Julie Karel, Mark T. Edmonds, Michael S. Fuhrer. Recent Progress in Proximity Coupling of Magnetism to Topological Insulators. Advanced Materials 2021, 33 (33) https://doi.org/10.1002/adma.202007795
    71. Marius Scholten, Jorge I. Facio, Rajyavardhan Ray, Ilya M. Eremin, Jeroen van den Brink, Flavio S. Nogueira. Finite temperature fluctuation-induced order and responses in magnetic topological insulators. Physical Review Research 2021, 3 (3) https://doi.org/10.1103/PhysRevResearch.3.L032014
    72. N. A. Abdullayev, Kh. V. Aliguliyeva, V. N. Zverev, Z. S. Aliev, I. R. Amiraslanov, M. B. Babanly, Z. A. Jahangirli, Ye. N. Aliyeva, Kh. N. Akhmedova, T. G. Mammadov, M. M. Otrokov, A. M. Shikin, N. T. Mamedov, E. V. Chulkov. The Charge Transport Mechanism in a New Magnetic Topological Insulator MnBi0.5Sb1.5Te4. Physics of the Solid State 2021, 63 (7) , 1120-1125. https://doi.org/10.1134/S1063783421080023
    73. Takahiro Chiba, Alejandro O. Leon, Takashi Komine. Voltage-control of damping constant in magnetic-insulator/topological-insulator bilayers. Applied Physics Letters 2021, 118 (25) https://doi.org/10.1063/5.0046217
    74. E. K. Petrov, V. N. Men'shov, I. P. Rusinov, M. Hoffmann, A. Ernst, M. M. Otrokov, V. K. Dugaev, T. V. Menshchikova, E. V. Chulkov. Domain wall induced spin-polarized flat bands in antiferromagnetic topological insulators. Physical Review B 2021, 103 (23) https://doi.org/10.1103/PhysRevB.103.235142
    75. Katsuhiro Arimoto, Takashi Koretsune, Kentaro Nomura. Quantum anomalous Hall effect in a three-dimensional topological-insulator–thin-film-ferromagnetic-metal heterostructure. Physical Review B 2021, 103 (23) https://doi.org/10.1103/PhysRevB.103.235315
    76. Donghui Liu, Fei Niu, Xiaolin Zhang, Yuning Meng, Youming Yang. Fabrication of SmCo5 alloy via cobalt-induced calciothermic reduction and magnetic properties of its ribbon. Journal of Rare Earths 2021, 39 (5) , 572-578. https://doi.org/10.1016/j.jre.2020.06.009
    77. T. Fukasawa, S. Kusaka, K. Sumida, M. Hashizume, S. Ichinokura, Y. Takeda, S. Ideta, K. Tanaka, R. Shimizu, T. Hitosugi, T. Hirahara. Absence of ferromagnetism in MnBi 2 Te 4 / Bi 2 Te 3 down to 6 K. Physical Review B 2021, 103 (20) https://doi.org/10.1103/PhysRevB.103.205405
    78. N. Pournaghavi, M. F. Islam, Rajibul Islam, Carmine Autieri, Tomasz Dietl, C. M. Canali. Realization of the Chern-insulator and axion-insulator phases in antiferromagnetic MnTe / Bi 2 ( Se , Te ) 3 / MnTe heterostructures. Physical Review B 2021, 103 (19) https://doi.org/10.1103/PhysRevB.103.195308
    79. Kazuki Sumida, Yukiaki Ishida, Jens Güdde, Ulrich Höfer, Shik Shin, Akio Kimura. Ultrafast surface Dirac fermion dynamics of Sb2Te3-based topological insulators. Progress in Surface Science 2021, 96 (2) , 100628. https://doi.org/10.1016/j.progsurf.2021.100628
    80. S. D. Borisova, S. V. Eremeev, G. G. Rusina, E. V. Chulkov. Magnetic and vibrational properties of small chromium clusters on the Cu(111) surface. Physical Chemistry Chemical Physics 2021, 23 (13) , 7814-7821. https://doi.org/10.1039/D0CP05223J
    81. Kris Holtgrewe, Conor Hogan, Simone Sanna. Evolution of Topological Surface States Following Sb Layer Adsorption on Bi2Se3. Materials 2021, 14 (7) , 1763. https://doi.org/10.3390/ma14071763
    82. Xiao-Ming Ma, Yufei Zhao, Ke Zhang, Shiv Kumar, Ruie Lu, Jiayu Li, Qiushi Yao, Jifeng Shao, Fuchen Hou, Xuefeng Wu, Meng Zeng, Yu-Jie Hao, Zhanyang Hao, Yuan Wang, Xiang-Rui Liu, Huiwen Shen, Hongyi Sun, Jiawei Mei, Koji Miyamoto, Taichi Okuda, Masashi Arita, Eike F. Schwier, Kenya Shimada, Ke Deng, Cai Liu, Junhao Lin, Yue Zhao, Chaoyu Chen, Qihang Liu, Chang Liu. Realization of a tunable surface Dirac gap in Sb-doped MnBi 2 Te 4 . Physical Review B 2021, 103 (12) https://doi.org/10.1103/PhysRevB.103.L121112
    83. Andrzej Ptok, Konrad Jerzy Kapcia, Anna Ciechan. Electronic properties of Bi 2 Se 3 dopped by 3d transition metal (Mn, Fe, Co, or Ni) ions. Journal of Physics: Condensed Matter 2021, 33 (6) , 065501. https://doi.org/10.1088/1361-648X/abba6a
    84. Xiaoming Zhang, Feng Liu. Prediction of Majorana edge states from magnetized topological surface states. Physical Review B 2021, 103 (2) https://doi.org/10.1103/PhysRevB.103.024405
    85. Chaowei Hu, Kyle N. Gordon, Pengfei Liu, Jinyu Liu, Xiaoqing Zhou, Peipei Hao, Dushyant Narayan, Eve Emmanouilidou, Hongyi Sun, Yuntian Liu, Harlan Brawer, Arthur P. Ramirez, Lei Ding, Huibo Cao, Qihang Liu, Dan Dessau, Ni Ni. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13814-x
    86. T. Hirahara, M. M. Otrokov, T. T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, S. Kuroda, T. Okuda, K. Hono, S. V. Eremeev, E. V. Chulkov. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18645-9
    87. Ilya I. Klimovskikh, Mikhail M. Otrokov, Dmitry Estyunin, Sergey V. Eremeev, Sergey O. Filnov, Alexandra Koroleva, Eugene Shevchenko, Vladimir Voroshnin, Artem G. Rybkin, Igor P. Rusinov, Maria Blanco-Rey, Martin Hoffmann, Ziya S. Aliev, Mahammad B. Babanly, Imamaddin R. Amiraslanov, Nadir A. Abdullayev, Vladimir N. Zverev, Akio Kimura, Oleg E. Tereshchenko, Konstantin A. Kokh, Luca Petaccia, Giovanni Di Santo, Arthur Ernst, Pedro M. Echenique, Nazim T. Mamedov, Alexander M. Shikin, Eugene V. Chulkov. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family. npj Quantum Materials 2020, 5 (1) https://doi.org/10.1038/s41535-020-00255-9
    88. K. Holtgrewe, S. K. Mahatha, P. M. Sheverdyaeva, P. Moras, R. Flammini, S. Colonna, F. Ronci, M. Papagno, A. Barla, L. Petaccia, Z. S. Aliev, M. B. Babanly, E. V. Chulkov, S. Sanna, C. Hogan, C. Carbone. Topologization of β-antimonene on Bi2Se3 via proximity effects. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-71624-4
    89. Takahiro Chiba, Takashi Komine. Thermoelectric refrigerator based on asymmetric surfaces of a magnetic topological insulator. AIP Advances 2020, 10 (12) https://doi.org/10.1063/9.0000005
    90. Chao Lei, Shu Chen, Allan H. MacDonald. Magnetized topological insulator multilayers. Proceedings of the National Academy of Sciences 2020, 117 (44) , 27224-27230. https://doi.org/10.1073/pnas.2014004117
    91. A. I. Figueroa, T. Hesjedal, N.-J. Steinke. Magnetic order in 3D topological insulators—Wishful thinking or gateway to emergent quantum effects?. Applied Physics Letters 2020, 117 (15) https://doi.org/10.1063/5.0027987
    92. Li Chen, Dongchao Wang, Changmin Shi, Chuan Jiang, Hongmei Liu, Guangliang Cui, Xiaoming Zhang, Xiaolong Li. Electronic structure and magnetism of MnSb2Te4. Journal of Materials Science 2020, 55 (29) , 14292-14300. https://doi.org/10.1007/s10853-020-05005-7
    93. Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe 2 *. Chinese Physics Letters 2020, 37 (10) , 107101. https://doi.org/10.1088/0256-307X/37/10/107101
    94. Muhammad Nadeem, Alex R. Hamilton, Michael S. Fuhrer, Xiaolin Wang. Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic Spin‐Gapless Semiconductors—A Perspective Review. Small 2020, 16 (42) https://doi.org/10.1002/smll.201904322
    95. Tatiana V. Menshchikova, Sergey V. Eremeev, Vladimir M. Kuznetsov, Evgueni V. Chulkov. Interplay of Topological States on TI/TCI Interfaces. Materials 2020, 13 (20) , 4481. https://doi.org/10.3390/ma13204481
    96. Takahiro Chiba, Takashi Komine. Voltage-Driven Magnetization Switching via Dirac Magnetic Anisotropy and Spin-Orbit Torque in Topological-Insulator-Based Magnetic Heterostructures. Physical Review Applied 2020, 14 (3) https://doi.org/10.1103/PhysRevApplied.14.034031
    97. Nan Liu, Xuefan Niu, Yuxin Liu, Qinghua Zhang, Lin Gu, Yongqing Li, Jing Teng. Anomalous Hall effect in a magnetically extended topological insulator heterostructure. Physical Review Materials 2020, 4 (9) https://doi.org/10.1103/PhysRevMaterials.4.094204
    98. Chaowei Hu, Lei Ding, Kyle N. Gordon, Barun Ghosh, Hung-Ju Tien, Haoxiang Li, A. Garrison Linn, Shang-Wei Lien, Cheng-Yi Huang, Scott Mackey, Jinyu Liu, P. V. Sreenivasa Reddy, Bahadur Singh, Amit Agarwal, Arun Bansil, Miao Song, Dongsheng Li, Su-Yang Xu, Hsin Lin, Huibo Cao, Tay-Rong Chang, Dan Dessau, Ni Ni. Realization of an intrinsic ferromagnetic topological state in MnBi 8 Te 13. Science Advances 2020, 6 (30) https://doi.org/10.1126/sciadv.aba4275
    99. Brenton A. Noesges, Tiancong Zhu, Jacob J. Repicky, Sisheng Yu, Fengyuan Yang, Jay A. Gupta, Roland K. Kawakami, Leonard J. Brillson. Chemical migration and dipole formation at van der Waals interfaces between magnetic transition metal chalcogenides and topological insulators. Physical Review Materials 2020, 4 (5) https://doi.org/10.1103/PhysRevMaterials.4.054001
    100. Dimitrie Culcer, Aydın Cem Keser, Yongqing Li, Grigory Tkachov. Transport in two-dimensional topological materials: recent developments in experiment and theory. 2D Materials 2020, 7 (2) , 022007. https://doi.org/10.1088/2053-1583/ab6ff7
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2017, 17, 6, 3493–3500
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b00560
    Published May 26, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    5174

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.