ACS Publications. Most Trusted. Most Cited. Most Read
High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator
My Activity

    Letter

    High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator
    Click to copy article linkArticle link copied!

    View Author Information
    JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
    School of Physics and Astronomy and Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
    § ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2017, 17, 10, 5950–5955
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b01845
    Published September 14, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ultralight mechanical resonators based on low-dimensional materials are well suited as exceptional transducers of minuscule forces or mass changes. However, the low dimensionality also provides a challenge to minimize resistive losses and heating. Here, we report on a novel approach that aims to combine different two-dimensional (2D) materials to tackle this challenge. We fabricated a heterostructure mechanical resonator consisting of few layers of niobium diselenide (NbSe2) encapsulated by two graphene sheets. The hybrid membrane shows high quality factors up to 245,000 at low temperatures, comparable to the best few-layer graphene mechanical resonators. In contrast to few-layer graphene resonators, the device shows reduced electrical losses attributed to the lower resistivity of the NbSe2 layer. The peculiar low-temperature dependence of the intrinsic quality factor points to dissipation over two-level systems which in turn relax over the electronic system. Our high sensitivity readout is enabled by coupling the membrane to a superconducting cavity which allows for the integration of the hybrid mechanical resonator as a sensitive and low loss transducer in future quantum circuits.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b01845.

    • Membrane characterization by Raman, calculation of resonator amplitude, data on temperature-dependent dissipation in additional devices, effect of thermal expansion on resonance frequency, and dependence of dissipation on mechanical drive voltage (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Haolin Jin, Giuseppe Serpico, Yejin Lee, Tommaso Confalone, Christian N. Saggau, Flavia Lo Sardo, Genda Gu, Berit H. Goodge, Edouard Lesne, Domenico Montemurro, Kornelius Nielsch, Nicola Poccia, Uri Vool. Exploring van der Waals Cuprate Superconductors Using a Hybrid Microwave Circuit. Nano Letters 2025, 25 (8) , 3191-3198. https://doi.org/10.1021/acs.nanolett.4c05793
    2. Shuwan Liu, Su Kong Chong, Dongwook Kim, Amit Vashist, Rohit Kumar, Seng Huat Lee, Kang L. Wang, Zhiqiang Mao, Feng Liu, Vikram V. Deshpande. Nanomechanical Characterization of an Antiferromagnetic Topological Insulator. Nano Letters 2025, 25 (3) , 973-980. https://doi.org/10.1021/acs.nanolett.4c04086
    3. Quan Liu, Chang He, Jie Ding, Wendong Zhang, Xuge Fan. Modeling and Simulation of 2D Transducers Based on Suspended Graphene-Based Heterostructures in Nanoelectromechanical Pressure Sensors. ACS Applied Materials & Interfaces 2024, 16 (43) , 59066-59076. https://doi.org/10.1021/acsami.4c11941
    4. Xuge Fan, Daniel Moreno-Garcia, Jie Ding, Kristinn B. Gylfason, Luis Guillermo Villanueva, Frank Niklaus. Resonant Transducers Consisting of Graphene Ribbons with Attached Proof Masses for NEMS Sensors. ACS Applied Nano Materials 2024, 7 (1) , 102-109. https://doi.org/10.1021/acsanm.3c03642
    5. Pengcheng Zhang, Yueyang Jia, Zuheng Liu, Xin Zhou, Dingbang Xiao, Ying Chen, Hao Jia, Rui Yang. Probing Linear to Nonlinear Damping in 2D Semiconductor Nanoelectromechanical Resonators toward a Unified Quality Factor Model. Nano Letters 2023, 23 (20) , 9375-9382. https://doi.org/10.1021/acs.nanolett.3c02691
    6. Bo Xu, Pengcheng Zhang, Jiankai Zhu, Zuheng Liu, Alexander Eichler, Xu-Qian Zheng, Jaesung Lee, Aneesh Dash, Swapnil More, Song Wu, Yanan Wang, Hao Jia, Akshay Naik, Adrian Bachtold, Rui Yang, Philip X.-L. Feng, Zenghui Wang. Nanomechanical Resonators: Toward Atomic Scale. ACS Nano 2022, 16 (10) , 15545-15585. https://doi.org/10.1021/acsnano.2c01673
    7. L. D. Varma Sangani, Supriya Mandal, Sanat Ghosh, Kenji Watanabe, Takashi Taniguchi, Mandar M. Deshmukh. Dynamics of Interfacial Bubble Controls Adhesion Mechanics in Van der Waals Heterostructure. Nano Letters 2022, 22 (9) , 3612-3619. https://doi.org/10.1021/acs.nanolett.1c04341
    8. Pengcheng Zhang, Yueyang Jia, Maosong Xie, Zuheng Liu, Sheng Shen, Jianyong Wei, Rui Yang. Strain-Modulated Dissipation in Two-Dimensional Molybdenum Disulfide Nanoelectromechanical Resonators. ACS Nano 2022, 16 (2) , 2261-2270. https://doi.org/10.1021/acsnano.1c08380
    9. Makars Šiškins, Ekaterina Sokolovskaya, Martin Lee, Samuel Mañas-Valero, Dejan Davidovikj, Herre S. J. van der Zant, Peter G. Steeneken. Tunable Strong Coupling of Mechanical Resonance between Spatially Separated FePS3 Nanodrums. Nano Letters 2022, 22 (1) , 36-42. https://doi.org/10.1021/acs.nanolett.1c03010
    10. Paolo F. Ferrari, SunPhil Kim, Arend M. van der Zande. Dissipation from Interlayer Friction in Graphene Nanoelectromechanical Resonators. Nano Letters 2021, 21 (19) , 8058-8065. https://doi.org/10.1021/acs.nanolett.1c02369
    11. Sami Ramadan, Yuanzhou Zhang, Deana Kwong Hong Tsang, Olena Shaforost, Lizhou Xu, Ryan Bower, Iain E. Dunlop, Peter K. Petrov, Norbert Klein. Enhancing Structural Properties and Performance of Graphene-Based Devices Using Self-Assembled HMDS Monolayers. ACS Omega 2021, 6 (7) , 4767-4775. https://doi.org/10.1021/acsomega.0c05631
    12. Matthew J. Hamer, David G. Hopkinson, Nick Clark, Mingwei Zhou, Wendong Wang, Yichao Zou, Daniel J. Kelly, Thomas H. Bointon, Sarah J. Haigh, Roman V. Gorbachev. Atomic Resolution Imaging of CrBr3 Using Adhesion-Enhanced Grids. Nano Letters 2020, 20 (9) , 6582-6589. https://doi.org/10.1021/acs.nanolett.0c02346
    13. David Miller, Andrew Blaikie, Benjamín J. Alemán. Nonvolatile Rewritable Frequency Tuning of a Nanoelectromechanical Resonator Using Photoinduced Doping. Nano Letters 2020, 20 (4) , 2378-2386. https://doi.org/10.1021/acs.nanolett.9b05003
    14. Xuge Fan, Fredrik Forsberg, Anderson D. Smith, Stephan Schröder, Stefan Wagner, Mikael Östling, Max C. Lemme, Frank Niklaus. Suspended Graphene Membranes with Attached Silicon Proof Masses as Piezoresistive Nanoelectromechanical Systems Accelerometers. Nano Letters 2019, 19 (10) , 6788-6799. https://doi.org/10.1021/acs.nanolett.9b01759
    15. Nicolas Morell, Slaven Tepsic, Antoine Reserbat-Plantey, Andrea Cepellotti, Marco Manca, Itai Epstein, Andreas Isacsson, Xavier Marie, Francesco Mauri, Adrian Bachtold. Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe2 Lattices. Nano Letters 2019, 19 (5) , 3143-3150. https://doi.org/10.1021/acs.nanolett.9b00560
    16. SunPhil Kim, Jaehyung Yu, Arend M. van der Zande. Nano-electromechanical Drumhead Resonators from Two-Dimensional Material Bimorphs. Nano Letters 2018, 18 (11) , 6686-6695. https://doi.org/10.1021/acs.nanolett.8b01926
    17. S. L. de Bonis, C. Urgell, W. Yang, C. Samanta, A. Noury, J. Vergara-Cruz, Q. Dong, Y. Jin, A. Bachtold. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators. Nano Letters 2018, 18 (8) , 5324-5328. https://doi.org/10.1021/acs.nanolett.8b02437
    18. Dejan Davidovikj, Menno Poot, Santiago J. Cartamil-Bueno, Herre S. J. van der Zant, Peter G. Steeneken. On-chip Heaters for Tension Tuning of Graphene Nanodrums. Nano Letters 2018, 18 (5) , 2852-2858. https://doi.org/10.1021/acs.nanolett.7b05358
    19. Yuchen Zhang, Qiang Liu, Yang Xiao, Jiawei Fang, Zhilong Shang, Zhiyu Guo, Feng Hu, Ying Liu, Guangwei Deng, Mengjian Zhu, Zhihong Zhu, Xingshu Wang, Fang Luo, Shiqiao Qin. Resonant dynamics governed by interlayer frozen bubbles in h-BN/graphene heterostructures. Applied Physics Letters 2025, 126 (22) https://doi.org/10.1063/5.0272385
    20. Alvaro Bermejillo-Seco, Xiang Zhang, Maurits J. A. Houmes, Makars Šiškins, Herre S. J. van der Zant, Peter G. Steeneken, Yaroslav M. Blanter. Thermoelastic damping across the phase transition in van der Waals magnets. Physical Review B 2025, 111 (24) https://doi.org/10.1103/PhysRevB.111.245409
    21. Xiaoxi Li, Xuanzhe Sha, Tongyao Zhang, Hanwen Wang, Zheng Vitto Han. The Emerging Nano‐Opto‐Electromechanical Systems Based on van der Waals Heterostructures. Advanced Functional Materials 2025, 11 https://doi.org/10.1002/adfm.202424667
    22. Yahav Ben-Shimon, Yarden Mazal Jahn, Anway Pradhan, Assaf Ya'akobovitz. Mitigation of energy dissipation of graphene resonators by introduction of boron-nitride. Applied Physics Letters 2024, 125 (25) https://doi.org/10.1063/5.0244030
    23. Heba M. Elbaz, Amr M. Mahmoud, Mamdouh R. Rezk, Mohamed I. El-Awady, Hoda M. Marzouk. Eco-Friendly Graphene-Based Electrochemical Sensor for Selective Determination of Lesinurad in Its Pharmaceutical Formulation and in the Presence of Its Degradation Products. Journal of The Electrochemical Society 2024, 171 (8) , 087510. https://doi.org/10.1149/1945-7111/ad6a98
    24. Pengcheng Zhang, Yueyang Jia, Zuheng Liu, Rui Yang. Strain-enhanced dynamic ranges in two-dimensional MoS2 and MoTe2 nanomechanical resonators. Applied Physics Reviews 2024, 11 (1) https://doi.org/10.1063/5.0167141
    25. M. Wang, C. X. Yang, X. Y. Leng, Y. Chen, S. B. Yang, W. Li, W. Hong, Y. Xu. The interface effect on the lithiation of silicon/graphene composites: The first principles study. International Journal of Quantum Chemistry 2024, 124 (3) https://doi.org/10.1002/qua.27343
    26. Anis Chiout, Cléophanie Brochard-Richard, Laetitia Marty, Nedjma Bendiab, Meng-Qiang Zhao, A. T. Charlie Johnson, Fabrice Oehler, Abdelkarim Ouerghi, Julien Chaste. Extreme mechanical tunability in suspended MoS2 resonator controlled by Joule heating. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00383-3
    27. Paolo F. Ferrari, SunPhil Kim, Arend M. van der Zande. Nanoelectromechanical systems from two-dimensional materials. Applied Physics Reviews 2023, 10 (3) https://doi.org/10.1063/5.0106731
    28. H. Liu, M. Lee, M. Šiškins, H. S. J. van der Zant, P. G. Steeneken, G. J. Verbiest. Tuning heat transport in graphene by tension. Physical Review B 2023, 108 (8) https://doi.org/10.1103/PhysRevB.108.L081401
    29. Yining You, Jordan Smolinsky, Wei Xue, Konstantin Matchev, Tarek Saab, Keegan Gunther, Yoonseok Lee. Signatures and detection prospects for sub-GeV dark matter with superfluid helium. Journal of High Energy Physics 2023, 2023 (7) https://doi.org/10.1007/JHEP07(2023)009
    30. Saumil Desai, Ankur Pandya, Vipul Bhojawala, Prafulla K. Jha. Theoretical modelling of graphene system for nano-electromechanical resonator and force sensor. Physica E: Low-dimensional Systems and Nanostructures 2023, 147 , 115606. https://doi.org/10.1016/j.physe.2022.115606
    31. Mingzeng Peng, Jiadong Cheng, Xinhe Zheng, Jingwen Ma, Ziyao Feng, Xiankai Sun. 2D-materials-integrated optoelectromechanics: recent progress and future perspectives. Reports on Progress in Physics 2023, 86 (2) , 026402. https://doi.org/10.1088/1361-6633/ac953e
    32. Saman Bagheri, Jehad Abourahma, Haidong Lu, Nataliia S. Vorobeva, Shengyuan Luo, Alexei Gruverman, Alexander Sinitskii. High-yield fabrication of electromechanical devices based on suspended Ti 3 C 2 T x MXene monolayers. Nanoscale 2023, 15 (3) , 1248-1259. https://doi.org/10.1039/D2NR05493K
    33. Siyuan Ban, Xuchen Nie, Zhihao Lei, Jiabao Yi, Ajayan Vinu, Yang Bao, Yanpeng Liu. Emerging low-dimensional materials for nanoelectromechanical systems resonators. Materials Research Letters 2023, 11 (1) , 21-52. https://doi.org/10.1080/21663831.2022.2111233
    34. Ping Liu, Qing-Xiang Pei, Yong-Wei Zhang. Low-cycle fatigue failure of MoS 2 monolayer. Extreme Mechanics Letters 2023, 58 , 101942. https://doi.org/10.1016/j.eml.2022.101942
    35. Makars Šiškins, Samer Kurdi, Martin Lee, Benjamin J. M. Slotboom, Wenyu Xing, Samuel Mañas-Valero, Eugenio Coronado, Shuang Jia, Wei Han, Toeno van der Sar, Herre S. J. van der Zant, Peter G. Steeneken. Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6-based heterostructures. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00315-7
    36. Adrian Bachtold, Joel Moser, M. I. Dykman. Mesoscopic physics of nanomechanical systems. Reviews of Modern Physics 2022, 94 (4) https://doi.org/10.1103/RevModPhys.94.045005
    37. Narjes Ghaemi, Amin Nikoobin, Mohammad Reza Ashory. A Comprehensive Categorization of Micro/Nanomechanical Resonators and Their Practical Applications from an Engineering Perspective: A Review. Advanced Electronic Materials 2022, 8 (11) https://doi.org/10.1002/aelm.202200229
    38. Yang Zong, Binmin Wu, Xinyi Ke, Yongfeng Mei, Jizhai Cui. 2D Materials Nanomembrane. 2022, 391-412. https://doi.org/10.1002/9783527813933.ch13
    39. Yang Xiao, Feng Hu, Mengjian Zhu, Jiaxing Zheng, Xuefeng Song, Ying Liu, Shiqiao Qin. Effect of induced current loss on quality factor of graphene resonators. AIP Advances 2022, 12 (3) https://doi.org/10.1063/5.0082259
    40. Yang Xiao, Fang Luo, Yuchen Zhang, Feng Hu, Mengjian Zhu, Shiqiao Qin. A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications. Micromachines 2022, 13 (2) , 215. https://doi.org/10.3390/mi13020215
    41. Myrron Albert Callera Aguila, Joshoua Condicion Esmenda, Jyh-Yang Wang, Teik-Hui Lee, Chi-Yuan Yang, Kung-Hsuan Lin, Kuei-Shu Chang-Liao, Sergey Kafanov, Yuri A. Pashkin, Chii-Dong Chen. Fabry–Perot interferometric calibration of van der Waals material-based nanomechanical resonators. Nanoscale Advances 2022, 4 (2) , 502-509. https://doi.org/10.1039/D1NA00794G
    42. Leo Sementilli, Erick Romero, Warwick P. Bowen. Nanomechanical Dissipation and Strain Engineering. Advanced Functional Materials 2022, 32 (3) https://doi.org/10.1002/adfm.202105247
    43. Peter G Steeneken, Robin J Dolleman, Dejan Davidovikj, Farbod Alijani, Herre S J van der Zant. Dynamics of 2D material membranes. 2D Materials 2021, 8 (4) , 042001. https://doi.org/10.1088/2053-1583/ac152c
    44. Motoki Asano, Takuma Aihara, Tai Tsuchizawa, Hiroshi Yamaguchi. Non-equilibrium quadratic measurement-feedback squeezing in a micromechanical resonator. Physical Review Research 2021, 3 (3) https://doi.org/10.1103/PhysRevResearch.3.033121
    45. Joshoua Condicion Esmenda, Myrron Albert Callera Aguila, Jyh‐Yang Wang, Teik‐Hui Lee, Chi‐Yuan Yang, Kung‐Hsuan Lin, Kuei‐Shu Chang‐Liao, Nadav Katz, Sergey Kafanov, Yuri A. Pashkin, Chii‐Dong Chen. Imaging Off‐Resonance Nanomechanical Motion as Modal Superposition. Advanced Science 2021, 8 (13) https://doi.org/10.1002/advs.202005041
    46. Jaehyung Yu, M. Abir Hossain, SunPhil Kim, Paolo F. Ferrari, Siyuan Huang, Yue Zhang, Hyunchul Kim, Dina A. Michel, Arend M. van der Zande. Mechanically sensing and tailoring electronic properties in two-dimensional atomic membranes. Current Opinion in Solid State and Materials Science 2021, 25 (2) , 100900. https://doi.org/10.1016/j.cossms.2021.100900
    47. Yue Hu, Jiantao Leng, Tienchong Chang. Mechanosensing of a Graphene Flake on a Bent Beam. Journal of Applied Mechanics 2021, 88 (4) https://doi.org/10.1115/1.4049167
    48. Pragalv Karki, Jayson Paulose. Stopping and Reversing Sound via Dynamic Dispersion Tuning in a Phononic Metamaterial. Physical Review Applied 2021, 15 (3) https://doi.org/10.1103/PhysRevApplied.15.034083
    49. Xin Zhang, Kevin Makles, Léo Colombier, Dominik Metten, Hicham Majjad, Pierre Verlot, Stéphane Berciaud. Dynamically-enhanced strain in atomically thin resonators. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19261-3
    50. D. Davidovikj, D. J. Groenendijk, A. M. R. V. L. Monteiro, A. Dijkhoff, D. Afanasiev, M. Šiškins, M. Lee, Y. Huang, E. van Heumen, H. S. J. van der Zant, A. D. Caviglia, P. G. Steeneken. Ultrathin complex oxide nanomechanical resonators. Communications Physics 2020, 3 (1) https://doi.org/10.1038/s42005-020-00433-y
    51. Tanju Yildirim, Linglong Zhang, Guru Prakash Neupane, Songsong Chen, Jiawei Zhang, Han Yan, Md Mehedi Hasan, Genki Yoshikawa, Yuerui Lu. Towards future physics and applications via two-dimensional material NEMS resonators. Nanoscale 2020, 12 (44) , 22366-22385. https://doi.org/10.1039/D0NR06773C
    52. Rohit Kumar, Deric W. Session, Ryuichi Tsuchikawa, Mario Homer, Harrison Paas, Kenji Watanabe, Takashi Taniguchi, Vikram V. Deshpande. Circular electromechanical resonators based on hexagonal-boron nitride-graphene heterostructures. Applied Physics Letters 2020, 117 (18) https://doi.org/10.1063/5.0024583
    53. Xingyu Gao, Zhang‐Q. Yin, Tongcang Li. High‐Speed Quantum Transducer with a Single‐Photon Emitter in a 2D Resonator. Annalen der Physik 2020, 532 (10) https://doi.org/10.1002/andp.202000233
    54. M. Miskeen Khan, S. Ribeiro, J. T. Mendonça, H. Terças. Sideband ground-state cooling of graphene with Rydberg atoms via vacuum forces. Physical Review A 2020, 102 (3) https://doi.org/10.1103/PhysRevA.102.033115
    55. Subhadeep De, Arend van der Zande, Narayana R. Aluru. Intrinsic Dissipation Due to Mode Coupling in Two-Dimensional-Material Resonators Revealed Through a Multiscale Approach. Physical Review Applied 2020, 14 (3) https://doi.org/10.1103/PhysRevApplied.14.034062
    56. Kai-Ming Hu, Peng Bo, Xiu-Yuan Li, Yi-Hang Xin, Xin-Ru Bai, Lei Li, Wen-Ming Zhang. Resonant nano-electromechanical systems from 2D materials. EPL (Europhysics Letters) 2020, 131 (5) , 58001. https://doi.org/10.1209/0295-5075/131/58001
    57. Ahsan Mehmood, N.M. Mubarak, Mohammad Khalid, Rashmi Walvekar, E.C. Abdullah, M.T.H. Siddiqui, Humair Ahmed Baloch, Sabzoi Nizamuddin, Shaukat Mazari. Graphene based nanomaterials for strain sensor application—a review. Journal of Environmental Chemical Engineering 2020, 8 (3) , 103743. https://doi.org/10.1016/j.jece.2020.103743
    58. You Zhou, Giovanni Scuri, Jiho Sung, Ryan J. Gelly, Dominik S. Wild, Kristiaan De Greve, Andrew Y. Joe, Takashi Taniguchi, Kenji Watanabe, Philip Kim, Mikhail D. Lukin, Hongkun Park. Controlling Excitons in an Atomically Thin Membrane with a Mirror. Physical Review Letters 2020, 124 (2) https://doi.org/10.1103/PhysRevLett.124.027401
    59. Max C. Lemme, Stefan Wagner, Kangho Lee, Xuge Fan, Gerard J. Verbiest, Sebastian Wittmann, Sebastian Lukas, Robin J. Dolleman, Frank Niklaus, Herre S. J. van der Zant, Georg S. Duesberg, Peter G. Steeneken. Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research 2020, 2020 https://doi.org/10.34133/2020/8748602
    60. Ronaldo J C Batista, Rafael F Dias, Ana P M Barboza, Alan B de Oliveira, Taise M Manhabosco, Thiago R Gomes-Silva, Matheus J S Matos, Andreij C Gadelha, Cassiano Rabelo, Luiz G L Cançado, Ado Jorio, Hélio Chacham, Bernardo R A Neves. Nanomechanics of few-layer materials: do individual layers slide upon folding?. Beilstein Journal of Nanotechnology 2020, 11 , 1801-1808. https://doi.org/10.3762/bjnano.11.162
    61. Subhadeep De, Narayana R. Aluru. Anomalous scaling of flexural phonon damping in nanoresonators with confined fluid. Microsystems & Nanoengineering 2019, 5 (1) https://doi.org/10.1038/s41378-018-0041-2
    62. Jeong Ryeol Choi, Sanghyun Ju. Properties of the Geometric Phase in Electromechanical Oscillations of Carbon-Nanotube-Based Nanowire Resonators. Nanoscale Research Letters 2019, 14 (1) https://doi.org/10.1186/s11671-019-2855-8
    63. David Miller, Benjamín Alemán. Spatially resolved optical excitation of mechanical modes in graphene NEMS. Applied Physics Letters 2019, 115 (19) https://doi.org/10.1063/1.5111755
    64. Motoki Asano, Ryuichi Ohta, Takuma Aihara, Tai Tsuchizawa, Hajime Okamoto, Hiroshi Yamguchi. Optically probing Schwinger angular momenta in a micromechanical resonator. Physical Review A 2019, 100 (5) https://doi.org/10.1103/PhysRevA.100.053801
    65. Sudhir Kumar Sahu, Digambar Jangade, Arumugam Thamizhavel, Mandar M. Deshmukh, Vibhor Singh. Elastic properties of few unit cell thick superconducting crystals of Bi2Sr2CaCu2O8+ δ. Applied Physics Letters 2019, 115 (14) https://doi.org/10.1063/1.5121490
    66. Linbo Shao, Smarak Maity, Lu Zheng, Lue Wu, Amirhassan Shams-Ansari, Young-Ik Sohn, Eric Puma, M.N. Gadalla, Mian Zhang, Cheng Wang, Evelyn Hu, Keji Lai, Marko Lončar. Phononic Band Structure Engineering for High- Q Gigahertz Surface Acoustic Wave Resonators on Lithium Niobate. Physical Review Applied 2019, 12 (1) https://doi.org/10.1103/PhysRevApplied.12.014022
    67. Yong Xie, Jaesung Lee, Hao Jia, Philip X.-L. Feng. Frequency Tuning of Two-Dimensional Nanoelectromechanical Resonators Via Comb-Drive Mems Actuators. 2019, 254-257. https://doi.org/10.1109/TRANSDUCERS.2019.8808703
    68. Sudhir Kumar Sahu, Jaykumar Vaidya, Felix Schmidt, Digambar Jangade, Arumugam Thamizhavel, Gary Steele, Mandar M Deshmukh, Vibhor Singh. Nanoelectromechanical resonators from high- T c superconducting crystals of Bi 2 Sr 2 Ca 1 Cu 2 O$_{8+\delta}$. 2D Materials 2019, 6 (2) , 025027. https://doi.org/10.1088/2053-1583/ab0800
    69. Guru Prakash Neupane, Kai Zhou, Songsong Chen, Tanju Yildirim, Peixin Zhang, Yuerui Lu. In‐Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices. Small 2019, 15 (11) https://doi.org/10.1002/smll.201804733
    70. Yue Liu, Yu Zhou, Hao Zhang, Feirong Ran, Weihao Zhao, Lin Wang, Chengjie Pei, Jindong Zhang, Xiao Huang, Hai Li. Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Frontiers of Physics 2019, 14 (1) https://doi.org/10.1007/s11467-018-0854-3
    71. Bindu Gunupudi, Soumya Ranjan Das, Rohit Navarathna, Sudhir Kumar Sahu, Sourav Majumder, Vibhor Singh. Optomechanical Platform with a Three-dimensional Waveguide Cavity. Physical Review Applied 2019, 11 (2) https://doi.org/10.1103/PhysRevApplied.11.024067
    72. Feng Zhou, Ningbo Liao, Miao Zhang, Wei Xue. Lithiation behavior of graphene-silicon composite as high performance anode for lithium-ion battery: A first principles study. Applied Surface Science 2019, 463 , 610-615. https://doi.org/10.1016/j.apsusc.2018.08.258
    73. Fengnan Chen, Chen Yang, Wenjing Mao, Heng Lu, Kevin G Schädler, Antoine Reserbat-Plantey, Johann Osmond, Guoyang Cao, Xiaofeng Li, Chinhua Wang, Ying Yan, Joel Moser. Vibration detection schemes based on absorbance tuning in monolayer molybdenum disulfide mechanical resonators. 2D Materials 2019, 6 (1) , 011003. https://doi.org/10.1088/2053-1583/aae5b7
    74. Huiyuan Wang, Feng Hu, Shiqiao Qin, Xingshu Wang, , . Squeeze-film damping in optically driven resonant graphene accelerometer. 2018, 45. https://doi.org/10.1117/12.2500190
    75. Puhao Cao, Ralf Betzholz, Jianming Cai. Scalable nuclear-spin entanglement mediated by a mechanical oscillator. Physical Review B 2018, 98 (16) https://doi.org/10.1103/PhysRevB.98.165404
    76. Weiming Deng, Li Li, Yujin Hu, Xuelin Wang, Xiaobai Li. Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction. Journal of Thermal Stresses 2018, 41 (9) , 1182-1200. https://doi.org/10.1080/01495739.2018.1466669
    77. Zhikang Li, Libo Zhao, Zhuangde Jiang, Yihe Zhao, Jie Li, Jiawang Zhang, Yulong Zhao, Liwei Lin. A closed-form approach for the resonant frequency analysis of clamped rectangular microplates under distributed electrostatic force. Sensors and Actuators A: Physical 2018, 280 , 447-458. https://doi.org/10.1016/j.sna.2018.08.004
    78. Ryuichi Ohta, Hajime Okamoto, Takehiko Tawara, Hideki Gotoh, Hiroshi Yamaguchi. Dynamic Control of the Coupling between Dark and Bright Excitons with Vibrational Strain. Physical Review Letters 2018, 120 (26) https://doi.org/10.1103/PhysRevLett.120.267401
    79. Jiandong Yao, Guowei Yang. Flexible and High‐Performance All‐2D Photodetector for Wearable Devices. Small 2018, 14 (21) https://doi.org/10.1002/smll.201704524
    80. David B Northeast, Robert G Knobel. Suspension and simple optical characterization of two-dimensional membranes. Materials Research Express 2018, 5 (3) , 035023. https://doi.org/10.1088/2053-1591/aab233
    81. X. Liu, W. Guo, Y. Wang, M. Dai, L. F. Wei, B. Dober, C. M. McKenney, G. C. Hilton, J. Hubmayr, J. E. Austermann, J. N. Ullom, J. Gao, M. R. Vissers. Superconducting micro-resonator arrays with ideal frequency spacing. Applied Physics Letters 2017, 111 (25) https://doi.org/10.1063/1.5016190
    82. Puhao Cao, Ralf Betzholz, Shaoliang Zhang, Jianming Cai. Entangling distant solid-state spins via thermal phonons. Physical Review B 2017, 96 (24) https://doi.org/10.1103/PhysRevB.96.245418

    Nano Letters

    Cite this: Nano Lett. 2017, 17, 10, 5950–5955
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b01845
    Published September 14, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    4071

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.