Periodic Giant Polarization Gradients in Doped BiFeO3 Thin FilmsClick to copy article linkArticle link copied!
Abstract
The ultimate challenge for the development of new multiferroics with enhanced properties lies in achieving nanoscale control of the coupling between different ordering parameters. In oxide-based multiferroics, substitutional cation dopants offer the unparalleled possibility to modify both the electric and magnetic properties at a local scale. Herein it is demonstrated the formation of a dopant-controlled polar pattern in BiFeO3 leading to the spontaneous instauration of periodic polarization waves. In particular, nonpolar Ca-doped rich regions act as spacers between consecutive dopant-depleted regions displaying coupled ferroelectric states. This alternation of layers with different ferroelectric state creates a novel vertical polar structure exhibiting giant polarization gradients as large as 70 μC cm–2 across 30 Å thick domains. The drastic change in the polar state of the film is visualized using high-resolution differential phase-contrast imaging able to map changes in ferroelectric polarization at atomic scale. Furthermore, a periodic distortion in the Fe—O—Fe bonding angle suggests a local variation in the magnetic ordering. The findings provide a new insight into the role of doping and reveal hitherto unexplored means to tailor the functional properties of multiferroics by doping engineering.
Materials and Methods
Sample Preparation
High-Resolution Scanning Transmission Electron Microscopy
Differential-Phase Contrast
Data Processing and Analysis
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b03817.
Large-scale morphology of the film superstructure (Figure S1). Description of the strain state of the film by GPA analysis (Figure S2). Polarization analysis along the complementary [110] pseudocubic direction (Figure S3) (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
M.C. thanks NCCR-MARVEL project funded by the Swiss National Science Foundation (SNSF) for the financial support. Access to the TEM facility at the IBM Research-Zürich (Switzerland) under the IBM/Empa Master Joint Development Agreement is gratefully acknowledged. The work at KAIST was supported by the National Research Foundation (NRF) grant funded by the Korean government (NRF-2017R1A3B1023686).
References
This article references 46 other publications.
- 1Spaldin, N. A.; Fiebig, M. Science 2005, 309, 391 DOI: 10.1126/science.1113357Google ScholarThere is no corresponding record for this reference.
- 2Eerenstein, W.; Mathur, N. D.; Scott, J. F. Nature 2006, 442, 759 DOI: 10.1038/nature05023Google Scholar2https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD28XotFKmt74%253D&md5=fc62d05e46940e42e2b34af27da57021Multiferroic and magnetoelectric materialsEerenstein, W.; Mathur, N. D.; Scott, J. F.Nature (London, United Kingdom) (2006), 442 (7104), 759-765CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)A review. A ferroelec. crystal exhibits a stable and switchable elec. polarization that is manifested in the form of cooperative at. displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mech. phenomenon of exchange. There are very few multiferroic' materials that exhibit both of these properties, but the magnetoelec. coupling of magnetic and elec. properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technol. aspirations.
- 3Cheong, S.-W.; Mostovoy, M. Nat. Mater. 2007, 6, 13 DOI: 10.1038/nmat1804Google ScholarThere is no corresponding record for this reference.
- 4Ramesh, R.; Spaldin, N. A. Nat. Mater. 2007, 6, 21 DOI: 10.1038/nmat1805Google ScholarThere is no corresponding record for this reference.
- 5Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. Nat. Rev. Mats. 2016, 1, 16046 DOI: 10.1038/natrevmats.2016.46Google Scholar5https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2sXhtVertbc%253D&md5=39ab30241ec3193da90efe4d297a870bThe evolution of multiferroicsFiebig, Manfred; Lottermoser, Thomas; Meier, Dennis; Trassin, MorganNature Reviews Materials (2016), 1 (8), 16046CODEN: NRMADL; ISSN:2058-8437. (Nature Publishing Group)Materials with a coexistence of magnetic and ferroelec. order - multiferroics - provide an efficient route for the control of magnetism by elec. fields. The study of multiferroics dates back to the 1950s, but in recent years, key discoveries in theory, synthesis and characterization techniques have led to a new surge of interest in these materials. Different mechanisms, such as lone-pair, geometric, charge-ordering and spin-driven effects, can support multiferroicity. The general focus of the field is now shifting into neighboring research areas, as we discuss in this Review. Multiferroic thin-film heterostructures, device architectures, and domain and interface effects are explored. The violation of spatial and inversion symmetry in multiferroic materials is a key feature because it dets. their properties. Other aspects, such as the non-equil. dynamics of multiferroics, are underrated and should be included in the topics that will define the future of the field.
- 6Hill, N. A. J. Phys. Chem. B 2000, 104, 6694 DOI: 10.1021/jp000114xGoogle ScholarThere is no corresponding record for this reference.
- 7Scott, J. F. Science 2007, 315, 954 DOI: 10.1126/science.1129564Google ScholarThere is no corresponding record for this reference.
- 8Béa, H.; Gajek, M.; Bibes, M.; Barthélémy, A. J. Phys.: Condens. Matter 2008, 20, 434221 DOI: 10.1088/0953-8984/20/43/434221Google Scholar8https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXhsVSisLnF&md5=8d6113c94a57145a5a843ecad4061fcfSpintronics with multiferroicsBea, H.; Gajek, M.; Bibes, M.; Barthelemy, A.Journal of Physics: Condensed Matter (2008), 20 (43), 434221/1-434221/11CODEN: JCOMEL; ISSN:0953-8984. (Institute of Physics Publishing)A review. The authors review the recent research on the functionalization of multiferroics for spintronics applications. The authors focus more particularly on antiferromagnetic and ferroelec. BiFeO3 and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO3 allows the observation of a large tunnel magnetoresistance with Co and (La, Sr)MnO3 ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelec. properties were exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to elec. control magnetization and possibly the logic state of spintronics devices. The authors also discuss recent results concerning the use of ferromagnetic and ferroelec. (La, Bi)MnO3 as an active tunnel barrier in magnetic tunnel junctions with Au and (La, Sr)MnO3 electrodes. A four-resistance-state device was obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelec. behavior of the (La, Bi)MnO3 ultrathin film. The addnl. degree of freedom provided by the ferroelec. polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.
- 9Bibes, M.; Barthelemy, A. Nat. Mater. 2008, 7, 425 DOI: 10.1038/nmat2189Google ScholarThere is no corresponding record for this reference.
- 10Ahn, C. H.; Triscone, J.-M.; Mannhart, J. Nature 2003, 424, 1015 DOI: 10.1038/nature01878Google ScholarThere is no corresponding record for this reference.
- 11Yang, C.-H.; Kan, D.; Takeuchi, I.; Nagarajan, V.; Seidel, J. Phys. Chem. Chem. Phys. 2012, 14, 15953 DOI: 10.1039/c2cp43082gGoogle ScholarThere is no corresponding record for this reference.
- 12Park, J.; Kang, M.; Kim, J.; Lee, S.; Jang, K.-H.; Pirogov, A.; Park, J.-G.; Lee, C.; Park, S.-H.; Kim, H. C. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 064417 DOI: 10.1103/PhysRevB.79.064417Google ScholarThere is no corresponding record for this reference.
- 13Choi, K. J.; Biegalski, M.; Li, Y. L.; Sharan, A.; Schubert, J.; Uecker, R.; Reiche, P.; Chen, Y. B.; Pan, X. Q.; Gopalan, V.; Chen, L.-Q.; Schlom, D. G.; Eom, C.-B. Science 2004, 306, 1005 DOI: 10.1126/science.1103218Google Scholar13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXptFyjtbk%253D&md5=f546df4927e2a42243782f1ea5bfcc22Enhancement of ferroelectricity in strained BaTiO3 thin filmsChoi, K. J.; Biegalski, M.; Li, Y. L.; Sharan, A.; Schubert, J.; Uecker, R.; Reiche, P.; Chen, Y. B.; Pan, X. Q.; Gopalan, V.; Chen, L.-Q.; Schlom, D. G.; Eom, C. B.Science (Washington, DC, United States) (2004), 306 (5698), 1005-1009CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Biaxial compressive strain has been used to markedly enhance the ferroelec. properties of BaTiO3 thin films. This strain, imposed by coherent epitaxy, can result in a ferroelec. transition temp. nearly 500° higher and a remanent polarization at least 250% higher than bulk BaTiO3 single crystals. This work demonstrates a route to a lead-free ferroelec. for nonvolatile memories and electro-optic devices.
- 14Haeni, J. H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y. L.; Choudhury, S.; Tian, W.; Hawley, M. E.; Craigo, B.; Tagantsev, A. K.; Pan, X. Q.; Streiffer, S. K.; Chen, L. Q.; Kirchoefer, S. W.; Levy, J.; Schlom, D. G. Nature 2004, 430, 758 DOI: 10.1038/nature02773Google ScholarThere is no corresponding record for this reference.
- 15Jang, H. W.; Ortiz, D.; Baek, S.-H.; Folkman, C. M.; Das, R. R.; Shafer, P.; Chen, Y.; Nelson, C. T.; Pan, X.; Ramesh, R.; Eom, C.-B. Adv. Mater. 2009, 21, 817 DOI: 10.1002/adma.200800823Google ScholarThere is no corresponding record for this reference.
- 16Rossell, M. D.; Erni, R.; Prange, M. P.; Idrobo, J.-C.; Luo, W.; Zeches, R. J.; Pantelides, S. T.; Ramesh, R. Phys. Rev. Lett. 2012, 108, 047601 DOI: 10.1103/PhysRevLett.108.047601Google ScholarThere is no corresponding record for this reference.
- 17Guzmán, R.; Maurel, L.; Langenberg, E.; Lupini, A. R.; Algarabel, P. A.; Pardo, J. A.; Magén, C. Nano Lett. 2016, 16, 2221 DOI: 10.1021/acs.nanolett.5b04455Google ScholarThere is no corresponding record for this reference.
- 18Catalan, G.; Scott, F. J. Adv. Mater. 2009, 21, 2463 DOI: 10.1002/adma.200802849Google ScholarThere is no corresponding record for this reference.
- 19Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R. Science 2003, 299, 1719 DOI: 10.1126/science.1080615Google Scholar19https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXitVSjt78%253D&md5=f0837f42b73b99f0e839d290fe24e16aEpitaxial BiFeO3 multiferroic thin-film heterostructuresWang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R.Science (Washington, DC, United States) (2003), 299 (5613), 1719-1722CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure anal. indicates that the crystal structure of the film is monoclinic in contrast to the bulk, which is rhombohedral. The films display a room-temp. spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The obsd. enhancement is corroborated by first-principles calcns. and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin-film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelec. order parameters.
- 20Yun, K. Y.; Noda, M.; Okuyama, M.; Saeki, H.; Tabata, H.; Saito, K. J. Appl. Phys. 2004, 96, 3399 DOI: 10.1063/1.1775045Google Scholar20https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXnt1yhsrY%253D&md5=56051471e9812f0d78c8e405652c7d36Structural and multiferroic properties of BiFeO3 thin films at room temperatureYun, Kwi Young; Noda, Minoru; Okuyama, Masanori; Saeki, Hiromasa; Tabata, Hitoshi; Saito, KeisukeJournal of Applied Physics (2004), 96 (6), 3399-3403CODEN: JAPIAU; ISSN:0021-8979. (American Institute of Physics)BiFeO3 thin films were prepd. on Pt/TiO2/SiO2/Si substrates under various oxygen pressures of 0.15-0.005 torr at a temp. of 450° by pulsed-laser deposition. The effects of deposition pressure on their crystal structure and multiferroic properties were studied at room temp. X-ray diffraction anal. (θ-2θ scans and 2-dimensional scans) shows that the BiFeO3 thin films consist of perovskite single phase with tetragonal crystal structure and space group P4mm. The c-axis lattice const. decreases (4.062-4.006 Å) and c/a ratio of the films decreases from 1.032 to 1.014 with a decrease in the oxygen pressure. The surface roughness and grain size of the films depend dramatically on oxygen pressures. The dielec. const. of the films decreases with decreasing oxygen pressure. The film deposited at 0.05 torr shows a stable c.d. and well-satd. hysteresis loop with twice the remanent polarization (2Pr) of 136 μC/cm2 and coercive field (2Ec) of 109 kV/cm. The BiFeO3 thin films also show the satd. weak ferromagnetic hysteresis loops with a small remanent magnetization.
- 21Das, R. R.; Kim, D. M.; Baek, S. H.; Eom, C. B.; Zavaliche, F.; Yang, S. Y.; Ramesh, R.; Chen, Y. B.; Pan, X. Q.; Ke, X.; Rzchowski, M. S.; Streiffer, S. K. Appl. Phys. Lett. 2006, 88, 242904 DOI: 10.1063/1.2213347Google ScholarThere is no corresponding record for this reference.
- 22Ravindran, P.; Vidya, R.; Kjekshus, A.; Fjellvåg, H.; Eriksson, O. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 224412 DOI: 10.1103/PhysRevB.74.224412Google ScholarThere is no corresponding record for this reference.
- 23Catalan, G.; Sardar, K.; Church, N. S.; Scott, J. F.; Harrison, R. J.; Redfern, S. A. T. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 212415 DOI: 10.1103/PhysRevB.79.212415Google ScholarThere is no corresponding record for this reference.
- 24Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R. Nat. Mater. 2009, 8, 485 DOI: 10.1038/nmat2432Google Scholar24https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXmtFemsbw%253D&md5=c0e406a5ed93e971e517867b0b5b8295Electric modulation of conduction in multiferroic Ca-doped BiFeO3 filmsYang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.Nature Materials (2009), 8 (6), 485-493CODEN: NMAACR; ISSN:1476-1122. (Nature Publishing Group)Many interesting materials phenomena such as the emergence of high-Tc supercond. in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, the authors present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelec. BiFeO3 through Ca doping. Application of elec. field enables one to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A dome-like' feature in the doping dependence of the ferroelec. transition is obsd. around a Ca concn. of ∼1/8, where a new pseudo-tetragonal phase appears and the elec. modulation of conduction is optimized. Possible mechanisms for the obsd. effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelecs. and magneto-electronics at room temp. by combining electronic conduction with elec. and magnetic degrees of freedom already present in the multiferroic BiFeO3.
- 25Seidel, J.; Luo, W.; Suresha, S. J.; Nguyen, P.-K.; Lee, A. S.; Kim, S.-Y.; Yang, C.-H.; Pennycook, S. J.; Pantelides, S. T.; Scott, J. F.; Ramesh, R. Nat. Commun. 2012, 3, 799 DOI: 10.1038/ncomms1799Google Scholar25https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC38rnsl2ltA%253D%253D&md5=9a6a46eeb0c6c61c7a1e7f20accf4c01Prominent electrochromism through vacancy-order melting in a complex oxideSeidel J; Luo W; Suresha S J; Nguyen P-K; Lee A S; Kim S-Y; Yang C-H; Pennycook S J; Pantelides S T; Scott J F; Ramesh RNature communications (2012), 3 (), 799 ISSN:.Electrochromes are materials that have the ability to reversibly change from one colour state to another with the application of an electric field. Electrochromic colouration efficiency is typically large in organic materials that are not very stable chemically. Here we show that inorganic Bi(0.9)Ca(0.1)FeO(3-0.05) thin films exhibit a prominent electrochromic effect arising from an intrinsic mechanism due to the melting of oxygen-vacancy ordering and the associated redistribution of carriers. We use a combination of optical characterization techniques in conjunction with high-resolution transmission electron microscopy and first-principles theory. The absorption change and colouration efficiency at the band edge (blue-cyan region) are 4.8×10(6) m(-1) and 190 cm(2) C(-1), respectively, which are the highest reported values for inorganic electrochromes, even exceeding values of some organic materials.
- 26Chen, W.-T.; Williams, A. J.; Ortega-San-Martin, L.; Li, M.; Sinclair, D. C.; Zhou, W.; Attfield, J. P. Chem. Mater. 2009, 21, 2085 DOI: 10.1021/cm8031048Google ScholarThere is no corresponding record for this reference.
- 27Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M. J. Solid State Chem. 2008, 181, 2601 DOI: 10.1016/j.jssc.2008.04.047Google Scholar27https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1KjtL7O&md5=e2a1b28d038a9c368767a0be4c71448cLong-range ordering in the Bi1-xAexFeO3-x/2 perovskites: Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M.Journal of Solid State Chemistry (2008), 181 (10), 2601-2609CODEN: JSSCBI; ISSN:0022-4596. (Elsevier Inc.)Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mossbauer spectroscopy, and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a ≈ b ≈ 2ap and c ≈ 3ap (S.G.: Pb2n or Pbmn) for the Sr-based compd. and one with a ≈ b ≈ 2ap and c ≈ 8ap (S.G.: B222, Bmm2, B2mm, or Bmmm) for the Ca-based one. The high-resoln. transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx]∞ layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared with their Ln-based homolog. The HAADF-STEM images allow the proposal of a model of cation ordering on the A sites of the perovskite. The Mossbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compds. exhibit a high value of resistivity and the inverse molar susceptibility vs. temp. curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75.
- 28Schiemer, J.; Withers, R.; Norén, L.; Liu, Y.; Bourgeois, L.; Stewart, G. Chem. Mater. 2009, 21, 4223 DOI: 10.1021/cm901757hGoogle ScholarThere is no corresponding record for this reference.
- 29Jang, H.; Kerr, G.; Lim, J. S.; Yang, C.-H.; Kao, C.-C.; Lee, J.-S. Sci. Rep. 2015, 5, 12402 DOI: 10.1038/srep12402Google Scholar29https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC28%252FntVygug%253D%253D&md5=d87591e48414fd9256775c4a7598b619Orbital Reconstruction in a Self-assembled Oxygen Vacancy NanostructureJang H; Kerr G; Lee J-S; Lim J S; Yang C-H; Kao C-CScientific reports (2015), 5 (), 12402 ISSN:.We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca(2+) for Bi(3+) cation. We found that by increasing the substitution, the in-plane orbital bands of Fe(3+) cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO3 system.
- 30Schiemer, J. A.; Withers, R. L.; Liu, Y.; Carpenter, M. A. Chem. Mater. 2013, 25, 4436 DOI: 10.1021/cm402962qGoogle ScholarThere is no corresponding record for this reference.
- 31Shibata, N.; Findlay, S. D.; Kohno, Y.; Sawada, H.; Kondo, Y.; Ikuhara, Y. Nat. Phys. 2012, 8, 611 DOI: 10.1038/nphys2337Google Scholar31https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XovFyrsbk%253D&md5=a145c2f0da4232ced90728a71af3a8dbDifferential phase-contrast microscopy at atomic resolutionShibata, Naoya; Findlay, Scott D.; Kohno, Yuji; Sawada, Hidetaka; Kondo, Yukihito; Ikuhara, YuichiNature Physics (2012), 8 (8), 611-615CODEN: NPAHAX; ISSN:1745-2473. (Nature Publishing Group)Differential phase-contrast (DPC) imaging enhances the image contrast of weakly absorbing, low-at.-no. objects in optical and X-ray microscopy. In transmission electron microscopy, this same imaging mode can image magnetic fields in magnetic materials at medium resoln. Atomic-resoln. imaging of electromagnetic fields, however, is still a major challenge. Here, we demonstrate at.-resoln. DPC imaging of crystals using aberration-cor. scanning transmission electron microscopy. The image contrast reflects the gradient of the electrostatic potential of the atoms; i.e., the at. elec. field, which is found to be sensitive to the crystal ionicity. Both the mesoscopic polarization fields within each domain and the at.-scale elec. fields induced by the individual elec. dipoles within each unit cell can be sensitively detected in ferroelec. BaTiO3. The realization of at.-resoln. DPC microscopy opens a new dimension of microscopy from cryst. materials through to biol. mols.
- 32Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Ultramicroscopy 1998, 74, 131 DOI: 10.1016/S0304-3991(98)00035-7Google Scholar32https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1cXlsVygs78%253D&md5=0e756292e0962e80d72e0f79d463672dQuantitative measurement of displacement and strain fields from HREM micrographsHytch, M. J.; Snoeck, E.; Kilaas, R.Ultramicroscopy (1998), 74 (3), 131-146CODEN: ULTRD6; ISSN:0304-3991. (Elsevier Science B.V.)A method for measuring and mapping displacement fields and strain fields from high-resoln. electron microscope (HREM) images has been developed. The method is based upon centering a small aperture around a strong reflection in the Fourier transform of an HREM lattice image and performing an inverse Fourier transform. The phase component of the resulting complex image is shown to give information about local displacements of at. planes and the two-dimensional displacement field can be derived by applying the method to two non-colinear Fourier components. Local strain components can be found by analyzing the deriv. of the displacement field. The details of the technique are outlined and applied to an exptl. HREM image of a domain wall in ferroelec.-ferroelastic PbTiO3.
- 33Galindo, P. L.; Kret, S.; Sanchez, A. M.; Laval, J.-Y.; Yáñez, A.; Pizarro, J.; Guerrero, E.; Ben, T.; Molina, S. I. Ultramicroscopy 2007, 107, 1186 DOI: 10.1016/j.ultramic.2007.01.019Google Scholar33https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2sXpvVensLY%253D&md5=815d0087870b2ef67813ed5e87971d93The Peak Pairs algorithm for strain mapping from HRTEM imagesGalindo, Pedro L.; Kret, Slawomir; Sanchez, Ana M.; Laval, Jean-Yves; Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa; Ben, Teresa; Molina, Sergio I.Ultramicroscopy (2007), 107 (12), 1186-1193CODEN: ULTRD6; ISSN:0304-3991. (Elsevier B.V.)Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resoln. transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calcd. in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the ref. area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behavior at heavily distorted defect cores, e.g. interfaces and dislocations. Quant. results are reported from expts. to det. local strain in different types of semiconductor heterostructures.
- 34Chou, H.; Yen, C.-W.; Yang, C.-C.; Dwivedi, G.D.; Yang, K. S.; Wu, C. P.; Liu, K. C.; Li, W.-H. Acta Mater. 2016, 111, 297 DOI: 10.1016/j.actamat.2016.03.071Google Scholar34https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28Xls1Ght7s%253D&md5=627ab7836182c52dc531af160f5957b5Oxygen deficiency-induced anomalous enhancement of Neel temperature and magnetic coupling for Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δChou, Hsiung; Yen, Chen-Wei; Yang, Chun-Chuen; Dwivedi, G. D.; Yang, Kung Shuang; Wu, C. P.; Liu, K. C.; Li, Wen-HsienActa Materialia (2016), 111 (), 297-304CODEN: ACMAFD; ISSN:1359-6454. (Elsevier Ltd.)Temp. dependent neutron diffraction patterns of the Ca-doped BiFeO3 and Pb-doped BiFeO3 show that their Neel temps. (TN) increase to 710 K and 680 K, while pure BiFeO3 has a TN ∼ 643 K. This anomalous increase in TN was investigated in detail by probing near edge X-ray absorption fine spectroscopy, X-ray photoemission spectroscopy techniques and structural refinement of the neutron diffraction pattern. Room temp. X-ray absorption spectroscopy clearly shows that there is no evidence of mixed valence states despite divalent cation doping in trivalent Bi-sites. A room temp. X-ray photoemission spectroscopy study revealed that instead of mixed valences, divalent doping has introduced oxygen vacancies in the system. Structural refinement of neutron diffraction patterns also supports the presence of oxygen vacancies in Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δ. Oxygen deficiency plays a pivotal role in reducing Fe-O bond length in Fe-O6 octahedra and hence increasing the Fe-O-Fe bond angle in Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δ. This decreased Fe-O bond length and increased Fe-O-Fe bond angle favors the Goodenough-Kanamori-Anderson (GKA) coupling. The GKA coupling increases the magnetic interaction between the spins and hence increases the TN. Addnl., doping of divalent cations (Ca2+ and Pb2+) results in the destruction of cycloidal spin structure and formation of a simple antiferromagnetic (AFM) structure. This structure can easily be canted near the heterogeneous interface with a ferromagnetic layer to induce the Dzyaloshinskii-Moriya (DM) interaction and enhance the magneto-elec. (M-E) coupling.
- 35Nelson, C. T.; Winchester, B.; Zhang, Y.; Kim, S.-J.; Melville, A.; Adamo, C.; Folkman, C. M.; Baek, S.-H.; Eom, C.-B.; Schlom, D. G.; Chen, L.-Q.; Pan, X. Nano Lett. 2011, 11, 828 DOI: 10.1021/nl1041808Google ScholarThere is no corresponding record for this reference.
- 36Zhan, Q.; Yu, R.; Crane, S. P.; Zheng, H.; Kisielowski, C.; Ramesh, R. Appl. Phys. Lett. 2006, 89, 172902 DOI: 10.1063/1.2364692Google ScholarThere is no corresponding record for this reference.
- 37Liu, H.; Liang, W.; Chu, Y.; Zheng, H.; Ramesh, R. MRS Commun. 2014, 4, 31 DOI: 10.1557/mrc.2014.13Google Scholar37https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhtVCrurvM&md5=7f513c0390651a07ac63b6fafabc0d30Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalitiesLiu, Heng-Jui; Liang, Wen-I.; Chu, Ying-Hao; Zheng, Haimei; Ramesh, RamamoorthyMRS Communications (2014), 4 (2), 31-44CODEN: MCROF8; ISSN:2159-6867. (Cambridge University Press)Self-assembled vertical heteroepitaxial nanostructures (VHN) in the complex oxide field have fascinated scientists for decades because they provide degrees of freedom to explore in condensed matter physics and design-coupled multifunctionlities. Recently, of particular interest is the perovskite-spinel-based VHN, covering a wide spectrum of promising applications. In this review, fabrication of VHN, their growth mechanism, control, and resulting novel multifunctionalities are discussed thoroughly, providing researchers a comprehensive blueprint to construct promising VHN. Following the fabrication section, the state-of-the-art design concepts for multifunctionalities are proposed and reviewed by suitable examples. By summarizing the outlook of this field, we are excitedly expecting this field to rise with significant contributions ranging from scientific value to practical applications in the foreseeable future.
- 38Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 014113 DOI: 10.1103/PhysRevB.71.014113Google ScholarThere is no corresponding record for this reference.
- 39Damodaran, A. R.; Pandya, S.; Qi, Y.; Hsu, S.-L.; Liu, S.; Nelson, C.; Dasgupta, A.; Ercius, P.; Ophus, C.; Dedon, L. R.; Agar, J. C.; Lu, H.; Zhang, J.; Minor, A. M.; Rappe, A. M.; Martin, L. W. Nat. Commun. 2017, 8, 14961 DOI: 10.1038/ncomms14961Google Scholar39https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC1crlslalsQ%253D%253D&md5=bbf687e7c007cd0f2f1b64684d7e7bfeLarge polarization gradients and temperature-stable responses in compositionally-graded ferroelectricsDamodaran Anoop R; Pandya Shishir; Hsu Shang-Lin; Nelson Christopher; Dasgupta Arvind; Dedon Liv R; Agar Josh C; Lu Hongling; Minor Andrew M; Martin Lane W; Qi Yubo; Liu Shi; Rappe Andrew M; Liu Shi; Nelson Christopher; Ercius Peter; Ophus Colin; Minor Andrew M; Zhang Jialan; Martin Lane WNature communications (2017), 8 (), 14961 ISSN:.A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 μC cm(-2) across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss ( r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.
- 40Ederer, C.; Spaldin, N. A. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 060401 DOI: 10.1103/PhysRevB.71.060401Google ScholarThere is no corresponding record for this reference.
- 41Shibata, N.; Seki, T.; Sánchez-Santolino, G.; Findlay, S. D.; Kohno, Y.; Matsumoto, T.; Ishikawa, R.; Ikuhara, Y. Nat. Commun. 2017, 8, 15631 DOI: 10.1038/ncomms15631Google Scholar41https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2sXovFCgt7k%253D&md5=6a4a9892c87d6b3bf563d29f92825865Electric field imaging of single atomsShibata, Naoya; Seki, Takehito; Sanchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, YuichiNature Communications (2017), 8 (), 15631CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the at.-scale elec. field of both the pos. at. nuclei and the surrounding neg. electrons within cryst. materials can be probed by at.-resoln. differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) at. elec. field distribution inside single Au atoms, using sub-Å spatial resoln. STEM combined with a high-speed segmented detector. We directly visualize that the elec. field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge d. within the atom. Atomic-resoln. elec. field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures.
- 42Jones, L.; Yang, H.; Pennycook, T. J.; Marshall, M. S. J.; Van Aert, S.; Browning, N. D.; Castell, M. R.; Nellist, P. D. Adv. Struct. Chem. Imag. 2015, 1, 8 DOI: 10.1186/s40679-015-0008-4Google ScholarThere is no corresponding record for this reference.
- 43Findlay, S. D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. Ultramicroscopy 2010, 110, 903 DOI: 10.1016/j.ultramic.2010.04.004Google ScholarThere is no corresponding record for this reference.
- 44Yankovich, A. B.; Berkels, B.; Dahmen, W.; Binev, P.; Sanchez, S. I.; Bradley, S. A.; Li, A.; Szlufarska, I.; Voyles, P. M. Nat. Commun. 2014, 5, 4155 DOI: 10.1038/ncomms5155Google Scholar44https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhvF2mur3I&md5=9a047467893fb1905cc28985dbdecc98Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalystsYankovich, Andrew B.; Berkels, Benjamin; Dahmen, W.; Binev, P.; Sanchez, S. I.; Bradley, S. A.; Li, Ao; Szlufarska, Izabela; Voyles, Paul M.Nature Communications (2014), 5 (), 4155CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials' behavior. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-cor. Z-contrast scanning transmission electron microscopy images based on the non-rigid registration and averaging of an image series. Non-rigid registration achieves five to seven times better precision than previous methods. Non-rigidly registered images of a silica-supported platinum nanocatalyst show pm-scale contraction of atoms at a (1‾11)/(‾1‾11) corner towards the particle center and expansion of a flat (1‾11) facet. Sub-picometre precision and standardless atom counting with <1 atom uncertainty in the same scanning transmission electron microscopy image provide new insight into the three-dimensional at. structure of catalyst nanoparticle surfaces, which contain the active sites controlling catalytic reactions.
- 45Bals, S.; Aert, S. V.; Tendeloo, G. V.; Ávila-Brande, D. Phys. Rev. Lett. 2006, 96, 096106 DOI: 10.1103/PhysRevLett.96.096106Google ScholarThere is no corresponding record for this reference.
- 46Kilaas, R. MacTempas: a program for Simulating high resolution TEM images and diffraction pattern. Total Resolution LLC, http://www.totalresolution (accessed on 06/09/2017).Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 59 publications.
- Yuji Masubuchi, Kyohei Koyama, Akira Hosono, Mikio Higuchi, Masaki Takesada, Kazuki Shitara, Hiroki Moriwake, Shinichi Kikkawa. Average Cubic BaTaO2N Crystal Structure Formed by 50 nm Size Domains with Polar Nanoregions Consisting of cis-TaO4N2 Octahedral Chains. Chemistry of Materials 2024, 36
(15)
, 7504-7513. https://doi.org/10.1021/acs.chemmater.4c01474
- Chiara Ricca, Elizabeth Skoropata, Marta D. Rossell, Rolf Erni, Urs Staub, Ulrich Aschauer. Combined Theoretical and Experimental Study of the Moiré Dislocation Network at the SrTiO3-(La,Sr)(Al,Ta)O3 Interface. ACS Applied Materials & Interfaces 2023, 15
(46)
, 53678-53687. https://doi.org/10.1021/acsami.3c10958
- Ke Ran, Juri Barthel, Lei Jin, Daesung Park, Annika Buchheit, Kerstin Neuhaus, Stefan Baumann, Wilhelm A. Meulenberg, Joachim Mayer. Direct Visualization of Distorted Twin Boundaries in Ce-Doped GdFeO3. Nano Letters 2023, 23
(7)
, 2945-2951. https://doi.org/10.1021/acs.nanolett.3c00318
- Alexander Vogel, Alicia Ruiz Caridad, Johanna Nordlander, Martin F. Sarott, Quintin N. Meier, Rolf Erni, Nicola A. Spaldin, Morgan Trassin, Marta D. Rossell. Origin of the Critical Thickness in Improper Ferroelectric Thin Films. ACS Applied Materials & Interfaces 2023, 15
(14)
, 18482-18492. https://doi.org/10.1021/acsami.3c00412
- Ulrich Haselmann, Thomas Radlinger, Weijie Pei, Maxim N. Popov, Tobias Spitaler, Lorenz Romaner, Yurii P. Ivanov, Jian Chen, Yunbin He, Gerald Kothleitner, Zaoli Zhang. Ca Solubility in a BiFeO3-Based System with a Secondary Bi2O3 Phase on a Nanoscale. The Journal of Physical Chemistry C 2022, 126
(17)
, 7696-7703. https://doi.org/10.1021/acs.jpcc.2c00674
- Gopalakrishnan Dayal, Kochupurackal B. Jinesh. Linear Weight Update and Large Synaptic Responses in Neuromorphic Devices Comprising Pulsed-Laser-Deposited BiFeO3. ACS Applied Electronic Materials 2022, 4
(2)
, 592-597. https://doi.org/10.1021/acsaelm.1c00958
- Ulrich Haselmann, Y. Eren Suyolcu, Ping-Chun Wu, Yurii P. Ivanov, Daniel Knez, Peter A. van Aken, Ying-Hao Chu, Zaoli Zhang. Negatively Charged In-Plane and Out-Of-Plane Domain Walls with Oxygen-Vacancy Agglomerations in a Ca-Doped Bismuth-Ferrite Thin Film. ACS Applied Electronic Materials 2021, 3
(10)
, 4498-4508. https://doi.org/10.1021/acsaelm.1c00638
- Farah Benyettou, Gobinda Das, Anjana Ramdas Nair, Thirumurugan Prakasam, Digambar B. Shinde, Sudhir Kumar Sharma, Jamie Whelan, Yoann Lalatonne, Hassan Traboulsi, Renu Pasricha, Osama Abdullah, Ramesh Jagannathan, Zhiping Lai, Laurence Motte, Felipe Gándara, Kirsten C. Sadler, Ali Trabolsi. Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. Journal of the American Chemical Society 2020, 142
(44)
, 18782-18794. https://doi.org/10.1021/jacs.0c05381
- Yu Feng, Jiagang Wu, Qingguo Chi, Weili Li, Yang Yu, Weidong Fei. Defects and Aliovalent Doping Engineering in Electroceramics. Chemical Reviews 2020, 120
(3)
, 1710-1787. https://doi.org/10.1021/acs.chemrev.9b00507
- Marco Campanini, Morgan Trassin, Claude Ederer, Rolf Erni, Marta D. Rossell. Buried In-Plane Ferroelectric Domains in Fe-Doped Single-Crystalline Aurivillius Thin Films. ACS Applied Electronic Materials 2019, 1
(6)
, 1019-1028. https://doi.org/10.1021/acsaelm.9b00180
- Heung-Sik Park, Jinhyuk Jang, Ji Soo Lim, Jeonghun Suh, Si-Young Choi, Chan-Ho Yang. Oxygen vacancy order–disorder transition process during topotactic filament formation in a perovskite oxide tracked by Raman microscopy and transmission electron microscopy. Applied Physics Reviews 2024, 11
(4)
https://doi.org/10.1063/5.0212526
- Satoko Toyama, Takehito Seki, Yuji Kohno, Yoshiki O. Murakami, Yuichi Ikuhara, Naoya Shibata. Nanoscale electromagnetic field imaging by advanced differential phase-contrast STEM. Nature Reviews Electrical Engineering 2024, 67 https://doi.org/10.1038/s44287-024-00117-7
- Johanna Nordlander, Bastien F. Grosso, Marta D. Rossell, Aline Maillard, Bixin Yan, Elzbieta Gradauskaite, Nicola A. Spaldin, Manfred Fiebig, Morgan Trassin. Combined Electrostatic and Strain Engineering of BiFeO
3
Thin Films at the Morphotropic Phase Boundary. Advanced Electronic Materials 2024, 10
(11)
https://doi.org/10.1002/aelm.202400185
- Lei Liao, Qing Yang, Chen Cai, Yong Zhou, Huacong Sun, Xudan Huang, Pan Chen, Jianlin Wang, Xiaomei Li, Xuezeng Tian, Sheng Meng, Xuedong Bai, Lifen Wang. The atomic configuration and metallic state of extrinsic defects in Nb-doped BiFeO3 thin films. Acta Materialia 2024, 273 , 119986. https://doi.org/10.1016/j.actamat.2024.119986
- Le DAI, Yang LIU, Xuan GAO, Shuhao WANG, Yating SONG, Mingmeng TANG, V Karpinsky DMITRY, Lisha LIU, Yaojin WANG. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO
3
Thin Films. Journal of Inorganic Materials 2024, 39
(1)
, 99. https://doi.org/10.15541/jim20230278
- P. Zambon, J. Vávra, G. Montemurro, S. Bottinelli, A. Dudina, R. Schnyder, C. Hörmann, M. Meffert, C. Schulze-Briese, D. Stroppa, N. Lehmann, L. Piazza. High-frame rate and high-count rate hybrid pixel detector for 4D STEM applications. Frontiers in Physics 2023, 11 https://doi.org/10.3389/fphy.2023.1308321
- Elzbieta Gradauskaite, Quintin N. Meier, Natascha Gray, Martin F. Sarott, Tizian Scharsach, Marco Campanini, Thomas Moran, Alexander Vogel, Karla Del Cid-Ledezma, Bryan D. Huey, Marta D. Rossell, Manfred Fiebig, Morgan Trassin. Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. Nature Materials 2023, 22
(12)
, 1492-1498. https://doi.org/10.1038/s41563-023-01674-2
- Heung-Sik Park, Ji Soo Lim, Jeonghun Suh, Chan-Ho Yang. Morphological instability and mobility of the color front during the electrocoloration of perovskite oxide thin films. Physical Review Materials 2023, 7
(12)
https://doi.org/10.1103/PhysRevMaterials.7.123401
- Asmaa A Abdelrahman, Heba M Salem, Mostafa R Abukhadra, Ahmed M El-Sherbeeny, Wail Al Zoubi, Abdelrahman M Rabie. Synthesis of BiFeO
3
/ZnMgAl-LDH nanocomposite for instantaneous decolorization of methylene blue by ultrasonic induced adsorption system: characterization and equilibrium studies. Materials Research Express 2023, 10
(12)
, 125008. https://doi.org/10.1088/2053-1591/ad15c2
- Matthew J. Cabral, Zibin Chen, Xiaozhou Liao. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures 2023, 3
(4)
https://doi.org/10.20517/microstructures.2023.39
- Christopher Addiego, Jacob A. Zorn, Wenpei Gao, Sujit Das, Jiaqi Guo, Chengqing Qu, Liming Zhao, Lane W. Martin, Ramamoorthy Ramesh, Long-Qing Chen, Xiaoqing Pan. Multiscale electric-field imaging of polarization vortex structures in PbTiO3/SrTiO3 superlattices. APL Materials 2023, 11
(5)
https://doi.org/10.1063/5.0146713
- P. Zambon, S. Bottinelli, R. Schnyder, D. Musarra, D. Boye, A. Dudina, N. Lehmann, S. De Carlo, M. Rissi, C. Schulze-Briese, M. Meffert, M. Campanini, R. Erni, L. Piazza. KITE: High frame rate, high count rate pixelated electron counting ASIC for 4D STEM applications featuring high-Z sensor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2023, 1048 , 167888. https://doi.org/10.1016/j.nima.2022.167888
- Christopher Addiego, Wenpei Gao, Huaixun Huyan, Xiaoqing Pan. Probing charge density in materials with atomic resolution in real space. Nature Reviews Physics 2023, 5
(2)
, 117-132. https://doi.org/10.1038/s42254-022-00541-4
- Martin F. Sarott, Marta D. Rossell, Manfred Fiebig, Morgan Trassin. Multilevel polarization switching in ferroelectric thin films. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-30823-5
- Ji Soo Lim, Ho-Hyun Nahm, Marco Campanini, Jounghee Lee, Yong-Jin Kim, Heung-Sik Park, Jeonghun Suh, Jun Jung, Yongsoo Yang, Tae Yeong Koo, Marta D. Rossell, Yong-Hyun Kim, Chan-Ho Yang. Critical ionic transport across an oxygen-vacancy ordering transition. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-32826-8
- Sergei V. Kalinin, Colin Ophus, Paul M. Voyles, Rolf Erni, Demie Kepaptsoglou, Vincenzo Grillo, Andrew R. Lupini, Mark P. Oxley, Eric Schwenker, Maria K. Y. Chan, Joanne Etheridge, Xiang Li, Grace G. D. Han, Maxim Ziatdinov, Naoya Shibata, Stephen J. Pennycook. Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers 2022, 2
(1)
https://doi.org/10.1038/s43586-022-00095-w
- Jin Luo, Hao Qian, Tianyang Zheng, Jing‐Feng Li, Yunfei Liu, Yinong Lyu. Local Ionic Displacements and Polarization at the Paraelectric‐Ferroelectric Heterointerface: Effect of Octahedral Distortion. Advanced Materials Interfaces 2022, 9
(25)
https://doi.org/10.1002/admi.202200897
- R.W. Yang, Y.P. Liang, J. Xu, X.Y. Meng, J.T. Zhu, S.Y. Cao, M.Y. Wei, R.X. Zhang, J.L. Yang, F. Gao. Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance. Journal of Materials Science & Technology 2022, 116 , 94-102. https://doi.org/10.1016/j.jmst.2021.10.050
- Jin Luo, Hao Zhu, Tianyang Zheng, Hao Qian, Yunfei Liu, Yinong Lyu. A slush-like polar structure for high energy storage performance in a Sr
0.7
Bi
0.2
TiO
3
lead-free relaxor ferroelectric thin film. Journal of Materials Chemistry A 2022, 10
(13)
, 7357-7365. https://doi.org/10.1039/D1TA10524H
- Heung-Sik Park, Ji Soo Lim, Jeonghun Suh, Chan-Ho Yang. Electric-field-induced epitaxial breakdown and emergent magnetoresistance due to strong oxygen reduction in Ca-doped
BiFeO
3
. Physical Review Materials 2022, 6
(2)
https://doi.org/10.1103/PhysRevMaterials.6.024404
- María de la Mata, Sergio I. Molina. STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging. Nanomaterials 2022, 12
(3)
, 337. https://doi.org/10.3390/nano12030337
- Tri N. M. Nguyen, Yichen Guo, Shuyu Qin, Kylie S. Frew, Ruijuan Xu, Joshua C. Agar. Symmetry-aware recursive image similarity exploration for materials microscopy. npj Computational Materials 2021, 7
(1)
https://doi.org/10.1038/s41524-021-00637-y
- Huaixun Huyan, Christopher Addiego, Xingxu Yan, Chaitanya A. Gadre, Alexander Melville, Darrell G. Schlom, Xiaoqing Pan. Direct observation of polarization-induced two-dimensional electron/hole gases at ferroelectric-insulator interface. npj Quantum Materials 2021, 6
(1)
https://doi.org/10.1038/s41535-021-00389-4
- Jinyu Ruan, Chao Yin, Tiandong Zhang, Hao Pan. Effects of LaNiO3 Seed Layer on the Microstructure and Electrical Properties of Ferroelectric BZT/PZT/BZT Thin Films. Frontiers in Materials 2021, 8 https://doi.org/10.3389/fmats.2021.732186
- Anastasia Chouprik, Dmitrii Negrov, Evgeny Y. Tsymbal, Andrei Zenkevich. Defects in ferroelectric HfO
2. Nanoscale 2021, 13
(27)
, 11635-11678. https://doi.org/10.1039/D1NR01260F
- Jeonghun Suh, Ji Soo Lim, Heung-Sik Park, Chan-Ho Yang. Complementary study of anisotropic ion conduction in (110)-oriented Ca-doped BiFeO3 films using electrochromism and impedance spectroscopy. Applied Physics Letters 2021, 119
(2)
https://doi.org/10.1063/5.0054895
- Nicola A. Spaldin, Ipek Efe, Marta D. Rossell, Chiara Gattinoni. Layer and spontaneous polarizations in perovskite oxides and their interplay in multiferroic bismuth ferrite. The Journal of Chemical Physics 2021, 154
(15)
https://doi.org/10.1063/5.0046061
- Xiaofeng Zhou, Bo Shen, Jiwei Zhai, Niklas Hedin. Reactive Oxygenated Species Generated on Iodide‐Doped BiVO
4
/BaTiO
3
Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation. Advanced Functional Materials 2021, 31
(13)
https://doi.org/10.1002/adfm.202009594
- Takehito Seki, Yuichi Ikuhara, Naoya Shibata. Toward quantitative electromagnetic field imaging by differential-phase-contrast scanning transmission electron microscopy. Microscopy 2021, 70
(1)
, 148-160. https://doi.org/10.1093/jmicro/dfaa065
- Hafiz Abdul Ali Khan, Saif Ullah, Gul Rehman, Sajid Khan, Iftikhar Ahmad. First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3). Journal of Physics and Chemistry of Solids 2021, 148 , 109737. https://doi.org/10.1016/j.jpcs.2020.109737
- M. Campanini, L. Nasi, F. Albertini, R. Erni. Disentangling nanoscale electric and magnetic fields by time-reversal operation in differential phase-contrast STEM. Applied Physics Letters 2020, 117
(15)
https://doi.org/10.1063/5.0026121
- Ji Soo Lim, Jounghee Lee, Byeoung Ju Lee, Yong-Jin Kim, Heung-Sik Park, Jeonghun Suh, Ho-Hyun Nahm, Sang-Woo Kim, Byeong-Gwan Cho, Tae Yeong Koo, Eunjip Choi, Yong-Hyun Kim, Chan-Ho Yang. Harnessing the topotactic transition in oxide heterostructures for fast and high-efficiency electrochromic applications. Science Advances 2020, 6
(41)
https://doi.org/10.1126/sciadv.abb8553
- Min Shi, Zheng Zhao, Zhuolin Si, Ruzhong Zuo, Yudong Xu, Li Guo, Enyang Men, Kunzhuang Hu. Ferroelectric, ferromagnetic, and magnetoelectric properties of Bi3.15Nd0.85Ti2.9Zr0.1O12–CoFe2O4 composite films with large magnetoelectric coupling effect. Journal of Materials Science: Materials in Electronics 2020, 31
(13)
, 10865-10872. https://doi.org/10.1007/s10854-020-03638-7
- M. Chakraborty, M. Ziatdinov, O. Dyck, S. Jesse, A. D. White, Sergei V. Kalinin. Reconstruction of the interatomic forces from dynamic scanning transmission electron microscopy data. Journal of Applied Physics 2020, 127
(22)
https://doi.org/10.1063/5.0009413
- M. Campanini, K. Eimre, M. Bon, C. A. Pignedoli, M. D. Rossell, R. Erni. Atomic-resolution differential phase contrast STEM on ferroelectric materials: A mean-field approach. Physical Review B 2020, 101
(18)
https://doi.org/10.1103/PhysRevB.101.184116
- Marco Campanini, Elzbieta Gradauskaite, Morgan Trassin, Di Yi, Pu Yu, Ramamoorthy Ramesh, Rolf Erni, Marta D. Rossell. Imaging and quantification of charged domain walls in BiFeO
3. Nanoscale 2020, 12
(16)
, 9186-9193. https://doi.org/10.1039/D0NR01258K
- Yee Wen Teh, Michell K. T. Chee, Xin Ying Kong, Siek-Ting Yong, Siang-Piao Chai. An insight into perovskite-based photocatalysts for artificial photosynthesis. Sustainable Energy & Fuels 2020, 4
(3)
, 973-984. https://doi.org/10.1039/C9SE00526A
- Marco Campanini, Rolf Erni, Marta D. Rossell. Probing local order in multiferroics by transmission electron microscopy. Physical Sciences Reviews 2020, 5
(2)
https://doi.org/10.1515/psr-2019-0068
- Li Yin, Wenbo Mi. Progress in BiFeO
3
-based heterostructures: materials, properties and applications. Nanoscale 2020, 12
(2)
, 477-523. https://doi.org/10.1039/C9NR08800H
- Qinggong Song, Peidong Wu, Samrat Sarkar, Yufeng Zhao, Zhifeng Liu. Bi
3
TaO
7
film: a promising photoelectrode for photoelectrochemical water splitting. Dalton Transactions 2020, 49
(1)
, 147-155. https://doi.org/10.1039/C9DT03953H
- Xiaoxi Cai, Jiang Li, Yunguo Liu, Xinjiang Hu, Xiaofei Tan, Shaobo Liu, Hui Wang, Yanling Gu, Lerong Luo. Design and Preparation of Chitosan-Crosslinked Bismuth Ferrite/Biochar Coupled Magnetic Material for Methylene Blue Removal. International Journal of Environmental Research and Public Health 2020, 17
(1)
, 6. https://doi.org/10.3390/ijerph17010006
- Heung-Sik Park, Ji Soo Lim, Jeonghun Suh, Chan-Ho Yang. Real-time observation of filamentary conduction pathways in Ca-doped BiFeO3. Applied Physics Letters 2019, 115
(18)
https://doi.org/10.1063/1.5124892
- Mintao Xue, Guoqiang Tan, Ao Xia, Zhengjun Chai, Long Lv, Huijun Ren, Xixi Ren, Jincheng Li. Regulation of defect complexes at the interface for improving multiferroicity of Bi0.79La0.18Sr0.03Fe0.94Mn0.04Co0.02O3/CoFe2-xLaxO4 bilayer thin films. Ceramics International 2019, 45
(15)
, 19504-19512. https://doi.org/10.1016/j.ceramint.2019.07.038
- Qing-Yan Rong, Wen-Zhi Xiao, Chuan-Pin Cheng, Ling-Ling Wang. Magnetism and ferroelectricity in BiFeO3 doped with Ga at Fe sites. Journal of Alloys and Compounds 2019, 797 , 117-121. https://doi.org/10.1016/j.jallcom.2019.05.082
- Mintao Xue, Guoqiang Tan, Ao Xia, Zhengjun Chai, Long Lv, Huijun Ren, Xixi Ren, Jincheng Li. Multi-doped bismuth ferrite thin films with enhanced multiferroic properties. Ceramics International 2019, 45
(10)
, 12806-12813. https://doi.org/10.1016/j.ceramint.2019.03.200
- Xueyou Yuan, Lei Shi, Jiyin Zhao, Shiming Zhou, Jianhui Guo, Shiyou Pan, Xianbing Miao, Liang Wu. Tuning Ferroelectric, Dielectric, and Magnetic Properties of BiFeO
3
Ceramics by Ca and Pb Co‐Doping. physica status solidi (b) 2019, 256
(3)
https://doi.org/10.1002/pssb.201800499
- H.C. Wu, J.K. Yuan, K.D. Chandrasekhar, C.H. Lee, W.H. Li, C.W. Wang, J.M. Chen, J.-Y. Lin, H. Berger, T.W. Yen, S.M. Huang, C.W. Chu, H.D. Yang. Observation of charge–transfer–driven antiferroelectricity in 3d-pyrochlore multiferroic Cu2OCl2. Materials Today Physics 2019, 8 , 34-42. https://doi.org/10.1016/j.mtphys.2018.12.003
- Piyush Agrawal, Marco Campanini, Andrew Rappe, Shi Liu, Vincenzo Grillo, Cécile Hébert, Rolf Erni, Daniele Passerone, Marta D. Rossell. Structure and properties of edge dislocations in
BiFe
O
3
. Physical Review Materials 2019, 3
(3)
https://doi.org/10.1103/PhysRevMaterials.3.034410
- Jordan A. Hachtel, Juan Carlos Idrobo, Miaofang Chi. Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Advanced Structural and Chemical Imaging 2018, 4
(1)
https://doi.org/10.1186/s40679-018-0059-4
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
References
This article references 46 other publications.
- 1Spaldin, N. A.; Fiebig, M. Science 2005, 309, 391 DOI: 10.1126/science.1113357There is no corresponding record for this reference.
- 2Eerenstein, W.; Mathur, N. D.; Scott, J. F. Nature 2006, 442, 759 DOI: 10.1038/nature050232https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD28XotFKmt74%253D&md5=fc62d05e46940e42e2b34af27da57021Multiferroic and magnetoelectric materialsEerenstein, W.; Mathur, N. D.; Scott, J. F.Nature (London, United Kingdom) (2006), 442 (7104), 759-765CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)A review. A ferroelec. crystal exhibits a stable and switchable elec. polarization that is manifested in the form of cooperative at. displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mech. phenomenon of exchange. There are very few multiferroic' materials that exhibit both of these properties, but the magnetoelec. coupling of magnetic and elec. properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technol. aspirations.
- 3Cheong, S.-W.; Mostovoy, M. Nat. Mater. 2007, 6, 13 DOI: 10.1038/nmat1804There is no corresponding record for this reference.
- 4Ramesh, R.; Spaldin, N. A. Nat. Mater. 2007, 6, 21 DOI: 10.1038/nmat1805There is no corresponding record for this reference.
- 5Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. Nat. Rev. Mats. 2016, 1, 16046 DOI: 10.1038/natrevmats.2016.465https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2sXhtVertbc%253D&md5=39ab30241ec3193da90efe4d297a870bThe evolution of multiferroicsFiebig, Manfred; Lottermoser, Thomas; Meier, Dennis; Trassin, MorganNature Reviews Materials (2016), 1 (8), 16046CODEN: NRMADL; ISSN:2058-8437. (Nature Publishing Group)Materials with a coexistence of magnetic and ferroelec. order - multiferroics - provide an efficient route for the control of magnetism by elec. fields. The study of multiferroics dates back to the 1950s, but in recent years, key discoveries in theory, synthesis and characterization techniques have led to a new surge of interest in these materials. Different mechanisms, such as lone-pair, geometric, charge-ordering and spin-driven effects, can support multiferroicity. The general focus of the field is now shifting into neighboring research areas, as we discuss in this Review. Multiferroic thin-film heterostructures, device architectures, and domain and interface effects are explored. The violation of spatial and inversion symmetry in multiferroic materials is a key feature because it dets. their properties. Other aspects, such as the non-equil. dynamics of multiferroics, are underrated and should be included in the topics that will define the future of the field.
- 6Hill, N. A. J. Phys. Chem. B 2000, 104, 6694 DOI: 10.1021/jp000114xThere is no corresponding record for this reference.
- 7Scott, J. F. Science 2007, 315, 954 DOI: 10.1126/science.1129564There is no corresponding record for this reference.
- 8Béa, H.; Gajek, M.; Bibes, M.; Barthélémy, A. J. Phys.: Condens. Matter 2008, 20, 434221 DOI: 10.1088/0953-8984/20/43/4342218https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXhsVSisLnF&md5=8d6113c94a57145a5a843ecad4061fcfSpintronics with multiferroicsBea, H.; Gajek, M.; Bibes, M.; Barthelemy, A.Journal of Physics: Condensed Matter (2008), 20 (43), 434221/1-434221/11CODEN: JCOMEL; ISSN:0953-8984. (Institute of Physics Publishing)A review. The authors review the recent research on the functionalization of multiferroics for spintronics applications. The authors focus more particularly on antiferromagnetic and ferroelec. BiFeO3 and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO3 allows the observation of a large tunnel magnetoresistance with Co and (La, Sr)MnO3 ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelec. properties were exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to elec. control magnetization and possibly the logic state of spintronics devices. The authors also discuss recent results concerning the use of ferromagnetic and ferroelec. (La, Bi)MnO3 as an active tunnel barrier in magnetic tunnel junctions with Au and (La, Sr)MnO3 electrodes. A four-resistance-state device was obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelec. behavior of the (La, Bi)MnO3 ultrathin film. The addnl. degree of freedom provided by the ferroelec. polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.
- 9Bibes, M.; Barthelemy, A. Nat. Mater. 2008, 7, 425 DOI: 10.1038/nmat2189There is no corresponding record for this reference.
- 10Ahn, C. H.; Triscone, J.-M.; Mannhart, J. Nature 2003, 424, 1015 DOI: 10.1038/nature01878There is no corresponding record for this reference.
- 11Yang, C.-H.; Kan, D.; Takeuchi, I.; Nagarajan, V.; Seidel, J. Phys. Chem. Chem. Phys. 2012, 14, 15953 DOI: 10.1039/c2cp43082gThere is no corresponding record for this reference.
- 12Park, J.; Kang, M.; Kim, J.; Lee, S.; Jang, K.-H.; Pirogov, A.; Park, J.-G.; Lee, C.; Park, S.-H.; Kim, H. C. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 064417 DOI: 10.1103/PhysRevB.79.064417There is no corresponding record for this reference.
- 13Choi, K. J.; Biegalski, M.; Li, Y. L.; Sharan, A.; Schubert, J.; Uecker, R.; Reiche, P.; Chen, Y. B.; Pan, X. Q.; Gopalan, V.; Chen, L.-Q.; Schlom, D. G.; Eom, C.-B. Science 2004, 306, 1005 DOI: 10.1126/science.110321813https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXptFyjtbk%253D&md5=f546df4927e2a42243782f1ea5bfcc22Enhancement of ferroelectricity in strained BaTiO3 thin filmsChoi, K. J.; Biegalski, M.; Li, Y. L.; Sharan, A.; Schubert, J.; Uecker, R.; Reiche, P.; Chen, Y. B.; Pan, X. Q.; Gopalan, V.; Chen, L.-Q.; Schlom, D. G.; Eom, C. B.Science (Washington, DC, United States) (2004), 306 (5698), 1005-1009CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Biaxial compressive strain has been used to markedly enhance the ferroelec. properties of BaTiO3 thin films. This strain, imposed by coherent epitaxy, can result in a ferroelec. transition temp. nearly 500° higher and a remanent polarization at least 250% higher than bulk BaTiO3 single crystals. This work demonstrates a route to a lead-free ferroelec. for nonvolatile memories and electro-optic devices.
- 14Haeni, J. H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y. L.; Choudhury, S.; Tian, W.; Hawley, M. E.; Craigo, B.; Tagantsev, A. K.; Pan, X. Q.; Streiffer, S. K.; Chen, L. Q.; Kirchoefer, S. W.; Levy, J.; Schlom, D. G. Nature 2004, 430, 758 DOI: 10.1038/nature02773There is no corresponding record for this reference.
- 15Jang, H. W.; Ortiz, D.; Baek, S.-H.; Folkman, C. M.; Das, R. R.; Shafer, P.; Chen, Y.; Nelson, C. T.; Pan, X.; Ramesh, R.; Eom, C.-B. Adv. Mater. 2009, 21, 817 DOI: 10.1002/adma.200800823There is no corresponding record for this reference.
- 16Rossell, M. D.; Erni, R.; Prange, M. P.; Idrobo, J.-C.; Luo, W.; Zeches, R. J.; Pantelides, S. T.; Ramesh, R. Phys. Rev. Lett. 2012, 108, 047601 DOI: 10.1103/PhysRevLett.108.047601There is no corresponding record for this reference.
- 17Guzmán, R.; Maurel, L.; Langenberg, E.; Lupini, A. R.; Algarabel, P. A.; Pardo, J. A.; Magén, C. Nano Lett. 2016, 16, 2221 DOI: 10.1021/acs.nanolett.5b04455There is no corresponding record for this reference.
- 18Catalan, G.; Scott, F. J. Adv. Mater. 2009, 21, 2463 DOI: 10.1002/adma.200802849There is no corresponding record for this reference.
- 19Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R. Science 2003, 299, 1719 DOI: 10.1126/science.108061519https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXitVSjt78%253D&md5=f0837f42b73b99f0e839d290fe24e16aEpitaxial BiFeO3 multiferroic thin-film heterostructuresWang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R.Science (Washington, DC, United States) (2003), 299 (5613), 1719-1722CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure anal. indicates that the crystal structure of the film is monoclinic in contrast to the bulk, which is rhombohedral. The films display a room-temp. spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The obsd. enhancement is corroborated by first-principles calcns. and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin-film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelec. order parameters.
- 20Yun, K. Y.; Noda, M.; Okuyama, M.; Saeki, H.; Tabata, H.; Saito, K. J. Appl. Phys. 2004, 96, 3399 DOI: 10.1063/1.177504520https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXnt1yhsrY%253D&md5=56051471e9812f0d78c8e405652c7d36Structural and multiferroic properties of BiFeO3 thin films at room temperatureYun, Kwi Young; Noda, Minoru; Okuyama, Masanori; Saeki, Hiromasa; Tabata, Hitoshi; Saito, KeisukeJournal of Applied Physics (2004), 96 (6), 3399-3403CODEN: JAPIAU; ISSN:0021-8979. (American Institute of Physics)BiFeO3 thin films were prepd. on Pt/TiO2/SiO2/Si substrates under various oxygen pressures of 0.15-0.005 torr at a temp. of 450° by pulsed-laser deposition. The effects of deposition pressure on their crystal structure and multiferroic properties were studied at room temp. X-ray diffraction anal. (θ-2θ scans and 2-dimensional scans) shows that the BiFeO3 thin films consist of perovskite single phase with tetragonal crystal structure and space group P4mm. The c-axis lattice const. decreases (4.062-4.006 Å) and c/a ratio of the films decreases from 1.032 to 1.014 with a decrease in the oxygen pressure. The surface roughness and grain size of the films depend dramatically on oxygen pressures. The dielec. const. of the films decreases with decreasing oxygen pressure. The film deposited at 0.05 torr shows a stable c.d. and well-satd. hysteresis loop with twice the remanent polarization (2Pr) of 136 μC/cm2 and coercive field (2Ec) of 109 kV/cm. The BiFeO3 thin films also show the satd. weak ferromagnetic hysteresis loops with a small remanent magnetization.
- 21Das, R. R.; Kim, D. M.; Baek, S. H.; Eom, C. B.; Zavaliche, F.; Yang, S. Y.; Ramesh, R.; Chen, Y. B.; Pan, X. Q.; Ke, X.; Rzchowski, M. S.; Streiffer, S. K. Appl. Phys. Lett. 2006, 88, 242904 DOI: 10.1063/1.2213347There is no corresponding record for this reference.
- 22Ravindran, P.; Vidya, R.; Kjekshus, A.; Fjellvåg, H.; Eriksson, O. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 224412 DOI: 10.1103/PhysRevB.74.224412There is no corresponding record for this reference.
- 23Catalan, G.; Sardar, K.; Church, N. S.; Scott, J. F.; Harrison, R. J.; Redfern, S. A. T. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 212415 DOI: 10.1103/PhysRevB.79.212415There is no corresponding record for this reference.
- 24Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R. Nat. Mater. 2009, 8, 485 DOI: 10.1038/nmat243224https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXmtFemsbw%253D&md5=c0e406a5ed93e971e517867b0b5b8295Electric modulation of conduction in multiferroic Ca-doped BiFeO3 filmsYang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.Nature Materials (2009), 8 (6), 485-493CODEN: NMAACR; ISSN:1476-1122. (Nature Publishing Group)Many interesting materials phenomena such as the emergence of high-Tc supercond. in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, the authors present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelec. BiFeO3 through Ca doping. Application of elec. field enables one to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A dome-like' feature in the doping dependence of the ferroelec. transition is obsd. around a Ca concn. of ∼1/8, where a new pseudo-tetragonal phase appears and the elec. modulation of conduction is optimized. Possible mechanisms for the obsd. effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelecs. and magneto-electronics at room temp. by combining electronic conduction with elec. and magnetic degrees of freedom already present in the multiferroic BiFeO3.
- 25Seidel, J.; Luo, W.; Suresha, S. J.; Nguyen, P.-K.; Lee, A. S.; Kim, S.-Y.; Yang, C.-H.; Pennycook, S. J.; Pantelides, S. T.; Scott, J. F.; Ramesh, R. Nat. Commun. 2012, 3, 799 DOI: 10.1038/ncomms179925https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC38rnsl2ltA%253D%253D&md5=9a6a46eeb0c6c61c7a1e7f20accf4c01Prominent electrochromism through vacancy-order melting in a complex oxideSeidel J; Luo W; Suresha S J; Nguyen P-K; Lee A S; Kim S-Y; Yang C-H; Pennycook S J; Pantelides S T; Scott J F; Ramesh RNature communications (2012), 3 (), 799 ISSN:.Electrochromes are materials that have the ability to reversibly change from one colour state to another with the application of an electric field. Electrochromic colouration efficiency is typically large in organic materials that are not very stable chemically. Here we show that inorganic Bi(0.9)Ca(0.1)FeO(3-0.05) thin films exhibit a prominent electrochromic effect arising from an intrinsic mechanism due to the melting of oxygen-vacancy ordering and the associated redistribution of carriers. We use a combination of optical characterization techniques in conjunction with high-resolution transmission electron microscopy and first-principles theory. The absorption change and colouration efficiency at the band edge (blue-cyan region) are 4.8×10(6) m(-1) and 190 cm(2) C(-1), respectively, which are the highest reported values for inorganic electrochromes, even exceeding values of some organic materials.
- 26Chen, W.-T.; Williams, A. J.; Ortega-San-Martin, L.; Li, M.; Sinclair, D. C.; Zhou, W.; Attfield, J. P. Chem. Mater. 2009, 21, 2085 DOI: 10.1021/cm8031048There is no corresponding record for this reference.
- 27Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M. J. Solid State Chem. 2008, 181, 2601 DOI: 10.1016/j.jssc.2008.04.04727https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1KjtL7O&md5=e2a1b28d038a9c368767a0be4c71448cLong-range ordering in the Bi1-xAexFeO3-x/2 perovskites: Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M.Journal of Solid State Chemistry (2008), 181 (10), 2601-2609CODEN: JSSCBI; ISSN:0022-4596. (Elsevier Inc.)Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mossbauer spectroscopy, and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a ≈ b ≈ 2ap and c ≈ 3ap (S.G.: Pb2n or Pbmn) for the Sr-based compd. and one with a ≈ b ≈ 2ap and c ≈ 8ap (S.G.: B222, Bmm2, B2mm, or Bmmm) for the Ca-based one. The high-resoln. transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx]∞ layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared with their Ln-based homolog. The HAADF-STEM images allow the proposal of a model of cation ordering on the A sites of the perovskite. The Mossbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compds. exhibit a high value of resistivity and the inverse molar susceptibility vs. temp. curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75.
- 28Schiemer, J.; Withers, R.; Norén, L.; Liu, Y.; Bourgeois, L.; Stewart, G. Chem. Mater. 2009, 21, 4223 DOI: 10.1021/cm901757hThere is no corresponding record for this reference.
- 29Jang, H.; Kerr, G.; Lim, J. S.; Yang, C.-H.; Kao, C.-C.; Lee, J.-S. Sci. Rep. 2015, 5, 12402 DOI: 10.1038/srep1240229https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC28%252FntVygug%253D%253D&md5=d87591e48414fd9256775c4a7598b619Orbital Reconstruction in a Self-assembled Oxygen Vacancy NanostructureJang H; Kerr G; Lee J-S; Lim J S; Yang C-H; Kao C-CScientific reports (2015), 5 (), 12402 ISSN:.We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca(2+) for Bi(3+) cation. We found that by increasing the substitution, the in-plane orbital bands of Fe(3+) cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO3 system.
- 30Schiemer, J. A.; Withers, R. L.; Liu, Y.; Carpenter, M. A. Chem. Mater. 2013, 25, 4436 DOI: 10.1021/cm402962qThere is no corresponding record for this reference.
- 31Shibata, N.; Findlay, S. D.; Kohno, Y.; Sawada, H.; Kondo, Y.; Ikuhara, Y. Nat. Phys. 2012, 8, 611 DOI: 10.1038/nphys233731https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XovFyrsbk%253D&md5=a145c2f0da4232ced90728a71af3a8dbDifferential phase-contrast microscopy at atomic resolutionShibata, Naoya; Findlay, Scott D.; Kohno, Yuji; Sawada, Hidetaka; Kondo, Yukihito; Ikuhara, YuichiNature Physics (2012), 8 (8), 611-615CODEN: NPAHAX; ISSN:1745-2473. (Nature Publishing Group)Differential phase-contrast (DPC) imaging enhances the image contrast of weakly absorbing, low-at.-no. objects in optical and X-ray microscopy. In transmission electron microscopy, this same imaging mode can image magnetic fields in magnetic materials at medium resoln. Atomic-resoln. imaging of electromagnetic fields, however, is still a major challenge. Here, we demonstrate at.-resoln. DPC imaging of crystals using aberration-cor. scanning transmission electron microscopy. The image contrast reflects the gradient of the electrostatic potential of the atoms; i.e., the at. elec. field, which is found to be sensitive to the crystal ionicity. Both the mesoscopic polarization fields within each domain and the at.-scale elec. fields induced by the individual elec. dipoles within each unit cell can be sensitively detected in ferroelec. BaTiO3. The realization of at.-resoln. DPC microscopy opens a new dimension of microscopy from cryst. materials through to biol. mols.
- 32Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Ultramicroscopy 1998, 74, 131 DOI: 10.1016/S0304-3991(98)00035-732https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1cXlsVygs78%253D&md5=0e756292e0962e80d72e0f79d463672dQuantitative measurement of displacement and strain fields from HREM micrographsHytch, M. J.; Snoeck, E.; Kilaas, R.Ultramicroscopy (1998), 74 (3), 131-146CODEN: ULTRD6; ISSN:0304-3991. (Elsevier Science B.V.)A method for measuring and mapping displacement fields and strain fields from high-resoln. electron microscope (HREM) images has been developed. The method is based upon centering a small aperture around a strong reflection in the Fourier transform of an HREM lattice image and performing an inverse Fourier transform. The phase component of the resulting complex image is shown to give information about local displacements of at. planes and the two-dimensional displacement field can be derived by applying the method to two non-colinear Fourier components. Local strain components can be found by analyzing the deriv. of the displacement field. The details of the technique are outlined and applied to an exptl. HREM image of a domain wall in ferroelec.-ferroelastic PbTiO3.
- 33Galindo, P. L.; Kret, S.; Sanchez, A. M.; Laval, J.-Y.; Yáñez, A.; Pizarro, J.; Guerrero, E.; Ben, T.; Molina, S. I. Ultramicroscopy 2007, 107, 1186 DOI: 10.1016/j.ultramic.2007.01.01933https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2sXpvVensLY%253D&md5=815d0087870b2ef67813ed5e87971d93The Peak Pairs algorithm for strain mapping from HRTEM imagesGalindo, Pedro L.; Kret, Slawomir; Sanchez, Ana M.; Laval, Jean-Yves; Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa; Ben, Teresa; Molina, Sergio I.Ultramicroscopy (2007), 107 (12), 1186-1193CODEN: ULTRD6; ISSN:0304-3991. (Elsevier B.V.)Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resoln. transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calcd. in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the ref. area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behavior at heavily distorted defect cores, e.g. interfaces and dislocations. Quant. results are reported from expts. to det. local strain in different types of semiconductor heterostructures.
- 34Chou, H.; Yen, C.-W.; Yang, C.-C.; Dwivedi, G.D.; Yang, K. S.; Wu, C. P.; Liu, K. C.; Li, W.-H. Acta Mater. 2016, 111, 297 DOI: 10.1016/j.actamat.2016.03.07134https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28Xls1Ght7s%253D&md5=627ab7836182c52dc531af160f5957b5Oxygen deficiency-induced anomalous enhancement of Neel temperature and magnetic coupling for Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δChou, Hsiung; Yen, Chen-Wei; Yang, Chun-Chuen; Dwivedi, G. D.; Yang, Kung Shuang; Wu, C. P.; Liu, K. C.; Li, Wen-HsienActa Materialia (2016), 111 (), 297-304CODEN: ACMAFD; ISSN:1359-6454. (Elsevier Ltd.)Temp. dependent neutron diffraction patterns of the Ca-doped BiFeO3 and Pb-doped BiFeO3 show that their Neel temps. (TN) increase to 710 K and 680 K, while pure BiFeO3 has a TN ∼ 643 K. This anomalous increase in TN was investigated in detail by probing near edge X-ray absorption fine spectroscopy, X-ray photoemission spectroscopy techniques and structural refinement of the neutron diffraction pattern. Room temp. X-ray absorption spectroscopy clearly shows that there is no evidence of mixed valence states despite divalent cation doping in trivalent Bi-sites. A room temp. X-ray photoemission spectroscopy study revealed that instead of mixed valences, divalent doping has introduced oxygen vacancies in the system. Structural refinement of neutron diffraction patterns also supports the presence of oxygen vacancies in Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δ. Oxygen deficiency plays a pivotal role in reducing Fe-O bond length in Fe-O6 octahedra and hence increasing the Fe-O-Fe bond angle in Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δ. This decreased Fe-O bond length and increased Fe-O-Fe bond angle favors the Goodenough-Kanamori-Anderson (GKA) coupling. The GKA coupling increases the magnetic interaction between the spins and hence increases the TN. Addnl., doping of divalent cations (Ca2+ and Pb2+) results in the destruction of cycloidal spin structure and formation of a simple antiferromagnetic (AFM) structure. This structure can easily be canted near the heterogeneous interface with a ferromagnetic layer to induce the Dzyaloshinskii-Moriya (DM) interaction and enhance the magneto-elec. (M-E) coupling.
- 35Nelson, C. T.; Winchester, B.; Zhang, Y.; Kim, S.-J.; Melville, A.; Adamo, C.; Folkman, C. M.; Baek, S.-H.; Eom, C.-B.; Schlom, D. G.; Chen, L.-Q.; Pan, X. Nano Lett. 2011, 11, 828 DOI: 10.1021/nl1041808There is no corresponding record for this reference.
- 36Zhan, Q.; Yu, R.; Crane, S. P.; Zheng, H.; Kisielowski, C.; Ramesh, R. Appl. Phys. Lett. 2006, 89, 172902 DOI: 10.1063/1.2364692There is no corresponding record for this reference.
- 37Liu, H.; Liang, W.; Chu, Y.; Zheng, H.; Ramesh, R. MRS Commun. 2014, 4, 31 DOI: 10.1557/mrc.2014.1337https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhtVCrurvM&md5=7f513c0390651a07ac63b6fafabc0d30Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalitiesLiu, Heng-Jui; Liang, Wen-I.; Chu, Ying-Hao; Zheng, Haimei; Ramesh, RamamoorthyMRS Communications (2014), 4 (2), 31-44CODEN: MCROF8; ISSN:2159-6867. (Cambridge University Press)Self-assembled vertical heteroepitaxial nanostructures (VHN) in the complex oxide field have fascinated scientists for decades because they provide degrees of freedom to explore in condensed matter physics and design-coupled multifunctionlities. Recently, of particular interest is the perovskite-spinel-based VHN, covering a wide spectrum of promising applications. In this review, fabrication of VHN, their growth mechanism, control, and resulting novel multifunctionalities are discussed thoroughly, providing researchers a comprehensive blueprint to construct promising VHN. Following the fabrication section, the state-of-the-art design concepts for multifunctionalities are proposed and reviewed by suitable examples. By summarizing the outlook of this field, we are excitedly expecting this field to rise with significant contributions ranging from scientific value to practical applications in the foreseeable future.
- 38Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 014113 DOI: 10.1103/PhysRevB.71.014113There is no corresponding record for this reference.
- 39Damodaran, A. R.; Pandya, S.; Qi, Y.; Hsu, S.-L.; Liu, S.; Nelson, C.; Dasgupta, A.; Ercius, P.; Ophus, C.; Dedon, L. R.; Agar, J. C.; Lu, H.; Zhang, J.; Minor, A. M.; Rappe, A. M.; Martin, L. W. Nat. Commun. 2017, 8, 14961 DOI: 10.1038/ncomms1496139https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC1crlslalsQ%253D%253D&md5=bbf687e7c007cd0f2f1b64684d7e7bfeLarge polarization gradients and temperature-stable responses in compositionally-graded ferroelectricsDamodaran Anoop R; Pandya Shishir; Hsu Shang-Lin; Nelson Christopher; Dasgupta Arvind; Dedon Liv R; Agar Josh C; Lu Hongling; Minor Andrew M; Martin Lane W; Qi Yubo; Liu Shi; Rappe Andrew M; Liu Shi; Nelson Christopher; Ercius Peter; Ophus Colin; Minor Andrew M; Zhang Jialan; Martin Lane WNature communications (2017), 8 (), 14961 ISSN:.A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 μC cm(-2) across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss ( r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.
- 40Ederer, C.; Spaldin, N. A. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 060401 DOI: 10.1103/PhysRevB.71.060401There is no corresponding record for this reference.
- 41Shibata, N.; Seki, T.; Sánchez-Santolino, G.; Findlay, S. D.; Kohno, Y.; Matsumoto, T.; Ishikawa, R.; Ikuhara, Y. Nat. Commun. 2017, 8, 15631 DOI: 10.1038/ncomms1563141https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2sXovFCgt7k%253D&md5=6a4a9892c87d6b3bf563d29f92825865Electric field imaging of single atomsShibata, Naoya; Seki, Takehito; Sanchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, YuichiNature Communications (2017), 8 (), 15631CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the at.-scale elec. field of both the pos. at. nuclei and the surrounding neg. electrons within cryst. materials can be probed by at.-resoln. differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) at. elec. field distribution inside single Au atoms, using sub-Å spatial resoln. STEM combined with a high-speed segmented detector. We directly visualize that the elec. field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge d. within the atom. Atomic-resoln. elec. field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures.
- 42Jones, L.; Yang, H.; Pennycook, T. J.; Marshall, M. S. J.; Van Aert, S.; Browning, N. D.; Castell, M. R.; Nellist, P. D. Adv. Struct. Chem. Imag. 2015, 1, 8 DOI: 10.1186/s40679-015-0008-4There is no corresponding record for this reference.
- 43Findlay, S. D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. Ultramicroscopy 2010, 110, 903 DOI: 10.1016/j.ultramic.2010.04.004There is no corresponding record for this reference.
- 44Yankovich, A. B.; Berkels, B.; Dahmen, W.; Binev, P.; Sanchez, S. I.; Bradley, S. A.; Li, A.; Szlufarska, I.; Voyles, P. M. Nat. Commun. 2014, 5, 4155 DOI: 10.1038/ncomms515544https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhvF2mur3I&md5=9a047467893fb1905cc28985dbdecc98Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalystsYankovich, Andrew B.; Berkels, Benjamin; Dahmen, W.; Binev, P.; Sanchez, S. I.; Bradley, S. A.; Li, Ao; Szlufarska, Izabela; Voyles, Paul M.Nature Communications (2014), 5 (), 4155CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials' behavior. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-cor. Z-contrast scanning transmission electron microscopy images based on the non-rigid registration and averaging of an image series. Non-rigid registration achieves five to seven times better precision than previous methods. Non-rigidly registered images of a silica-supported platinum nanocatalyst show pm-scale contraction of atoms at a (1‾11)/(‾1‾11) corner towards the particle center and expansion of a flat (1‾11) facet. Sub-picometre precision and standardless atom counting with <1 atom uncertainty in the same scanning transmission electron microscopy image provide new insight into the three-dimensional at. structure of catalyst nanoparticle surfaces, which contain the active sites controlling catalytic reactions.
- 45Bals, S.; Aert, S. V.; Tendeloo, G. V.; Ávila-Brande, D. Phys. Rev. Lett. 2006, 96, 096106 DOI: 10.1103/PhysRevLett.96.096106There is no corresponding record for this reference.
- 46Kilaas, R. MacTempas: a program for Simulating high resolution TEM images and diffraction pattern. Total Resolution LLC, http://www.totalresolution (accessed on 06/09/2017).There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b03817.
Large-scale morphology of the film superstructure (Figure S1). Description of the strain state of the film by GPA analysis (Figure S2). Polarization analysis along the complementary [110] pseudocubic direction (Figure S3) (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.