ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors

  • Iris Niehues
    Iris Niehues
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
    More by Iris Niehues
  • Robert Schmidt
    Robert Schmidt
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
  • Matthias Drüppel
    Matthias Drüppel
    Institute of Solid State Theory, University of Münster, D-48149 Münster, Germany
  • Philipp Marauhn
    Philipp Marauhn
    Institute of Solid State Theory, University of Münster, D-48149 Münster, Germany
  • Dominik Christiansen
    Dominik Christiansen
    Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, D-10623 Berlin, Germany
  • Malte Selig
    Malte Selig
    Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, D-10623 Berlin, Germany
    More by Malte Selig
  • Gunnar Berghäuser
    Gunnar Berghäuser
    Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
  • Daniel Wigger
    Daniel Wigger
    Institute of Solid State Theory, University of Münster, D-48149 Münster, Germany
  • Robert Schneider
    Robert Schneider
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
  • Lisa Braasch
    Lisa Braasch
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
    More by Lisa Braasch
  • Rouven Koch
    Rouven Koch
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
    More by Rouven Koch
  • Andres Castellanos-Gomez
    Andres Castellanos-Gomez
    Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
  • Tilmann Kuhn
    Tilmann Kuhn
    Institute of Solid State Theory, University of Münster, D-48149 Münster, Germany
    More by Tilmann Kuhn
  • Andreas Knorr
    Andreas Knorr
    Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, D-10623 Berlin, Germany
  • Ermin Malic
    Ermin Malic
    Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
    More by Ermin Malic
  • Michael Rohlfing
    Michael Rohlfing
    Institute of Solid State Theory, University of Münster, D-48149 Münster, Germany
  • Steffen Michaelis de Vasconcellos
    Steffen Michaelis de Vasconcellos
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
  • , and 
  • Rudolf Bratschitsch*
    Rudolf Bratschitsch
    Institute of Physics and Center for Nanotechnology, University of Münster, D-48149 Münster, Germany
    *E-mail: [email protected]
Cite this: Nano Lett. 2018, 18, 3, 1751–1757
Publication Date (Web):February 1, 2018
https://doi.org/10.1021/acs.nanolett.7b04868
Copyright © 2018 American Chemical Society

    Article Views

    8577

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Semiconducting transition metal dichalcogenide (TMDC) monolayers have exceptional physical properties. They show bright photoluminescence due to their unique band structure and absorb more than 10% of the light at their excitonic resonances despite their atomic thickness. At room temperature, the width of the exciton transitions is governed by the exciton–phonon interaction leading to strongly asymmetric line shapes. TMDC monolayers are also extremely flexible, sustaining mechanical strain of about 10% without breaking. The excitonic properties strongly depend on strain. For example, exciton energies of TMDC monolayers significantly redshift under uniaxial tensile strain. Here, we demonstrate that the width and the asymmetric line shape of excitonic resonances in TMDC monolayers can be controlled with applied strain. We measure photoluminescence and absorption spectra of the A exciton in monolayer MoSe2, WSe2, WS2, and MoS2 under uniaxial tensile strain. We find that the A exciton substantially narrows and becomes more symmetric for the selenium-based monolayer materials, while no change is observed for atomically thin WS2. For MoS2 monolayers, the line width increases. These effects are due to a modified exciton–phonon coupling at increasing strain levels because of changes in the electronic band structure of the respective monolayer materials. This interpretation based on steady-state experiments is corroborated by time-resolved photoluminescence measurements. Our results demonstrate that moderate strain values on the order of only 1% are already sufficient to globally tune the exciton–phonon interaction in TMDC monolayers and hold the promise for controlling the coupling on the nanoscale.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b04868.

    -

    Photoluminescence under strain, absorption under strain, fitting of the PL and absorption spectra, asymmetry of PL and absorption, influence of the trion on the PL of strained MoS2, phonon contribution to the exciton line width at zero strain, valley positions under uniaxial strain, time-resolved PL measurements, and phonon contributions to the line width at zero strain (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 174 publications.

    1. Ajit Kumar Katiyar, Anh Tuan Hoang, Duo Xu, Juyeong Hong, Beom Jin Kim, Seunghyeon Ji, Jong-Hyun Ahn. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chemical Reviews 2024, 124 (2) , 318-419. https://doi.org/10.1021/acs.chemrev.3c00302
    2. Daphné Lubert-Perquel, Swagata Acharya, Justin C. Johnson. Optically Addressing Exciton Spin and Pseudospin in Nanomaterials for Spintronics Applications. ACS Applied Optical Materials 2023, 1 (11) , 1742-1760. https://doi.org/10.1021/acsaom.3c00299
    3. Shunyu Chang, Yongda Yan, Yanquan Geng. Local Nanostrain Engineering of Monolayer MoS2 Using Atomic Force Microscopy-Based Thermomechanical Nanoindentation. Nano Letters 2023, 23 (20) , 9219-9226. https://doi.org/10.1021/acs.nanolett.3c01809
    4. Ce Xu, Guoqing Zhou, Evgeny M. Alexeev, Alisson R. Cadore, Ioannis Paradisanos, Anna K. Ott, Giancarlo Soavi, Sefaattin Tongay, Giulio Cerullo, Andrea C. Ferrari, Oleg V. Prezhdo, Zhi-Heng Loh. Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS2 Is Accelerated by Wrinkling. ACS Nano 2023, 17 (17) , 16682-16694. https://doi.org/10.1021/acsnano.3c02917
    5. Jiahao Yan, Kaiqing Zhao, Tianli Wu, Xinyue Liu, Yuchao Li, Baojun Li. Optical Printing of Silicon Nanoparticles as Strain-Driven Nanopixels. ACS Applied Materials & Interfaces 2023, 15 (32) , 38682-38692. https://doi.org/10.1021/acsami.3c06391
    6. Arijit Kayal, Sraboni Dey, Harikrishnan G., Renjith Nadarajan, Shashwata Chattopadhyay, Joy Mitra. Mobility Enhancement in CVD-Grown Monolayer MoS2 Via Patterned Substrate-Induced Nonuniform Straining. Nano Letters 2023, 23 (14) , 6629-6636. https://doi.org/10.1021/acs.nanolett.3c01774
    7. Yu-Chuan Lin, Riccardo Torsi, Rehan Younas, Christopher L. Hinkle, Albert F. Rigosi, Heather M. Hill, Kunyan Zhang, Shengxi Huang, Christopher E. Shuck, Chen Chen, Yu-Hsiu Lin, Daniel Maldonado-Lopez, Jose L. Mendoza-Cortes, John Ferrier, Swastik Kar, Nadire Nayir, Siavash Rajabpour, Adri C. T. van Duin, Xiwen Liu, Deep Jariwala, Jie Jiang, Jian Shi, Wouter Mortelmans, Rafael Jaramillo, Joao Marcelo J. Lopes, Roman Engel-Herbert, Anthony Trofe, Tetyana Ignatova, Seng Huat Lee, Zhiqiang Mao, Leticia Damian, Yuanxi Wang, Megan A. Steves, Kenneth L. Knappenberger, Jr., Zhengtianye Wang, Stephanie Law, George Bepete, Da Zhou, Jiang-Xiazi Lin, Mathias S. Scheurer, Jia Li, Pengjie Wang, Guo Yu, Sanfeng Wu, Deji Akinwande, Joan M. Redwing, Mauricio Terrones, Joshua A. Robinson. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS Nano 2023, 17 (11) , 9694-9747. https://doi.org/10.1021/acsnano.2c12759
    8. Sanghyeok Park, Dongha Kim, Yun-Seok Choi, Arthur Baucour, Donghyeong Kim, Sangho Yoon, Kenji Watanabe, Takashi Taniguchi, Jonghwa Shin, Jonghwan Kim, Min-Kyo Seo. Customizing Radiative Decay Dynamics of Two-Dimensional Excitons via Position- and Polarization-Dependent Vacuum-Field Interference. Nano Letters 2023, 23 (6) , 2158-2165. https://doi.org/10.1021/acs.nanolett.2c04604
    9. Yueyang Yu, Chuan-Ding Dong, Rolf Binder, Stefan Schumacher, Cun-Zheng Ning. Strain-Induced Indirect-to-Direct Bandgap Transition, Photoluminescence Enhancement, and Linewidth Reduction in Bilayer MoTe2. ACS Nano 2023, 17 (5) , 4230-4238. https://doi.org/10.1021/acsnano.2c01665
    10. Antonios Michail, Dimitris Anestopoulos, Nikos Delikoukos, Spyridon Grammatikopoulos, Sotirios A. Tsirkas, Nektarios N. Lathiotakis, Otakar Frank, Kyriakos Filintoglou, John Parthenios, Konstantinos Papagelis. Tuning the Photoluminescence and Raman Response of Single-Layer WS2 Crystals Using Biaxial Strain. The Journal of Physical Chemistry C 2023, 127 (7) , 3506-3515. https://doi.org/10.1021/acs.jpcc.2c06933
    11. Ricardo Javier Peña Román, Rémi Bretel, Delphine Pommier, Luis Enrique Parra López, Etienne Lorchat, Elizabeth Boer-Duchemin, Gérald Dujardin, Andrei G. Borisov, Luiz Fernando Zagonel, Guillaume Schull, Stéphane Berciaud, Eric Le Moal. Tip-Induced and Electrical Control of the Photoluminescence Yield of Monolayer WS2. Nano Letters 2022, 22 (23) , 9244-9251. https://doi.org/10.1021/acs.nanolett.2c02142
    12. Sharad Ambardar, Hana N. Hrim, Chenwei Tang, Shuai Jia, Weibing Chen, Jun Lou, Dmitri V. Voronine. Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence. The Journal of Physical Chemistry C 2022, 126 (32) , 13821-13829. https://doi.org/10.1021/acs.jpcc.2c03728
    13. Libin Liang, Katrina Czar, Madalina I. Furis. Strain-Enhanced Formation of Delocalized Exciton States in Phthalocyanine Crystalline Thin Films. The Journal of Physical Chemistry C 2022, 126 (20) , 8889-8896. https://doi.org/10.1021/acs.jpcc.2c01382
    14. Robert Oliva, Tomasz Wozniak, Paulo E. Faria, Jr., Filip Dybala, Jan Kopaczek, Jaroslav Fabian, Paweł Scharoch, Robert Kudrawiec. Strong Substrate Strain Effects in Multilayered WS2 Revealed by High-Pressure Optical Measurements. ACS Applied Materials & Interfaces 2022, 14 (17) , 19857-19868. https://doi.org/10.1021/acsami.2c01726
    15. Haowen Su, Ding Xu, Shan-Wen Cheng, Baichang Li, Song Liu, Kenji Watanabe, Takashi Taniguchi, Timothy C. Berkelbach, James C. Hone, Milan Delor. Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors. Nano Letters 2022, 22 (7) , 2843-2850. https://doi.org/10.1021/acs.nanolett.1c04997
    16. Saroj B. Chand, John M. Woods, Enrique Mejia, Takashi Taniguchi, Kenji Watanabe, Gabriele Grosso. Visualization of Dark Excitons in Semiconductor Monolayers for High-Sensitivity Strain Sensing. Nano Letters 2022, 22 (7) , 3087-3094. https://doi.org/10.1021/acs.nanolett.2c00436
    17. Chuan He, Ruowei Wu, Lipeng Zhu, Yuanyuan Huang, Wanyi Du, Mei Qi, Yixuan Zhou, Qiyi Zhao, Xinlong Xu. Anisotropic Second-Harmonic Generation Induced by Reduction of In-Plane Symmetry in 2D Materials with Strain Engineering. The Journal of Physical Chemistry Letters 2022, 13 (1) , 352-361. https://doi.org/10.1021/acs.jpclett.1c03571
    18. Yan Zhao, Shuqing Zhang, Bo Xu, Shishu Zhang, Shiyi Han, Jin Zhang, Lianming Tong. Monitoring Strain-Controlled Exciton–Phonon Coupling in Layered MoS2 by Circularly Polarized Light. The Journal of Physical Chemistry Letters 2021, 12 (47) , 11555-11562. https://doi.org/10.1021/acs.jpclett.1c03481
    19. Rishi Maiti, Md Abid Shahriar Rahman Saadi, Rubab Amin, Veli Ongun Ozcelik, Berkin Uluutku, Chandraman Patil, Can Suer, Santiago Solares, Volker J. Sorger. Strain-Induced Spatially Resolved Charge Transport in 2H-MoTe2. ACS Applied Electronic Materials 2021, 3 (9) , 3781-3788. https://doi.org/10.1021/acsaelm.1c00281
    20. Marie-Christin Heißenbüttel, Thorsten Deilmann, Peter Krüger, Michael Rohlfing. Valley-Dependent Interlayer Excitons in Magnetic WSe2/CrI3. Nano Letters 2021, 21 (12) , 5173-5178. https://doi.org/10.1021/acs.nanolett.1c01232
    21. Chullhee Cho, Joeson Wong, Amir Taqieddin, Souvik Biswas, Narayana R. Aluru, SungWoo Nam, Harry A. Atwater. Highly Strain-Tunable Interlayer Excitons in MoS2/WSe2 Heterobilayers. Nano Letters 2021, 21 (9) , 3956-3964. https://doi.org/10.1021/acs.nanolett.1c00724
    22. Tianlun Allan Huang, Marios Zacharias, D. Kirk Lewis, Feliciano Giustino, Sahar Sharifzadeh. Exciton–Phonon Interactions in Monolayer Germanium Selenide from First Principles. The Journal of Physical Chemistry Letters 2021, 12 (15) , 3802-3808. https://doi.org/10.1021/acs.jpclett.1c00264
    23. Yi Wan, Jing-Kai Huang, Chih-Piao Chuu, Wei-Ting Hsu, Chien-Ju Lee, Areej Aljarb, Chun-Wei Huang, Ming-Hui Chiu, Hao-Ling Tang, Ci Lin, Xuechun Zhang, Ching-Ming Wei, Sean Li, Wen-Hao Chang, Lain-Jong Li, Vincent Tung. Strain-Directed Layer-By-Layer Epitaxy Toward van der Waals Homo- and Heterostructures. ACS Materials Letters 2021, 3 (4) , 442-453. https://doi.org/10.1021/acsmaterialslett.0c00554
    24. Jae-Pil So, Kwang-Yong Jeong, Jung Min Lee, Kyoung-Ho Kim, Soon-Jae Lee, Woong Huh, Ha-Reem Kim, Jae-Hyuck Choi, Jin Myung Kim, Yoon Seok Kim, Chul-Ho Lee, SungWoo Nam, Hong-Gyu Park. Polarization Control of Deterministic Single-Photon Emitters in Monolayer WSe2. Nano Letters 2021, 21 (3) , 1546-1554. https://doi.org/10.1021/acs.nanolett.1c00078
    25. Samuel Brem, Christopher Linderälv, Paul Erhart, Ermin Malic. Tunable Phases of Moiré Excitons in van der Waals Heterostructures. Nano Letters 2020, 20 (12) , 8534-8540. https://doi.org/10.1021/acs.nanolett.0c03019
    26. James Xiao, Yun Liu, Violette Steinmetz, Mustafa Çaǧlar, Jeffrey Mc Hugh, Tomi Baikie, Nicolas Gauriot, Malgorzata Nguyen, Edoardo Ruggeri, Zahra Andaji-Garmaroudi, Samuel D. Stranks, Laurent Legrand, Thierry Barisien, Richard H. Friend, Neil C. Greenham, Akshay Rao, Raj Pandya. Optical and Electronic Properties of Colloidal CdSe Quantum Rings. ACS Nano 2020, 14 (11) , 14740-14760. https://doi.org/10.1021/acsnano.0c01752
    27. Roberto Rosati, Koloman Wagner, Samuel Brem, Raül Perea-Causín, Edith Wietek, Jonas Zipfel, Jonas D. Ziegler, Malte Selig, Takashi Taniguchi, Kenji Watanabe, Andreas Knorr, Alexey Chernikov, Ermin Malic. Temporal Evolution of Low-Temperature Phonon Sidebands in Transition Metal Dichalcogenides. ACS Photonics 2020, 7 (10) , 2756-2764. https://doi.org/10.1021/acsphotonics.0c00866
    28. Luca Sortino, Matthew Brooks, Panaiot G. Zotev, Armando Genco, Javier Cambiasso, Sandro Mignuzzi, Stefan A. Maier, Guido Burkard, Riccardo Sapienza, Alexander I. Tartakovskii. Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors. ACS Photonics 2020, 7 (9) , 2413-2422. https://doi.org/10.1021/acsphotonics.0c00294
    29. Lintao Peng, Henry Chan, Priscilla Choo, Teri W. Odom, Subramanian K. R. S. Sankaranarayanan, Xuedan Ma. Creation of Single-Photon Emitters in WSe2 Monolayers Using Nanometer-Sized Gold Tips. Nano Letters 2020, 20 (8) , 5866-5872. https://doi.org/10.1021/acs.nanolett.0c01789
    30. Yuhui Chu, Ziyang Zhang. Birefringent and Complex Dielectric Functions of Monolayer WSe2 Derived by Spectroscopic Ellipsometer. The Journal of Physical Chemistry C 2020, 124 (23) , 12665-12671. https://doi.org/10.1021/acs.jpcc.0c03691
    31. Lukas Mennel, Valerie Smejkal, Lukas Linhart, Joachim Burgdörfer, Florian Libisch, Thomas Mueller. Band Nesting in Two-Dimensional Crystals: An Exceptionally Sensitive Probe of Strain. Nano Letters 2020, 20 (6) , 4242-4248. https://doi.org/10.1021/acs.nanolett.0c00694
    32. Chiara Trovatello, Henrique P. C. Miranda, Alejandro Molina-Sánchez, Rocío Borrego-Varillas, Cristian Manzoni, Luca Moretti, Lucia Ganzer, Margherita Maiuri, Junjia Wang, Dumitru Dumcenco, Andras Kis, Ludger Wirtz, Andrea Marini, Giancarlo Soavi, Andrea C. Ferrari, Giulio Cerullo, Davide Sangalli, Stefano Dal Conte. Strongly Coupled Coherent Phonons in Single-Layer MoS2. ACS Nano 2020, 14 (5) , 5700-5710. https://doi.org/10.1021/acsnano.0c00309
    33. Manfred Ersfeld, Frank Volmer, Lars Rathmann, Luca Kotewitz, Maximilian Heithoff, Mark Lohmann, Bowen Yang, Kenji Watanabe, Takashi Taniguchi, Ludwig Bartels, Jing Shi, Christoph Stampfer, Bernd Beschoten. Unveiling Valley Lifetimes of Free Charge Carriers in Monolayer WSe2. Nano Letters 2020, 20 (5) , 3147-3154. https://doi.org/10.1021/acs.nanolett.9b05138
    34. Samuel Brem, August Ekman, Dominik Christiansen, Florian Katsch, Malte Selig, Cedric Robert, Xavier Marie, Bernhard Urbaszek, Andreas Knorr, Ermin Malic. Phonon-Assisted Photoluminescence from Indirect Excitons in Monolayers of Transition-Metal Dichalcogenides. Nano Letters 2020, 20 (4) , 2849-2856. https://doi.org/10.1021/acs.nanolett.0c00633
    35. Bud Yarrow, Abdelrahman M. Askar, Ash M. Parameswaran, Michael M. Adachi. Contact-Lifted Thickness-Modulated MoS2 Diodes for Gate-Controlled Electronic Applications. ACS Applied Electronic Materials 2019, 1 (10) , 2150-2156. https://doi.org/10.1021/acsaelm.9b00514
    36. Oliver Iff, Davide Tedeschi, Javier Martín-Sánchez, Magdalena Moczała-Dusanowska, Sefaattin Tongay, Kentaro Yumigeta, Javier Taboada-Gutiérrez, Matteo Savaresi, Armando Rastelli, Pablo Alonso-González, Sven Höfling, Rinaldo Trotta, Christian Schneider. Strain-Tunable Single Photon Sources in WSe2 Monolayers. Nano Letters 2019, 19 (10) , 6931-6936. https://doi.org/10.1021/acs.nanolett.9b02221
    37. Chunhua An, Zhihao Xu, Wanfu Shen, Rongjie Zhang, Zhaoyang Sun, Shuijing Tang, Yun-Feng Xiao, Daihua Zhang, Dong Sun, Xiaodong Hu, Chunguang Hu, Lei Yang, Jing Liu. The Opposite Anisotropic Piezoresistive Effect of ReS2. ACS Nano 2019, 13 (3) , 3310-3319. https://doi.org/10.1021/acsnano.8b09161
    38. Filip Auksztol, Daniele Vella, Ivan Verzhbitskiy, Kian Fong Ng, Yi Wei Ho, James A. Grieve, José Viana-Gomes, Goki Eda, Alexander Ling. Elastomeric Waveguide on-Chip Coupling of an Encapsulated MoS2 Monolayer. ACS Photonics 2019, 6 (3) , 595-599. https://doi.org/10.1021/acsphotonics.8b01493
    39. Raj Pandya, Richard Y. S. Chen, Alexandre Cheminal, Marion Dufour, Johannes M. Richter, Tudor H. Thomas, Shahab Ahmed, Aditya Sadhanala, Edward P. Booker, Giorgio Divitini, Felix Deschler, Neil C. Greenham, Sandrine Ithurria, Akshay Rao. Exciton–Phonon Interactions Govern Charge-Transfer-State Dynamics in CdSe/CdTe Two-Dimensional Colloidal Heterostructures. Journal of the American Chemical Society 2018, 140 (43) , 14097-14111. https://doi.org/10.1021/jacs.8b05842
    40. Ting Wang, Yirui Zhang, Yuanshuang Liu, Junyi Li, Dameng Liu, Jianbin Luo, Kai Ge. Layer-Number-Dependent Exciton Recombination Behaviors of MoS2 Determined by Fluorescence-Lifetime Imaging Microscopy. The Journal of Physical Chemistry C 2018, 122 (32) , 18651-18658. https://doi.org/10.1021/acs.jpcc.8b02393
    41. David Tebbe, Marc Schütte, Baisali Kundu, Bernd Beschoten, Prasana K Sahoo, Lutz Waldecker. Hyperspectral photoluminescence and reflectance microscopy of 2D materials. Measurement Science and Technology 2024, 35 (3) , 035501. https://doi.org/10.1088/1361-6501/ad128e
    42. Thomas Tenzler, Andreas Knorr, Manuel Katzer. Suppression and amplification of phonon sidebands in transition metal dichalcogenides by optical feedback. Physical Review B 2024, 109 (8) https://doi.org/10.1103/PhysRevB.109.085308
    43. Hao Li, Félix Carrascoso, Ana Borrás, Gloria P. Moreno, Francisco J. Aparicio, Ángel Barranco, Andrés Castellanos Gómez. Towards efficient strain engineering of 2D materials: A four-points bending approach for compressive strain. Nano Research 2024, 80 https://doi.org/10.1007/s12274-023-6402-7
    44. Wenjuan Huang, Yue Xiao, Fangfang Xia, Xiangbai Chen, Tianyou Zhai. Second Harmonic Generation Control in 2D Layered Materials: Status and Outlook. Advanced Functional Materials 2024, 36 https://doi.org/10.1002/adfm.202310726
    45. Hanlin Li, Sviatoslav Kovalchuk, Abhijeet Kumar, Dianjing Liang, Bradley D. Frank, Hu Lin, Nikolai Severin, Kirill I. Bolotin, Stefan Kirstein, Jürgen P. Rabe. Evidence for Charging and Discharging of MoS 2 and WS 2 on Mica by Intercalating Molecularly Thin Liquid Layers. physica status solidi (a) 2024, 221 (1) https://doi.org/10.1002/pssa.202300302
    46. Sebastian Wood, Filipe Richheimer, Tom Vincent, Vivian Tong, Alessandro Catanzaro, Yameng Cao, Olga Kazakova, Fernando Araujo de Castro. Curvature-enhanced localised emission from dark states in wrinkled monolayer WSe 2 at room temperature. Science and Technology of Advanced Materials 2023, 24 (1) https://doi.org/10.1080/14686996.2023.2278443
    47. Felix Carrascoso, Hao Li, Jose M. Obrero-Perez, Francisco J. Aparicio, Ana Borras, Joshua O. Island, Angel Barranco, Andres Castellanos-Gomez. Improved strain engineering of 2D materials by adamantane plasma polymer encapsulation. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00393-1
    48. Niclas S. Mueller, Rakesh Arul, Gyeongwon Kang, Ashley P. Saunders, Amalya C. Johnson, Ana Sánchez-Iglesias, Shu Hu, Lukas A. Jakob, Jonathan Bar-David, Bart de Nijs, Luis M. Liz-Marzán, Fang Liu, Jeremy J. Baumberg. Photoluminescence upconversion in monolayer WSe2 activated by plasmonic cavities through resonant excitation of dark excitons. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41401-8
    49. Luca Sortino, Merve Gülmüs, Benjamin Tilmann, Leonardo de S. Menezes, Stefan A. Maier. Radiative suppression of exciton–exciton annihilation in a two-dimensional semiconductor. Light: Science & Applications 2023, 12 (1) https://doi.org/10.1038/s41377-023-01249-5
    50. Hao Li, Tayfun Kutlu, Félix Carrascoso, Hasan Sahin, Carmen Munuera, Andrés Castellanos Gómez. Anisotropic Tunability of Vibrational Modes in Black Phosphorus Under Uniaxial Compressive/Tensile Strain. Advanced Materials Interfaces 2023, 10 (36) https://doi.org/10.1002/admi.202300540
    51. Stijn van der Lippe, Abel Brokkelkamp, Juan Rojo, Sonia Conesa‐Boj. Localized Exciton Anatomy and BandGap Energy Modulation in 1D MoS 2 Nanostructures. Advanced Functional Materials 2023, 33 (52) https://doi.org/10.1002/adfm.202307610
    52. Christian Martella, Chiara Massetti, Daya Sagar Dhungana, Emiliano Bonera, Carlo Grazianetti, Alessandro Molle. Bendable Silicene Membranes. Advanced Materials 2023, 35 (49) https://doi.org/10.1002/adma.202211419
    53. Mikko Turunen, Henry Fernandez, Suvi-Tuuli Akkanen, Heli Seppänen, Zhipei Sun. Effects of atomic layer deposition on the optical properties of two-dimensional transition metal dichalcogenide monolayers. 2D Materials 2023, 10 (4) , 045018. https://doi.org/10.1088/2053-1583/acf1ad
    54. Sikandar Aftab, Sajjad Hussain, Abdullah A. Al‐Kahtani. Latest Innovations in 2D Flexible Nanoelectronics. Advanced Materials 2023, 35 (42) https://doi.org/10.1002/adma.202301280
    55. Trung D. Pham, Tong D. Hien. Monolayer Ge 2 Te 2 P 4 as a promising photocatalyst for solar driven water-splitting: a DFT study. Physical Chemistry Chemical Physics 2023, 25 (36) , 24459-24467. https://doi.org/10.1039/D3CP02978F
    56. Ye Seul Jung, Jae Woo Park, Ji Yeon Kim, Youngseo Park, Dong Gue Roe, Junseok Heo, Jeong Ho Cho, Yong Soo Cho. Ultrahigh photoresponse in strain- and domain-engineered large-scale MoS 2 monolayer films. Journal of Materials Chemistry A 2023, 11 (32) , 17101-17111. https://doi.org/10.1039/D3TA00642E
    57. Tanveer Ahmed, Jiajia Zha, Kris KH Lin, Hao‐Chung Kuo, Chaoliang Tan, Der‐Hsien Lien. Bright and Efficient Light‐Emitting Devices Based on 2D Transition Metal Dichalcogenides. Advanced Materials 2023, 35 (31) https://doi.org/10.1002/adma.202208054
    58. Satchakorn Khammuang, Anucha Pratumma, Aparporn Sakulkalavek, Thanayut Kaewmaraya, Tanveer Hussain, Komsilp Kotmool. First-principles study of 2H-Mo 2 C-based MXenes under biaxial strain as Li-battery anodes. Physical Chemistry Chemical Physics 2023, 25 (29) , 19612-19619. https://doi.org/10.1039/D3CP01608K
    59. Minglang Gao, Lingxiao Yu, Qian Lv, Feiyu Kang, Zheng-Hong Huang, Ruitao Lv. Photoluminescence manipulation in two-dimensional transition metal dichalcogenides. Journal of Materiomics 2023, 9 (4) , 768-786. https://doi.org/10.1016/j.jmat.2023.02.005
    60. Z A Iakovlev, M M Glazov. Fermi polaron fine structure in strained van der Waals heterostructures. 2D Materials 2023, 10 (3) , 035034. https://doi.org/10.1088/2053-1583/acdd81
    61. Esra Şimşek, Burak Aslan. Computing strain-dependent energy transfer from quantum dots to 2D materials. Nano Futures 2023, 7 (2) , 025006. https://doi.org/10.1088/2399-1984/acddb2
    62. Mukesh Pandey, Cheeranjiv Pandey, Rajeev Ahuja, Rakesh Kumar. Straining techniques for strain engineering of 2D materials towards flexible straintronic applications. Nano Energy 2023, 109 , 108278. https://doi.org/10.1016/j.nanoen.2023.108278
    63. Ziwen Cheng, Haochen Feng, Junhui Sun, Zhibin Lu, Q.‐C. He. Strain‐Driven Superlubricity of Graphene/Graphene in Commensurate Contact. Advanced Materials Interfaces 2023, 10 (10) https://doi.org/10.1002/admi.202202062
    64. Wen Xu, Jun‐Ding Zheng, Wen‐Yi Tong, Jiu‐Long Wang, Ya‐Ping Shao, Yu‐Ke Zhang, Yi‐Fan Tan, Chun‐Gang Duan. Strain‐Induced Ferroelectric Phase Transition in Group‐V Monolayer Black Phosphorus. Advanced Quantum Technologies 2023, 6 (4) https://doi.org/10.1002/qute.202200169
    65. Aleksander Rodek, Thilo Hahn, James Howarth, Takashi Taniguchi, Kenji Watanabe, Marek Potemski, Piotr Kossacki, Daniel Wigger, Jacek Kasprzak. Controlled coherent-coupling and dynamics of exciton complexes in a MoSe 2 monolayer. 2D Materials 2023, 10 (2) , 025027. https://doi.org/10.1088/2053-1583/acc59a
    66. Wenwei Chen, Canghai Zheng, Jiajie Pei, Hongbing Zhan. External field regulation strategies for exciton dynamics in 2D TMDs. Optical Materials Express 2023, 13 (4) , 1007. https://doi.org/10.1364/OME.483284
    67. Jinkun Han, Xiaofei Yue, Yabing Shan, Jiajun Chen, Borgea G. M. Ekoya, Laigui Hu, Ran Liu, Zhijun Qiu, Chunxiao Cong. The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures. Nanomaterials 2023, 13 (5) , 833. https://doi.org/10.3390/nano13050833
    68. Mingyan Liu, Yibin Zhao, Fang Wu, Licheng Wang, Jiamin Yao, Yunwei Yang, Cong Liu, Yi Wan, Erjun Kan. Realization of Ultrahigh Strain Modulation in Two‐Dimensional β‐InSe Layers. Advanced Electronic Materials 2023, 9 (2) https://doi.org/10.1002/aelm.202201023
    69. Hemanga J. Sarmah, D. Mohanta, Abhijit Saha. Prominent exciton emission dynamics and charged exciton (trion)-phonon coupling aspects in γ- irradiated WSe2 nanosheets. Journal of Nanoparticle Research 2023, 25 (2) https://doi.org/10.1007/s11051-022-05664-4
    70. Kanak Datta, Parag B. Deotare. Control of exciton transport/dynamics in 2D materials using surface acoustic waves. 2023, 111-143. https://doi.org/10.1016/bs.semsem.2023.09.005
    71. Onur Çakıroğlu, Joshua O. Island, Yong Xie, Riccardo Frisenda, Andres Castellanos‐Gomez. An Automated System for Strain Engineering and Straintronics of 2D Materials. Advanced Materials Technologies 2023, 8 (1) https://doi.org/10.1002/admt.202201091
    72. Haowei Xu, Hua Wang, Ju Li. Abnormal nonlinear optical responses on the surface of topological materials. npj Computational Materials 2022, 8 (1) https://doi.org/10.1038/s41524-022-00782-y
    73. J. Kutrowska-Girzycka, E. Zieba-Ostój, D. Biegańska, M. Florian, A. Steinhoff, E. Rogowicz, P. Mrowiński, K. Watanabe, T. Taniguchi, C. Gies, S. Tongay, C. Schneider, M. Syperek. Exploring the effect of dielectric screening on neutral and charged-exciton properties in monolayer and bilayer MoTe2. Applied Physics Reviews 2022, 9 (4) https://doi.org/10.1063/5.0089192
    74. Willy Knorr, Samuel Brem, Giuseppe Meneghini, Ermin Malic. Exciton transport in a moiré potential: From hopping to dispersive regime. Physical Review Materials 2022, 6 (12) https://doi.org/10.1103/PhysRevMaterials.6.124002
    75. Thi Nhan Tran, Minh Triet Dang, Quang Huy Tran, Thi Theu Luong, Van An Dinh. Band valley modification under strain in monolayer WSe2. AIP Advances 2022, 12 (11) https://doi.org/10.1063/5.0127204
    76. Pengfei Qi, Yuchen Dai, Yang Luo, Guangyi Tao, Wenqi Qian, Zeliang Zhang, Zhi Zhang, Tian Hao Zhang, Lie Lin, Weiwei Liu, Zheyu Fang. Molding 2D Exciton Flux toward Room Temperature Excitonic Devices. Advanced Materials Technologies 2022, 7 (10) https://doi.org/10.1002/admt.202200032
    77. Maciej Wiesner, Richard H. Roberts, Ruijing Ge, Lukas Mennel, Thomas Mueller, Jung-Fu Lin, Deji Akinwande, Jacek Jenczyk. Signatures of bright-to-dark exciton conversion in corrugated MoS2 monolayers. Applied Surface Science 2022, 600 , 154078. https://doi.org/10.1016/j.apsusc.2022.154078
    78. A.K. Teguimfouet, C. Kenfack-Sadem, A. Kenfack-Jiotsa, F.C. Fobasso Mbognou, M. El-Yadri, L.M. Pérez, D. Laroze, E. Feddi. Magnetic barrier and temperature effects on optical and dynamic properties of exciton-polaron in monolayers transition metal dichalcogenides. Physica E: Low-dimensional Systems and Nanostructures 2022, 144 , 115448. https://doi.org/10.1016/j.physe.2022.115448
    79. Raul Perea-Causin, Daniel Erkensten, Jamie M. Fitzgerald, Joshua J. P. Thompson, Roberto Rosati, Samuel Brem, Ermin Malic. Exciton optics, dynamics, and transport in atomically thin semiconductors. APL Materials 2022, 10 (10) https://doi.org/10.1063/5.0107665
    80. Zhao An, Michael Zopf, Fei Ding. Strain‐Tuning of 2 D Transition Metal Dichalcogenides. 2022, 413-448. https://doi.org/10.1002/9783527813933.ch14
    81. M. M. Glazov, Florian Dirnberger, Vinod M. Menon, Takashi Taniguchi, Kenji Watanabe, Dominique Bougeard, Jonas D. Ziegler, Alexey Chernikov. Exciton fine structure splitting and linearly polarized emission in strained transition-metal dichalcogenide monolayers. Physical Review B 2022, 106 (12) https://doi.org/10.1103/PhysRevB.106.125303
    82. David Otto Tiede, Nihit Saigal, Hossein Ostovar, Vera Döring, Hendrik Lambers, Ursula Wurstbauer. Exciton Manifolds in Highly Ambipolar Doped WS2. Nanomaterials 2022, 12 (18) , 3255. https://doi.org/10.3390/nano12183255
    83. Wenshuai Hu, Yabin Wang, Kexin He, Xiaolong He, Yan Bai, Chenyang Liu, Nan Zhou, Haolin Wang, Peixian Li, Xiaohua Ma, Yong Xie. Straining of atomically thin WSe2 crystals: Suppressing slippage by thermal annealing. Journal of Applied Physics 2022, 132 (8) https://doi.org/10.1063/5.0096190
    84. Shengxia Zhang, Lijun Xu, Peipei Hu, Khan Maaz, Jian Zeng, Pengfei Zhai, Zongzhen Li, Li Liu, Jie Liu. Excitonic performance and ultrafast dynamics in defective WSe2. Applied Physics Letters 2022, 121 (8) https://doi.org/10.1063/5.0098100
    85. V. Jadriško, B. Radatović, B. Pielić, C. Gadermaier, M. Kralj, N. Vujičić. Structural and optical characterization of nanometer sized MoS2/graphene heterostructures for potential use in optoelectronic devices. FlatChem 2022, 34 , 100397. https://doi.org/10.1016/j.flatc.2022.100397
    86. Renlong Zhou, Alex Krasnok, Naveed Hussain, Sa Yang, Kaleem Ullah. Controlling the harmonic generation in transition metal dichalcogenides and their heterostructures. Nanophotonics 2022, 11 (13) , 3007-3034. https://doi.org/10.1515/nanoph-2022-0159
    87. Mohammed Nazim, Aftab Aslam Parwaz Khan, Firoz Khan, Sung Ki Cho, Rafiq Ahmad. Insertion of metal cations into hybrid organometallic halide perovskite nanocrystals for enhanced stability: eco-friendly synthesis, lattice strain engineering, and defect chemistry studies. Nanoscale Advances 2022, 4 (12) , 2729-2743. https://doi.org/10.1039/D2NA00053A
    88. Colleen Lattyak, Martin Vehse, Marco A. Gonzalez, Devendra Pareek, Levent Gütay, Sascha Schäfer, Carsten Agert. Optoelectronic Properties of MoS 2 in Proximity to Carrier Selective Metal Oxides. Advanced Optical Materials 2022, 10 (9) https://doi.org/10.1002/adom.202102226
    89. Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85 (4) , 046401. https://doi.org/10.1088/1361-6633/ac45f9
    90. Joshua J P Thompson, Samuel Brem, Marne Verjans, Robert Schmidt, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch, Ermin Malic. Anisotropic exciton diffusion in atomically-thin semiconductors. 2D Materials 2022, 9 (2) , 025008. https://doi.org/10.1088/2053-1583/ac4d13
    91. Sviatoslav Kovalchuk, Jan. N. Kirchhof, Kirill I. Bolotin, Moshe G. Harats. Non‐Uniform Strain Engineering of 2D Materials. Israel Journal of Chemistry 2022, 62 (3-4) https://doi.org/10.1002/ijch.202100115
    92. Salvatore Cianci, Elena Blundo, Marco Felici, Antonio Polimeni, Giorgio Pettinari. Tailoring the optical properties of 2D transition metal dichalcogenides by strain. Optical Materials 2022, 125 , 112087. https://doi.org/10.1016/j.optmat.2022.112087
    93. Felix Carrascoso, Riccardo Frisenda, Andres Castellanos-Gomez. Biaxial versus uniaxial strain tuning of single-layer MoS2. Nano Materials Science 2022, 4 (1) , 44-51. https://doi.org/10.1016/j.nanoms.2021.03.001
    94. Yuan Huang, Yun‐Kun Wang, Xin‐Yu Huang, Guan‐Hua Zhang, Xu Han, Yang Yang, Yunan Gao, Lei Meng, Yushu Wang, Guang‐Zhou Geng, Li‐Wei Liu, Lin Zhao, Zhi‐Hai Cheng, Xin‐Feng Liu, Ze‐Feng Ren, Hui‐Xia Yang, Yufeng Hao, Hong‐Jun Gao, Xing‐Jiang Zhou, Wei Ji, Ye‐Liang Wang. An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two‐dimensional materials. InfoMat 2022, 4 (2) https://doi.org/10.1002/inf2.12274
    95. Yangwu Wu, Lu Wang, Huimin Li, Qizhi Dong, Song Liu. Strain of 2D materials via substrate engineering. Chinese Chemical Letters 2022, 33 (1) , 153-162. https://doi.org/10.1016/j.cclet.2021.07.001
    96. Yiming Zhang, Bowen Hou, Yu Wu, Ying Chen, Yujie Xia, Haodong Mei, Mingran Kong, Lei Peng, Hezhu Shao, Jiang Cao, Wenjun Liu, Heyuan Zhu, Hao Zhang. Towards high-temperature electron-hole condensate phases in monolayer tetrels metal halides: Ultra-long excitonic lifetimes, phase diagram and exciton dynamics. Materials Today Physics 2022, 22 , 100604. https://doi.org/10.1016/j.mtphys.2022.100604
    97. Burak Aslan, Colin Yule, Yifei Yu, Yan Joe Lee, Tony F Heinz, Linyou Cao, Mark L Brongersma. Excitons in strained and suspended monolayer WSe 2. 2D Materials 2022, 9 (1) , 015002. https://doi.org/10.1088/2053-1583/ac2d15
    98. Hyeong-Yong Hwang, Sehyuk Lee, Yong-Hoon Kim, Farman Ullah, Chinh Tam Le, Yong Soo Kim, Ki-Ju Yee, Christopher J Stanton, Young-Dahl Jho. Shear-strain-mediated photoluminescence manipulation in two-dimensional transition metal dichalcogenides. 2D Materials 2022, 9 (1) , 015011. https://doi.org/10.1088/2053-1583/ac351d
    99. Maciej Wiesner, Richard Roberts, Ruijing Ge, Lukas Mennel, Thomas Mueller, Jung-Fu Lin, Deji Akinwande, Jacek Jenczyk, Maciej Wiesner. Signatures of Bright‑To‑Dark Exciton Conversion in Corrugated Mos2 Monolayers. SSRN Electronic Journal 2022, 5 https://doi.org/10.2139/ssrn.4074320
    100. Valentino Jadriško, Borna Radatović, Borna Pielić, Christoph Gadermaier, Marko Kralj, Nataša Vujičić. Structural and Optical Characterization of Nanometer Sized Mos2/Graphene Heterostructures for Potential Use in Optoelectronic Devices. SSRN Electronic Journal 2022, 10 https://doi.org/10.2139/ssrn.4112111
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect