ACS Publications. Most Trusted. Most Cited. Most Read
Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide
My Activity
    Letter

    Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide
    Click to copy article linkArticle link copied!

    • Henri Thyrrestrup*
      Henri Thyrrestrup
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
      *E-mail: [email protected]
    • Gabija Kiršanskė
      Gabija Kiršanskė
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
    • Hanna Le Jeannic
      Hanna Le Jeannic
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
    • Tommaso Pregnolato
      Tommaso Pregnolato
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
    • Liang Zhai
      Liang Zhai
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
      More by Liang Zhai
    • Laust Raahauge
      Laust Raahauge
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
    • Leonardo Midolo
      Leonardo Midolo
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
    • Nir Rotenberg
      Nir Rotenberg
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
    • Alisa Javadi
      Alisa Javadi
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
      More by Alisa Javadi
    • Rüdiger Schott
      Rüdiger Schott
      Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
    • Andreas D. Wieck
      Andreas D. Wieck
      Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
    • Arne Ludwig
      Arne Ludwig
      Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
      More by Arne Ludwig
    • Matthias C. Löbl
      Matthias C. Löbl
      Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
    • Immo Söllner
      Immo Söllner
      Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
    • Richard J. Warburton
      Richard J. Warburton
      Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
    • Peter Lodahl*
      Peter Lodahl
      Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
      *E-mail: [email protected]. Phone: +4535325306.
      More by Peter Lodahl
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2018, 18, 3, 1801–1806
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b05016
    Published March 1, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light–matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b05016.

    • Additional calculations and figures including COMSOL images, coupling efficiency and emission enhancement as a function of emitter displacement, and electron microscope image of the entire nanophotonic device (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 51 publications.

    1. Mohammad Habibur Rahaman, Samuel Harper, Chang-Min Lee, Kyu-Young Kim, Mustafa Atabey Buyukkaya, Victor J. Patel, Samuel D. Hawkins, Je-Hyung Kim, Sadhvikas Addamane, Edo Waks. Efficient, Indistinguishable Telecom C-Band Photons using a Tapered Nanobeam Waveguide. ACS Photonics 2024, 11 (7) , 2738-2744. https://doi.org/10.1021/acsphotonics.4c00625
    2. Rana Tanos, Hajer Tlili, Yoann Curé, Matteo Finazzer, Alberto Artioli, Saptarshi Kotal, Yann Genuist, Pierre Verlot, Joël Bleuse, Jean-Michel Gérard, Julien Claudon. High-Order Nanowire Resonances for High-Frequency, Large-Coupling-Strength Quantum Dot Hybrid Nanomechanics. ACS Photonics 2024, 11 (3) , 1352-1358. https://doi.org/10.1021/acsphotonics.4c00202
    3. Matteo Finazzer, Rana Tanos, Yoann Curé, Alberto Artioli, Saptarshi Kotal, Joël Bleuse, Yann Genuist, Jean-Michel Gérard, Fabrice Donatini, Julien Claudon. On-Chip Electrostatic Actuation of a Photonic Wire Antenna Embedding Quantum Dots. Nano Letters 2023, 23 (6) , 2203-2209. https://doi.org/10.1021/acs.nanolett.2c04813
    4. Andrea Barbiero, Jan Huwer, Joanna Skiba-Szymanska, David J. P. Ellis, R. Mark Stevenson, Tina Müller, Ginny Shooter, Lucy E. Goff, David A. Ritchie, Andrew J. Shields. High-Performance Single-Photon Sources at Telecom Wavelength Based on Broadband Hybrid Circular Bragg Gratings. ACS Photonics 2022, 9 (9) , 3060-3066. https://doi.org/10.1021/acsphotonics.2c00810
    5. Tingting Jin, Xueshi Li, Runze Liu, Weiwen Ou, Yifan Zhu, Xudong Wang, Jin Liu, Yongheng Huo, Xin Ou, Jiaxiang Zhang. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip. Nano Letters 2022, 22 (2) , 586-593. https://doi.org/10.1021/acs.nanolett.1c03226
    6. Arianne Brooks, Xiao-Liu Chu, Zhe Liu, Rüdiger Schott, Arne Ludwig, Andreas D. Wieck, Leonardo Midolo, Peter Lodahl, Nir Rotenberg. Integrated Whispering-Gallery-Mode Resonator for Solid-State Coherent Quantum Photonics. Nano Letters 2021, 21 (20) , 8707-8714. https://doi.org/10.1021/acs.nanolett.1c02818
    7. Freja T. Pedersen, Ying Wang, Cecilie T. Olesen, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Matthias C. Löbl, Richard J. Warburton, Leonardo Midolo, Ravitej Uppu, Peter Lodahl. Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide. ACS Photonics 2020, 7 (9) , 2343-2349. https://doi.org/10.1021/acsphotonics.0c00758
    8. Alison E. Rugar, Constantin Dory, Shahriar Aghaeimeibodi, Haiyu Lu, Shuo Sun, Sattwik Deb Mishra, Zhi-Xun Shen, Nicholas A. Melosh, Jelena Vučković. Narrow-Linewidth Tin-Vacancy Centers in a Diamond Waveguide. ACS Photonics 2020, 7 (9) , 2356-2361. https://doi.org/10.1021/acsphotonics.0c00833
    9. Peter Schnauber, Anshuman Singh, Johannes Schall, Suk In Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo Davanco. Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si3N4 Quantum Photonic Circuits. Nano Letters 2019, 19 (10) , 7164-7172. https://doi.org/10.1021/acs.nanolett.9b02758
    10. P. Androvitsaneas, A. B. Young, J. M. Lennon, C. Schneider, S. Maier, J. J. Hinchliff, G. S. Atkinson, E. Harbord, M. Kamp, S. Höfling, J. G. Rarity, R. Oulton. Efficient Quantum Photonic Phase Shift in a Low Q-Factor Regime. ACS Photonics 2019, 6 (2) , 429-435. https://doi.org/10.1021/acsphotonics.8b01380
    11. D. L. Hurst, D. M. Price, C. Bentham, M. N. Makhonin, B. Royall, E. Clarke, P. Kok, L. R. Wilson, M. S. Skolnick, A. M. Fox. Nonreciprocal Transmission and Reflection of a Chirally Coupled Quantum Dot. Nano Letters 2018, 18 (9) , 5475-5481. https://doi.org/10.1021/acs.nanolett.8b01869
    12. Beimeng Yao, Rongbin Su, Shunfa Liu, Changkun Song, Ying Yu, Jin Liu, Xuehua Wang. Effective integration of highly-efficient focusing apodized grating and quantum dots on a solid substrate for scalable quantum photonic circuits. Science China Physics, Mechanics & Astronomy 2024, 67 (9) https://doi.org/10.1007/s11433-024-2414-0
    13. Adam McCaw, Jacob Ewaniuk, Bhavin J. Shastri, Nir Rotenberg. Reconfigurable quantum photonic circuits based on quantum dots. Nanophotonics 2024, 13 (16) , 2951-2959. https://doi.org/10.1515/nanoph-2024-0044
    14. Matteo Pasini, Nina Codreanu, Tim Turan, Adrià Riera Moral, Christian F. Primavera, Lorenzo De Santis, Hans K. C. Beukers, Julia M. Brevoord, Christopher Waas, Johannes Borregaard, Ronald Hanson. Nonlinear Quantum Photonics with a Tin-Vacancy Center Coupled to a One-Dimensional Diamond Waveguide. Physical Review Letters 2024, 133 (2) https://doi.org/10.1103/PhysRevLett.133.023603
    15. Yueguang Zhou, Yuhui Yang, Yujing Wang, Aris Koulas-Simos, Chirag C Palekar, Imad Limame, Shulun Li, Hanqing Liu, Haiqiao Ni, Zhichuan Niu, Kresten Yvind, Niels Gregersen, Minhao Pu, Stephan Reitzenstein. GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots. Materials for Quantum Technology 2024, 4 (2) , 025403. https://doi.org/10.1088/2633-4356/ad5823
    16. Xiao-Liu Chu, Camille Papon, Nikolai Bart, Andreas D. Wieck, Arne Ludwig, Leonardo Midolo, Nir Rotenberg, Peter Lodahl. Independent Electrical Control of Two Quantum Dots Coupled through a Photonic-Crystal Waveguide. Physical Review Letters 2023, 131 (3) https://doi.org/10.1103/PhysRevLett.131.033606
    17. Alexandra S. Sheremet, Mihail I. Petrov, Ivan V. Iorsh, Alexander V. Poshakinskiy, Alexander N. Poddubny. Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. Reviews of Modern Physics 2023, 95 (1) https://doi.org/10.1103/RevModPhys.95.015002
    18. Penglong Ren, Shangming Wei, Weixi Liu, Shupei Lin, Zhaohua Tian, Tailin Huang, Jianwei Tang, Yaocheng Shi, Xue-Wen Chen. Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31603-x
    19. Ashish Chanana, Hugo Larocque, Renan Moreira, Jacques Carolan, Biswarup Guha, Emerson G. Melo, Vikas Anant, Jindong Song, Dirk Englund, Daniel J. Blumenthal, Kartik Srinivasan, Marcelo Davanco. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-35332-z
    20. Xiao-Liu Chu, Vasiliki Angelopoulou, Peter Lodahl, Nir Rotenberg. Subradiant states for two imperfect quantum emitters coupled by a nanophotonic waveguide. Physical Review A 2022, 106 (5) https://doi.org/10.1103/PhysRevA.106.053702
    21. Hanna Le Jeannic, Alexey Tiranov, Jacques Carolan, Tomás Ramos, Ying Wang, Martin Hayhurst Appel, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Nir Rotenberg, Leonardo Midolo, Juan José García-Ripoll, Anders S. Sørensen, Peter Lodahl. Dynamical photon–photon interaction mediated by a quantum emitter. Nature Physics 2022, 18 (10) , 1191-1195. https://doi.org/10.1038/s41567-022-01720-x
    22. Victoria A. Norman, Marina Radulaski. Quantum underpinnings of an all-photonic switch. Nature Physics 2022, 18 (10) , 1139-1140. https://doi.org/10.1038/s41567-022-01736-3
    23. Xu-Dong Wang, Yi-Fan Zhu, Ting-Ting Jin, Wei-Wen Ou, Xin Ou, Jia-Xiang Zhang. Waveguide-coupled deterministic quantum light sources and post-growth engineering methods for integrated quantum photonics. Chip 2022, 1 (3) , 100018. https://doi.org/10.1016/j.chip.2022.100018
    24. Xingyu Chen, Rongbin Su, Jin Liu, Juntao Li, Xue-Hua Wang. Scalable and highly efficient approach for an on-chip single-photon source. Photonics Research 2022, 10 (9) , 2066. https://doi.org/10.1364/PRJ.462318
    25. Thomas Liu, Baptiste Carles, Christine Elias, Claire Tonnelé, Daniel Medina-Lopez, Akimitsu Narita, Yannick Chassagneux, Christophe Voisin, David Beljonne, Stéphane Campidelli, Loïc Rondin, Jean-Sébastien Lauret. Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature. The Journal of Chemical Physics 2022, 156 (10) https://doi.org/10.1063/5.0083282
    26. Saptarshi Kotal, Alberto Artioli, Yujing Wang, Andreas Dyhl Osterkryger, Matteo Finazzer, Romain Fons, Yann Genuist, Joël Bleuse, Jean-Michel Gérard, Niels Gregersen, Julien Claudon. A nanowire optical nanocavity for broadband enhancement of spontaneous emission. Applied Physics Letters 2021, 118 (19) https://doi.org/10.1063/5.0045834
    27. Huiying Huang, Santanu Manna, Christian Schimpf, Marcus Reindl, Xueyong Yuan, Yining Zhang, Saimon Filipe Covre da Silva, Armando Rastelli. Bright Single Photon Emission from Quantum Dots Embedded in a Broadband Planar Optical Antenna. Advanced Optical Materials 2021, 9 (7) https://doi.org/10.1002/adom.202001490
    28. Alexey Shkarin, Dominik Rattenbacher, Jan Renger, Simon Hönl, Tobias Utikal, Paul Seidler, Stephan Götzinger, Vahid Sandoghdar. Nanoscopic Charge Fluctuations in a Gallium Phosphide Waveguide Measured by Single Molecules. Physical Review Letters 2021, 126 (13) https://doi.org/10.1103/PhysRevLett.126.133602
    29. Hanna Le Jeannic, Tomás Ramos, Signe F. Simonsen, Tommaso Pregnolato, Zhe Liu, Rüdiger Schott, Andreas D. Wieck, Arne Ludwig, Nir Rotenberg, Juan José García-Ripoll, Peter Lodahl. Experimental Reconstruction of the Few-Photon Nonlinear Scattering Matrix from a Single Quantum Dot in a Nanophotonic Waveguide. Physical Review Letters 2021, 126 (2) https://doi.org/10.1103/PhysRevLett.126.023603
    30. Ravitej Uppu, Freja T. Pedersen, Ying Wang, Cecilie T. Olesen, Camille Papon, Xiaoyan Zhou, Leonardo Midolo, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Peter Lodahl. Scalable integrated single-photon source. Science Advances 2020, 6 (50) https://doi.org/10.1126/sciadv.abc8268
    31. Ravitej Uppu, Hans T. Eriksen, Henri Thyrrestrup, Aslı D. Uğurlu, Ying Wang, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Matthias C. Löbl, Richard J. Warburton, Peter Lodahl, Leonardo Midolo. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17603-9
    32. Xiao‐Liu Chu, Tommaso Pregnolato, Rüdiger Schott, Andreas D. Wieck, Arne Ludwig, Nir Rotenberg, Peter Lodahl. Lifetimes and Quantum Efficiencies of Quantum Dots Deterministically Positioned in Photonic‐Crystal Waveguides. Advanced Quantum Technologies 2020, 3 (11) https://doi.org/10.1002/qute.202000026
    33. Junyi Lee, Victor Leong, Dmitry Kalashnikov, Jibo Dai, Alagappan Gandhi, Leonid A. Krivitsky. Integrated single photon emitters. AVS Quantum Science 2020, 2 (3) https://doi.org/10.1116/5.0011316
    34. Liang Zhai, Matthias C. Löbl, Jan-Philipp Jahn, Yongheng Huo, Philipp Treutlein, Oliver G. Schmidt, Armando Rastelli, Richard J. Warburton. Large-range frequency tuning of a narrow-linewidth quantum emitter. Applied Physics Letters 2020, 117 (8) https://doi.org/10.1063/5.0017995
    35. T. Pregnolato, X.-L. Chu, T. Schröder, R. Schott, A. D. Wieck, A. Ludwig, P. Lodahl, N. Rotenberg. Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots. APL Photonics 2020, 5 (8) , 086101. https://doi.org/10.1063/1.5117888
    36. Noel H. Wan, Tsung-Ju Lu, Kevin C. Chen, Michael P. Walsh, Matthew E. Trusheim, Lorenzo De Santis, Eric A. Bersin, Isaac B. Harris, Sara L. Mouradian, Ian R. Christen, Edward S. Bielejec, Dirk Englund. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 2020, 583 (7815) , 226-231. https://doi.org/10.1038/s41586-020-2441-3
    37. Maja Colautti, Pietro Lombardi, Marco Trapuzzano, Francesco S. Piccioli, Sofia Pazzagli, Bruno Tiribilli, Sara Nocentini, Francesco S. Cataliotti, Diederik S. Wiersma, Costanza Toninelli. A 3D Polymeric Platform for Photonic Quantum Technologies. Advanced Quantum Technologies 2020, 3 (7) https://doi.org/10.1002/qute.202000004
    38. Aslı D. Uğurlu, Henri Thyrrestrup, Ravitej Uppu, Claudéric Ouellet‐Plamondon, Rüdiger Schott, Andreas D. Wieck, Arne Ludwig, Peter Lodahl, Leonardo Midolo. Suspended Spot‐Size Converters for Scalable Single‐Photon Devices. Advanced Quantum Technologies 2020, 3 (2) https://doi.org/10.1002/qute.201900076
    39. Rahul Trivedi, Kevin A. Fischer, Jelena Vučković, Kai Müller. Generation of Non‐Classical Light Using Semiconductor Quantum Dots. Advanced Quantum Technologies 2020, 3 (1) https://doi.org/10.1002/qute.201900007
    40. Hai-Zhi Song. The Development of Quantum Emitters Based on Semiconductor Quantum Dots. 2020, 83-106. https://doi.org/10.1007/978-3-030-35813-6_3
    41. Christopher P. Anderson, Alexandre Bourassa, Kevin C. Miao, Gary Wolfowicz, Peter J. Mintun, Alexander L. Crook, Hiroshi Abe, Jawad Ul Hassan, Nguyen T. Son, Takeshi Ohshima, David D. Awschalom. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 2019, 366 (6470) , 1225-1230. https://doi.org/10.1126/science.aax9406
    42. Alberto Artioli, Saptarshi Kotal, Niels Gregersen, Pierre Verlot, Jean-Michel Gérard, Julien Claudon. Design of Quantum Dot-Nanowire Single-Photon Sources that are Immune to Thermomechanical Decoherence. Physical Review Letters 2019, 123 (24) https://doi.org/10.1103/PhysRevLett.123.247403
    43. Pierre Türschmann, Hanna Le Jeannic, Signe F. Simonsen, Harald R. Haakh, Stephan Götzinger, Vahid Sandoghdar, Peter Lodahl, Nir Rotenberg. Coherent nonlinear optics of quantum emitters in nanophotonic waveguides. Nanophotonics 2019, 8 (10) , 1641-1657. https://doi.org/10.1515/nanoph-2019-0126
    44. Stefan Hepp, Michael Jetter, Simone Luca Portalupi, Peter Michler. Semiconductor Quantum Dots for Integrated Quantum Photonics. Advanced Quantum Technologies 2019, 2 (9) https://doi.org/10.1002/qute.201900020
    45. Thomas Hummel, Claudéric Ouellet-Plamondon, Ela Ugur, Irina Kulkova, Toke Lund-Hansen, Matthew A. Broome, Ravitej Uppu, Peter Lodahl. Efficient demultiplexed single-photon source with a quantum dot coupled to a nanophotonic waveguide. Applied Physics Letters 2019, 115 (2) https://doi.org/10.1063/1.5096979
    46. Dapeng Ding, Martin Hayhurst Appel, Alisa Javadi, Xiaoyan Zhou, Matthias Christian Löbl, Immo Söllner, Rüdiger Schott, Camille Papon, Tommaso Pregnolato, Leonardo Midolo, Andreas Dirk Wieck, Arne Ludwig, Richard John Warburton, Tim Schröder, Peter Lodahl. Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface. Physical Review Applied 2019, 11 (3) https://doi.org/10.1103/PhysRevApplied.11.031002
    47. C L Dreeßen, C Ouellet-Plamondon, P Tighineanu, X Zhou, L Midolo, A S Sørensen, P Lodahl. Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides. Quantum Science and Technology 2019, 4 (1) , 015003. https://doi.org/10.1088/2058-9565/aadbb8
    48. Xiaoyan Zhou, Irina Kulkova, Toke Lund-Hansen, Sofie Lindskov Hansen, Peter Lodahl, Leonardo Midolo. High-efficiency shallow-etched grating on GaAs membranes for quantum photonic applications. Applied Physics Letters 2018, 113 (25) https://doi.org/10.1063/1.5055622
    49. Simone Ferrari, Carsten Schuck, Wolfram Pernice. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 2018, 7 (11) , 1725-1758. https://doi.org/10.1515/nanoph-2018-0059
    50. Tomás Ramos, Juan José García-Ripoll. Correlated dephasing noise in single-photon scattering. New Journal of Physics 2018, 20 (10) , 105007. https://doi.org/10.1088/1367-2630/aae73b
    51. P. Tighineanu, C. L. Dreeßen, C. Flindt, P. Lodahl, A. S. Sørensen. Phonon Decoherence of Quantum Dots in Photonic Structures: Broadening of the Zero-Phonon Line and the Role of Dimensionality. Physical Review Letters 2018, 120 (25) https://doi.org/10.1103/PhysRevLett.120.257401

    Nano Letters

    Cite this: Nano Lett. 2018, 18, 3, 1801–1806
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.7b05016
    Published March 1, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3080

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.