ACS Publications. Most Trusted. Most Cited. Most Read
Local Observation of Phase Segregation in Mixed-Halide Perovskite
My Activity
    Letter

    Local Observation of Phase Segregation in Mixed-Halide Perovskite
    Click to copy article linkArticle link copied!

    • Xiaofeng Tang
      Xiaofeng Tang
      Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
      Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Strasse 6, Erlangen 91052, Germany
    • Marius van den Berg
      Marius van den Berg
      Institute of the Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72074, Germany
    • Ening Gu
      Ening Gu
      Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
      Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Strasse 6, Erlangen 91052, Germany
      More by Ening Gu
    • Anke Horneber
      Anke Horneber
      Institute of the Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72074, Germany
    • Gebhard J. Matt
      Gebhard J. Matt
      Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
    • Andres Osvet
      Andres Osvet
      Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
      More by Andres Osvet
    • Alfred J. Meixner
      Alfred J. Meixner
      Institute of the Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72074, Germany
    • Dai Zhang*
      Dai Zhang
      Institute of the Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72074, Germany
      *E-mail: [email protected]
      More by Dai Zhang
    • Christoph J. Brabec*
      Christoph J. Brabec
      Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
      Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstrasse 2a, Erlangen 91058, Germany
      Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Strasse 6, Erlangen 91052, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2018, 18, 3, 2172–2178
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.8b00505
    Published March 2, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Mixed-halide perovskites have emerged as promising materials for optoelectronics due to their tunable band gap in the entire visible region. A challenge remains, however, in the photoinduced phase segregation, narrowing the band gap of mixed-halide perovskites under illumination thus restricting applications. Here, we use a combination of spatially resolved and bulk measurements to give an in-depth insight into this important yet unclear phenomenon. We demonstrate that photoinduced phase segregation in mixed-halide perovskites selectively occurs at the grain boundaries rather than within the grain centers by using shear-force scanning probe microscopy in combination with confocal optical spectroscopy. Such difference is further evidenced by light-biased bulk Fourier-transform photocurrent spectroscopy, which shows the iodine-rich domain as a minority phase coexisting with the homogeneously mixed phase during illumination. By mapping the surface potential of mixed-halide perovskites, we evidence the higher concentration of positive space charge near the grain boundary possibly provides the initial driving force for phase segregation, while entropic mixing dominates the reverse process. Our work offers detailed insight into the microscopic processes occurring at the boundary of crystalline perovskite grains and will support the development of better passivation strategies, ultimately allowing the processing of more environmentally stable perovskite films.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b00505.

    • Additional details on materials and methods. Figures showing local investigations on experimental film; SEM, absorbance, photoluminescence, and X-ray diffraction images; the time evolution of photoluminescence and other photoluminescence; XRD patterns; a schematic overview of the confocal parabolic mirror assisted setup; plots of ratios vs time; experimental topography; schematic ITO interdigital electrodes; a schematic illustrating FTPS and other FTPS images; and the spectrum of white LEDs. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 216 publications.

    1. Arup Ghorai, Sudarshan Singh, Baidyanath Roy, Shaona Bose, Somnath Mahato, Nikolai Mukhin, Pragyan Jha, Samit K. Ray. Suppression of Light-Induced Phase Segregations in Mixed Halide Perovskites through Ligand Passivation. The Journal of Physical Chemistry Letters 2025, 16 (7) , 1760-1768. https://doi.org/10.1021/acs.jpclett.4c03509
    2. Xueying Ma, Yuhui Ye, Yang Xiao, Shengnan Feng, Chunfeng Zhang, Keyu Xia, Fengrui Hu, Min Xiao, Xiaoyong Wang. Prolonged Phase Segregation of Mixed-Halide Perovskite Nanocrystals in the Dark. ACS Applied Materials & Interfaces 2024, 16 (47) , 65142-65148. https://doi.org/10.1021/acsami.4c12418
    3. Jung Jae Do, Dong Han Kim, Jae Woong Jung. Simultaneous Improvement in Blue-Light Emission and Operational Stability of Nanometer-Thick Perovskite Light-Emitting Diodes by Incorporating Multiple Organic/Inorganic Chloride Salts. ACS Applied Nano Materials 2024, 7 (22) , 25729-25740. https://doi.org/10.1021/acsanm.4c04882
    4. Mutibah Alanazi, Ashley R. Marshall, Yincheng Liu, Jinwoo Kim, Shaoni Kar, Henry J. Snaith, Robert A. Taylor, Tristan Farrow. Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission. Nano Letters 2024, 24 (39) , 12045-12053. https://doi.org/10.1021/acs.nanolett.4c01565
    5. Yongli Lu, Hua Zhu, Shaun Tan, Ruiqi Zhang, Meng-Chen Shih, Matthias J. Grotevent, Yu-kuan Lin, Seung-Gu Choi, Jin-Wook Lee, Vladimir Bulović, Moungi. G. Bawendi. Stabilization of Organic Cations in Lead Halide Perovskite Solar Cells Using Phosphine Oxides Derivatives. Journal of the American Chemical Society 2024, 146 (32) , 22387-22395. https://doi.org/10.1021/jacs.4c05398
    6. Bas T. van Gorkom, Aron Simons, Willemijn H. M. Remmerswaal, Martijn M. Wienk, René A. J. Janssen. Sub-bandgap Photocurrent Spectra of p–i–n Perovskite Solar Cells with n-Doped Fullerene Electron Transport Layers and Bias Illumination. ACS Applied Energy Materials 2024, 7 (14) , 5869-5878. https://doi.org/10.1021/acsaem.4c01077
    7. Linkai Yu, Chuwu Xing, Qinghui Bao, Lian Zhang, Fei Lu, Miao He, Qidong Tai, Tianjin Zhang, Duofa Wang. Inhomogeneous Halide Anions Distribution along Out-of-Plane Direction in Wide-Bandgap Perovskite Solar Cells and Its Effect on Open Circuit Voltage Loss and Phase Segregation. ACS Applied Materials & Interfaces 2024, 16 (26) , 33360-33370. https://doi.org/10.1021/acsami.4c03285
    8. Xue Ren, Zhe-Yong Chen, Hui-Ling Hu, Yi Liu, Feng-Lei Jiang. Direct Observation of the Inhibition of Phase Segregation by Quaternary Ammonium in Mixed-Halide Perovskite. ACS Applied Energy Materials 2024, 7 (8) , 3245-3252. https://doi.org/10.1021/acsaem.4c00010
    9. Zhi-Wei Tao, Teng Lu, Xiang Gao, Mathias Uller Rothmann, Yang Jiang, Zi-Yue Qiang, Hong-Qiang Du, Chang Guo, Long-Hui Yang, Cai-Xia Wang, Yun Liu, Yi-Bing Cheng, Wei Li. Heterogeneity of Light-Induced Open-Circuit Voltage Loss in Perovskite/Si Tandem Solar Cells. ACS Energy Letters 2024, 9 (4) , 1455-1465. https://doi.org/10.1021/acsenergylett.4c00110
    10. Pavel Tonkaev, Evgeniia Grechaninova, Ivan Iorsh, Federico Montanarella, Yuri Kivshar, Maksym V. Kovalenko, Sergey Makarov. Multiscale Supercrystal Meta-atoms. Nano Letters 2024, 24 (9) , 2758-2764. https://doi.org/10.1021/acs.nanolett.3c04580
    11. Shengyuan Wang, Junyi Zhu. Surface Purification and Compensation of I Interstitial in Quasi-2D CsPbI3. The Journal of Physical Chemistry C 2024, 128 (5) , 2215-2222. https://doi.org/10.1021/acs.jpcc.3c07522
    12. Deepani V. Athapaththu, Martin E. Kordesch, Jixin Chen. Monitoring Phase Separation and Dark Recovery in Mixed Halide Perovskite Clusters and Single Crystals Using In Situ Spectromicroscopy. The Journal of Physical Chemistry Letters 2024, 15 (4) , 1105-1111. https://doi.org/10.1021/acs.jpclett.3c03280
    13. Subham Paramanik, Soirik Dan, Amlan J. Pal. Formation of Dual Bands in Mixed-Halide Perovskites During Photoinduced Halide Segregation. ACS Energy Letters 2024, 9 (1) , 56-63. https://doi.org/10.1021/acsenergylett.3c02082
    14. Michael L. Crawford, James C. Sadighian, Yasser Hassan, Aditya Sadhanala, Laila Nawab, Cathy Y. Wong. Formation of Iodide-Rich Domains During Halide Segregation in Lead-Halide Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2023, 14 (40) , 8962-8969. https://doi.org/10.1021/acs.jpclett.3c02068
    15. Xiaorong Qi, Liu Yang, Xu Wang, Fei Zheng, Like Huang, Xiaohui Liu, Jing Zhang, Shareen Shafique, Yuejin Zhu, Ziyang Hu. Vertical Halide Segregation and Stability of Two-Dimensional Layered Perovskite Nanostructures: Implications for Optoelectronic Devices. ACS Applied Nano Materials 2023, 6 (18) , 16309-16317. https://doi.org/10.1021/acsanm.3c02399
    16. Samuele Martani, Yang Zhou, Isabella Poli, Ece Aktas, Daniele Meggiolaro, Jesús Jiménez-López, E Laine Wong, Luca Gregori, Mirko Prato, Diego Di Girolamo, Antonio Abate, Filippo De Angelis, Annamaria Petrozza. Defect Engineering to Achieve Photostable Wide Bandgap Metal Halide Perovskites. ACS Energy Letters 2023, 8 (6) , 2801-2808. https://doi.org/10.1021/acsenergylett.3c00610
    17. Yifeng Zhao, Kunal Datta, Nga Phung, Andrea E. A. Bracesco, Valerio Zardetto, Giulia Paggiaro, Hanchen Liu, Mohua Fardousi, Rudi Santbergen, Paul Procel Moya, Can Han, Guangtao Yang, Junke Wang, Dong Zhang, Bas T. van Gorkom, Tom P. A. van der Pol, Michael Verhage, Martijn M. Wienk, Wilhelmus M. M. Kessels, Arthur Weeber, Miro Zeman, Luana Mazzarella, Mariadriana Creatore, René A. J. Janssen, Olindo Isabella. Optical Simulation-Aided Design and Engineering of Monolithic Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials 2023, 6 (10) , 5217-5229. https://doi.org/10.1021/acsaem.3c00136
    18. Hyunhwa Lee, Passarut Boonmongkolras, Seongmoon Jun, Daehan Kim, Yujin Park, Jaehyuk Koh, Yong-Hoon Cho, Byungha Shin, Jeong Young Park. In Situ Observation of Photoinduced Halide Segregation in Mixed Halide Perovskite. ACS Applied Energy Materials 2023, 6 (3) , 1565-1574. https://doi.org/10.1021/acsaem.2c03438
    19. Ranadeep Raj Sumukam, Gundam Sandeep Kumar, Ramu Naidu Savu, Banavoth Murali. Strategic Compositional Engineering in Quasi-2D Ruddlesden–Popper Perovskites to Decipher Deep Blue Emission. The Journal of Physical Chemistry Letters 2023, 14 (2) , 395-402. https://doi.org/10.1021/acs.jpclett.2c03359
    20. Zhaojian Xu, Ross A. Kerner, Steven P. Harvey, Kai Zhu, Joseph J. Berry, Barry P. Rand. Halogen Redox Shuttle Explains Voltage-Induced Halide Redistribution in Mixed-Halide Perovskite Devices. ACS Energy Letters 2023, 8 (1) , 513-520. https://doi.org/10.1021/acsenergylett.2c02385
    21. Nuerbiya Aihemaiti, Yifan Jiang, Yizhou Zhu, Siying Peng. Light-Induced Phase Segregation Evolution of All-Inorganic Mixed Halide Perovskites. The Journal of Physical Chemistry Letters 2023, 14 (1) , 267-272. https://doi.org/10.1021/acs.jpclett.2c03419
    22. Yun Seop Shin, Chan Beom Park, Aniruddha Adhikari, Yung Jin Yoon, Hye Won Cho, Jung Geon Son, Jongdeuk Seo, Taehee Song, Woojin Lee, Jiwoo Yeop, Jae Won Kim, Minsik Gong, Bright Walker, Oh-Hoon Kwon, Gi-Hwan Kim, Jin Young Kim. Manipulated Interface for Enhanced Energy Cascade in Quasi-2D Blue Perovskite Light-Emitting Diodes. ACS Energy Letters 2022, 7 (10) , 3345-3352. https://doi.org/10.1021/acsenergylett.2c01785
    23. Yu-Hang Zhou, Chenyue Wang, Shuai Yuan, Chen Zou, Zhenhuang Su, Kai-li Wang, Yu Xia, Bin Wang, Dawei Di, Zhao-Kui Wang, Liang-Sheng Liao. Stabilized Low-Dimensional Species for Deep-Blue Perovskite Light-Emitting Diodes with EQE Approaching 3.4%. Journal of the American Chemical Society 2022, 144 (40) , 18470-18478. https://doi.org/10.1021/jacs.2c07172
    24. Jeffrey T. DuBose, Prashant V. Kamat. Hole Trapping in Halide Perovskites Induces Phase Segregation. Accounts of Materials Research 2022, 3 (7) , 761-771. https://doi.org/10.1021/accountsmr.2c00076
    25. Kwang Choi, Min Ju Jeong, Seungmin Lee, Ghaida Alosaimi, Jan Seidel, Jae Sung Yun, Jun Hong Noh. Suppressing Halide Segregation in Wide-Band-Gap Mixed-Halide Perovskite Layers through Post-Hot Pressing. ACS Applied Materials & Interfaces 2022, 14 (21) , 24341-24350. https://doi.org/10.1021/acsami.2c03492
    26. Feiyun Zhao, Aobo Ren, Peihang Li, Yan Li, Jiang Wu, Zhiming M. Wang. Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS Nano 2022, 16 (5) , 7116-7143. https://doi.org/10.1021/acsnano.1c11539
    27. Shuai Yuan, Xiaopeng Zheng, Wan-Shan Shen, Jiakai Liu, Lin-Song Cui, Congcong Zhang, Qi-Sheng Tian, Jun-Jie Wu, Yu-Hang Zhou, Xue-Dong Wang, Zhao-Kui Wang, Peigang Han, Joseph M. Luther, Osman M. Bakr, Liang-Sheng Liao. Overcoming Degradation Pathways to Achieve Stable Blue Perovskite Light-Emitting Diodes. ACS Energy Letters 2022, 7 (4) , 1348-1354. https://doi.org/10.1021/acsenergylett.2c00465
    28. S. Akash, Altaf Pasha, R. Geetha Balakrishna. Dissipation of Charge Accumulation and Suppression of Phase Segregation in Mixed Halide Perovskite Solar Cells via Nanoribbons. ACS Applied Energy Materials 2022, 5 (3) , 2727-2737. https://doi.org/10.1021/acsaem.1c03229
    29. Yuhang Sheng, Weijian Chen, Fengrui Hu, Cihui Liu, Yunsong Di, Chong Sheng, Zhihui Chen, Baohua Jia, Xiaoming Wen, Zhixing Gan. Mechanism of Photoinduced Phase Segregation in Mixed-Halide Perovskite Microplatelets and Its Application in Micropatterning. ACS Applied Materials & Interfaces 2022, 14 (10) , 12412-12422. https://doi.org/10.1021/acsami.2c00590
    30. Laura E. Mundt, Fei Zhang, Axel F. Palmstrom, Junwei Xu, Robert Tirawat, Leah L. Kelly, Kevin H. Stone, Kai Zhu, Joseph J. Berry, Michael F. Toney, Laura T. Schelhas. Mixing Matters: Nanoscale Heterogeneity and Stability in Metal Halide Perovskite Solar Cells. ACS Energy Letters 2022, 7 (1) , 471-480. https://doi.org/10.1021/acsenergylett.1c02338
    31. Satoshi Tominaka, Izuru Karimata, Takahide Matsuoka, Moeri Sakamoto, Takahito Nakajima, Koji Ohara, Takashi Tachikawa. Dynamic Symmetry Conversion in Mixed-Halide Hybrid Perovskite upon Illumination. ACS Energy Letters 2021, 6 (11) , 3858-3863. https://doi.org/10.1021/acsenergylett.1c01798
    32. Chen Gao, Pang Wang, Hui Wang, Cong Yu, Baocai Du, Huijun Zhang, Teng Li, Dan Liu, Tao Wang. Binary Additive Engineering Enables Efficient Perovskite Solar Cells via Spray-Coating in Air. ACS Applied Energy Materials 2021, 4 (10) , 11496-11504. https://doi.org/10.1021/acsaem.1c02235
    33. Shuyan Fang, Wenlong Yao, Ziyang Hu, Like Huang, Xiaohui Liu, Houcheng Zhang, Jing Zhang, Yuejin Zhu. Stability in Photoinduced Instability in Mixed-Halide Perovskite Materials and Solar Cells. The Journal of Physical Chemistry C 2021, 125 (39) , 21370-21380. https://doi.org/10.1021/acs.jpcc.1c07620
    34. Fanghao Ye, Qingsong Shan, Haibo Zeng, Wallace C. H. Choy. Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters 2021, 6 (9) , 3114-3131. https://doi.org/10.1021/acsenergylett.1c01545
    35. Junjie Wang, Danyang Li, Lan Mu, Miaozi Li, Yu Luo, Binbin Zhang, Chaohuang Mai, Biao Guo, Linfeng Lan, Jian Wang, Hin-Lap Yip, Junbiao Peng. Inkjet-Printed Full-Color Matrix Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces 2021, 13 (35) , 41773-41781. https://doi.org/10.1021/acsami.1c07526
    36. Hui Li, Xiaotao Hao, Bohong Chang, Zihao Li, Lian Wang, Lu Pan, Xihan Chen, Longwei Yin. Stiffening the Pb-X Framework through a π-Conjugated Small-Molecule Cross-Linker for High-Performance Inorganic CsPbI2Br Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (34) , 40489-40501. https://doi.org/10.1021/acsami.1c06533
    37. Kunal Datta, Bas T. van Gorkom, Zehua Chen, Matthew J. Dyson, Tom P. A. van der Pol, Stefan C. J. Meskers, Shuxia Tao, Peter A. Bobbert, Martijn M. Wienk, René A. J. Janssen. Effect of Light-Induced Halide Segregation on the Performance of Mixed-Halide Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (7) , 6650-6658. https://doi.org/10.1021/acsaem.1c00707
    38. Yu An, Juanita Hidalgo, Carlo Andrea Ricardo Perini, Andrés-Felipe Castro-Méndez, Jacob N. Vagott, Kathryn Bairley, Shirong Wang, Xianggao Li, Juan-Pablo Correa-Baena. Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters 2021, 6 (5) , 1942-1969. https://doi.org/10.1021/acsenergylett.1c00354
    39. Long Hu, Xinwei Guan, Weijian Chen, Yuchen Yao, Tao Wan, Chun-Ho Lin, Ngoc Duy Pham, Lin Yuan, Xun Geng, Fei Wang, Chien-Yu Huang, Jianyu Yuan, Soshan Cheong, Richard D. Tilley, Xiaoming Wen, Dewei Chu, Shujuan Huang, Tom Wu. Linking Phase Segregation and Photovoltaic Performance of Mixed-Halide Perovskite Films through Grain Size Engineering. ACS Energy Letters 2021, 6 (4) , 1649-1658. https://doi.org/10.1021/acsenergylett.1c00213
    40. Jeffrey T. DuBose, Preethi S. Mathew, Junsang Cho, Masaru Kuno, Prashant V. Kamat. Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias. The Journal of Physical Chemistry Letters 2021, 12 (10) , 2615-2621. https://doi.org/10.1021/acs.jpclett.1c00367
    41. Pietro Caprioglio, Sebastián Caicedo-Dávila, Terry Chien-Jen Yang, Christian M. Wolff, Francisco Peña-Camargo, Peter Fiala, Bernd Rech, Christophe Ballif, Daniel Abou-Ras, Martin Stolterfoht, Steve Albrecht, Quentin Jeangros, Dieter Neher. Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites. ACS Energy Letters 2021, 6 (2) , 419-428. https://doi.org/10.1021/acsenergylett.0c02270
    42. Alexander J. Knight, Juliane Borchert, Robert D. J. Oliver, Jay B. Patel, Paolo G. Radaelli, Henry J. Snaith, Michael B. Johnston, Laura M. Herz. Halide Segregation in Mixed-Halide Perovskites: Influence of A-Site Cations. ACS Energy Letters 2021, 6 (2) , 799-808. https://doi.org/10.1021/acsenergylett.0c02475
    43. Finn Babbe, Eloïse Masquelier, Zhi Zheng, Carolin M. Sutter-Fella. Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5Br1.5. The Journal of Physical Chemistry C 2020, 124 (45) , 24608-24615. https://doi.org/10.1021/acs.jpcc.0c07063
    44. Jiwei Liang, Cong Chen, Xuzhi Hu, Zhiliang Chen, Xiaolu Zheng, Jing Li, Haibing Wang, Feihong Ye, Meng Xiao, Zhengyi Lu, Yuhao Xu, Shunping Zhang, Rui Yu, Chen Tao, Guojia Fang. Suppressing the Phase Segregation with Potassium for Highly Efficient and Photostable Inverted Wide-Band Gap Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (43) , 48458-48466. https://doi.org/10.1021/acsami.0c10310
    45. Xingtian Yin, Yuxiao Guo, Jie Liu, Wenxiu Que, Fei Ma, Kewei Xu. Photoinduced Phase Segregation Leading to Evident Open-Circuit Voltage Loss in Efficient Inorganic CsPbIBr2 Solar Cells. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7035-7041. https://doi.org/10.1021/acs.jpclett.0c02076
    46. Jaemin Kong, Hanyu Wang, Jason A. Röhr, Zachary S. Fishman, Yuanyuan Zhou, Mingxing Li, Mircea Cotlet, Geunjin Kim, Christopher Karpovich, Francisco Antonio, Nitin P. Padture, André D. Taylor. Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials 2020, 3 (8) , 7231-7238. https://doi.org/10.1021/acsaem.0c00854
    47. Hua Wang, Xiangtong Zhang, Ning Sui, Yue Hu, Vicki L. Colvin, Xue Bai, Yu Zhang, Andrey L. Rogach, William W. Yu. Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to Iodide Ion Migration. The Journal of Physical Chemistry Letters 2020, 11 (15) , 6168-6175. https://doi.org/10.1021/acs.jpclett.0c01844
    48. David O. Tiede, Mauricio E. Calvo, Juan F. Galisteo-López, Hernán Míguez. Local Rearrangement of the Iodide Defect Structure Determines the Phase Segregation Effect in Mixed-Halide Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4911-4916. https://doi.org/10.1021/acs.jpclett.0c01127
    49. Preethi Susan Mathew, Gergely F. Samu, Csaba Janáky, Prashant V. Kamat. Iodine (I) Expulsion at Photoirradiated Mixed Halide Perovskite Interface. Should I Stay or Should I Go?. ACS Energy Letters 2020, 5 (6) , 1872-1880. https://doi.org/10.1021/acsenergylett.0c00925
    50. Chaohui Li, Yamin Pan, Jinlong Hu, Shudi Qiu, Cuiling Zhang, Yuzhao Yang, Shi Chen, Xianhu Liu, Christoph J. Brabec, Mohammad Khaja Nazeeruddin, Yaohua Mai, Fei Guo. Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells. ACS Energy Letters 2020, 5 (5) , 1386-1395. https://doi.org/10.1021/acsenergylett.0c00634
    51. Huyen T. Pham, The Duong, Klaus J. Weber, Jennifer Wong-Leung. Insights into Twinning Formation in Cubic and Tetragonal Multi-cation Mixed-Halide Perovskite. ACS Materials Letters 2020, 2 (4) , 415-424. https://doi.org/10.1021/acsmaterialslett.0c00083
    52. Jeffrey T. DuBose, Prashant V. Kamat. TiO2-Assisted Halide Ion Segregation in Mixed Halide Perovskite Films. Journal of the American Chemical Society 2020, 142 (11) , 5362-5370. https://doi.org/10.1021/jacs.0c00434
    53. Juvinch R. Vicente, Jixin Chen. Phase Segregation and Photothermal Remixing of Mixed-Halide Lead Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1802-1807. https://doi.org/10.1021/acs.jpclett.9b03734
    54. Tor Elmelund, Brian Seger, Masaru Kuno, Prashant V. Kamat. How Interplay between Photo and Thermal Activation Dictates Halide Ion Segregation in Mixed Halide Perovskites. ACS Energy Letters 2020, 5 (1) , 56-63. https://doi.org/10.1021/acsenergylett.9b02265
    55. Weisheng Fan, Yongliang Shi, Tongfei Shi, Shenglong Chu, Wenjing Chen, Kester O. Ighodalo, Jin Zhao, Xinhua Li, Zhengguo Xiao. Suppression and Reversion of Light-Induced Phase Separation in Mixed-Halide Perovskites by Oxygen Passivation. ACS Energy Letters 2019, 4 (9) , 2052-2058. https://doi.org/10.1021/acsenergylett.9b01383
    56. Tor Elmelund, Rebecca A. Scheidt, Brian Seger, Prashant V. Kamat. Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activation. ACS Energy Letters 2019, 4 (8) , 1961-1969. https://doi.org/10.1021/acsenergylett.9b01280
    57. Abhijith Surendran, Xuechao Yu, Raihana Begum, Ye Tao, Qi Jie Wang, Wei Lin Leong. All Inorganic Mixed Halide Perovskite Nanocrystal–Graphene Hybrid Photodetector: From Ultrahigh Gain to Photostability. ACS Applied Materials & Interfaces 2019, 11 (30) , 27064-27072. https://doi.org/10.1021/acsami.9b06416
    58. Gergely F. Samu, Ádám Balog, Filippo De Angelis, Daniele Meggiolaro, Prashant V. Kamat, Csaba Janáky. Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. Journal of the American Chemical Society 2019, 141 (27) , 10812-10820. https://doi.org/10.1021/jacs.9b04568
    59. Hoon Ryu, Seokmin Hong, Han Seul Kim, Ki-Ha Hong. Role of Quantum Confinement in 10 nm Scale Perovskite Optoelectronics. The Journal of Physical Chemistry Letters 2019, 10 (11) , 2745-2752. https://doi.org/10.1021/acs.jpclett.9b00645
    60. Alexander J. Knight, Adam D. Wright, Jay B. Patel, David P. McMeekin, Henry J. Snaith, Michael B. Johnston, Laura M. Herz. Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite. ACS Energy Letters 2019, 4 (1) , 75-84. https://doi.org/10.1021/acsenergylett.8b02002
    61. Andrés. F. Gualdrón-Reyes, Seog Joon Yoon, Eva M. Barea, Said Agouram, Vicente Muñoz-Sanjosé, Ángel M. Meléndez, Martha E. Niño-Gómez, Iván Mora-Seró. Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size. ACS Energy Letters 2019, 4 (1) , 54-62. https://doi.org/10.1021/acsenergylett.8b02207
    62. Keith P. McKenna. Electronic Properties of {111} Twin Boundaries in a Mixed-Ion Lead Halide Perovskite Solar Absorber. ACS Energy Letters 2018, 3 (11) , 2663-2668. https://doi.org/10.1021/acsenergylett.8b01700
    63. Pronoy Nandi, Chandan Giri, Diptikanta Swain, U. Manju, Subhendra D. Mahanti, Dinesh Topwal. Temperature Dependent Photoinduced Reversible Phase Separation in Mixed-Halide Perovskite. ACS Applied Energy Materials 2018, 1 (8) , 3807-3814. https://doi.org/10.1021/acsaem.8b00587
    64. Connor G. Bischak, Andrew B. Wong, Elbert Lin, David T. Limmer, Peidong Yang, Naomi S. Ginsberg. Tunable Polaron Distortions Control the Extent of Halide Demixing in Lead Halide Perovskites. The Journal of Physical Chemistry Letters 2018, 9 (14) , 3998-4005. https://doi.org/10.1021/acs.jpclett.8b01512
    65. Adharsh Rajagopal, Ryan J. Stoddard, Sae Byeok Jo, Hugh W. Hillhouse, Alex K.-Y. Jen. Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics. Nano Letters 2018, 18 (6) , 3985-3993. https://doi.org/10.1021/acs.nanolett.8b01480
    66. Kunal Datta, Simone C. W. van Laar, Margherita Taddei, Juanita Hidalgo, Tim Kodalle, Guus J. W. Aalbers, Barry Lai, Ruipeng Li, Nobumichi Tamura, Jordi T. W. Frencken, Simon V. Quiroz Monnens, Robert J. E. Westbrook, Daniel J. Graham, Carolin M. Sutter-Fella, Juan-Pablo Correa-Baena, David S. Ginger, Martijn M. Wienk, René A. J. Janssen. Local halide heterogeneity drives surface wrinkling in mixed-halide wide-bandgap perovskites. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-57010-6
    67. Tao Luo, Zhijuan Chen, Chunzhi Liu, Jianen Zhang, Tao Yin, Min Zhang, Xiaobo Chen, Xu Li, Li Guan. Synergistic effects of strain and chemical environment on defect engineering in γ-CsPbI3. Applied Physics Letters 2025, 126 (16) https://doi.org/10.1063/5.0253443
    68. Sungwoo Park, Hyeon-Ji Lee, Ho Won Jang. Harnessing ion migration in halide perovskites: Implication and applications. Solid State Ionics 2025, 422 , 116816. https://doi.org/10.1016/j.ssi.2025.116816
    69. Amalraj Peter Amalathas, Archchana Rajavinayagam, Lucie Landová, Milan Dopita, Jakub Holovský. Synergetic Effect of Tetraoctylammonium Chloride in Suppressing Photoinduced Phase Segregation in Mixed Halide Perovskite Solar Cells. Journal of Alloys and Compounds 2025, 14 , 180533. https://doi.org/10.1016/j.jallcom.2025.180533
    70. Xin Zheng, Shaomin Yang, Jingwei Zhu, Ranran Liu, Lin Li, Miaomiao Zeng, Chunxiang Lan, Shangzhi Li, Jinghao Li, Yingying Shi, Cong Chen, Rui Guo, Ziwei Zheng, Jing Guo, Xiaoyu Wu, Tian Luan, Zaiwei Wang, Dewei Zhao, Yaoguang Rong, Xiong Li. Suppressing phase segregation and nonradiative losses by a multifunctional cross-linker for high-performance all-perovskite tandem solar cells. Energy & Environmental Science 2025, 18 (6) , 2995-3004. https://doi.org/10.1039/D4EE02898H
    71. Tianshi Ye, Liang Qiao, Tao Wang, Pengshuai Wang, Lin Zhang, Ruitian Sun, Weiyu Kong, Menglei Xu, Xunlei Yan, Jie Yang, Xinyu Zhang, Xudong Yang. Molecular Bridge in Wide‐Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells. Advanced Functional Materials 2025, 342 https://doi.org/10.1002/adfm.202419391
    72. Qihang Lv, Xia Shen, Xuyang Li, Jianzhe Liu, Zhaohui Shan, Liantuan Xiao, Pengfei Guo, Johnny C. Ho. Laser-induced phase segregation of inorganic halide perovskite alloy nanowires for optical switch. Nano Research 2025, 18 (2) , 94907119. https://doi.org/10.26599/NR.2025.94907119
    73. Yinyan Xu, Zhibo Zhu, Chengyang Wang, Lun Zhang, Pujun Niu, Ziying Wen, Mei Lyu, Jun Zhu. Solvent‐Mediated Growth of a Hierarchical Zero‐Dimensional Architecture for Efficient CsPbI 3 Quantum Dot Solar Cells. Small 2025, 21 (8) https://doi.org/10.1002/smll.202408993
    74. Jiawei Zhang, Jiliang Fu, Kun Wang, Chao Zhang, Ya Wang, Rongbo Wang, Juntao Zhao, Xingyuan Zhong, Huizhi Ren, Guofu Hou, Yi Ding, Ying Zhao, Xiaodan Zhang. Performance promotion strategies for wide bandgap perovskite solar cells. Sustainable Energy & Fuels 2025, 9 (2) , 303-322. https://doi.org/10.1039/D4SE00433G
    75. Xianhu Wu, Jieyu Bi, Guanglei Cui, Nian Liu, Gaojie Xia, Jilong Sun, Jiaxin Jiang, Ning Lu, Ping Li, Chunyi Zhao, Zewen Zuo, Min Gu. An Eco‐Friendly Passivation Strategy of Resveratrol for Highly Efficient and Antioxidative Perovskite Solar Cells. Small 2025, 21 (1) https://doi.org/10.1002/smll.202406127
    76. Randy Burns, Dylan Chiaro, Harrison Davison, Christopher J. Arendse, Gavin M. King, Suchismita Guha. Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning. Small 2025, 21 (2) https://doi.org/10.1002/smll.202406815
    77. Guan‐Feng Gao, Ze‐Kai Chen, Ke‐Sheng Lin, Ze‐Lin Li, Hao‐Tian Gu, Yu Gao, Yu Miao, Yongbo Wu, Xiaowen Hu, Lakshminarayana Polavarapu, Xiao‐Fang Jiang. Unusual Nonlinear Absorption Switching in Mixed‐Halide Perovskites by Light‐Induced Halide Segregation. Laser & Photonics Reviews 2025, 19 (2) https://doi.org/10.1002/lpor.202400564
    78. Sofiia Kosar, Stefaan De Wolf. Imaging Locally Inhomogeneous Properties of Metal Halide Perovskites. Advanced Materials 2024, 36 (51) https://doi.org/10.1002/adma.202406886
    79. Tianxinyu Bai, Shenwei Wang, Lixin Yi. Oxygen plasma treatment to passivate surface defects for high stability CsPbCl2Br light emitting diodes. Optical Materials 2024, 157 , 116354. https://doi.org/10.1016/j.optmat.2024.116354
    80. Yang Zhou, E Laine Wong, Giulia Folpini, Martina Zanolini, Jesús Jiménez‐López, Antonella Treglia, Annamaria Petrozza. Mutual Destabilization of Wide Bandgap Perovskite and PbI 2 Inclusions through Interface Carrier Trapping. Advanced Functional Materials 2024, 34 (41) https://doi.org/10.1002/adfm.202406317
    81. SungWon Cho, Hochan Song, Padmini Pandey, Seong Chan Cho, Saemon Yoon, Woo Hyeon Jeong, Hyungju Ahn, Seojun Lee, Jeong-Yeon Lee, Qing Shen, Sang Uck Lee, Hyosung Choi, Dong-Won Kang. Carboxylate Pseudo-Halide-Assisted crystallization and antioxidant strategy for stable wide bandgap tin perovskite photovoltaics. Chemical Engineering Journal 2024, 497 , 154720. https://doi.org/10.1016/j.cej.2024.154720
    82. Chun‐Ho Lin, Changxu Liu, Jialin Yang, Jiyun Kim, Long Hu, Chien‐Yu Huang, Shuo Zhang, Fandi Chen, Rishabh Mishra, Shamim Shahrokhi, Jing‐Kai Huang, Xinwei Guan, Alexander J. Baldacchino, Tao Wan, Shujuan Huang, Michael P. Nielsen, Kewei Liu, Dewei Chu, Stefan A. Maier, Tom Wu. Regulating the Phase and Optical Properties of Mixed‐Halide Perovskites via Hot‐Electron Engineering. Advanced Functional Materials 2024, 34 (38) https://doi.org/10.1002/adfm.202402935
    83. Seung Ju Kim, Sungwoo Park, Hyo Min Cho, Ho Won Jang. Low-dimensional halide perovskites for advanced electronics. Materials Today Electronics 2024, 9 , 100111. https://doi.org/10.1016/j.mtelec.2024.100111
    84. Xinli Wang, Yang Sun, Jie Gao, Xiao Huang, Dandan Cao, Xiaowen Gao, Hao-Yi Wang, Qi Li, Yi Wang, Li-Min Fu, Xi-Cheng Ai, Dongsheng Xu, Jian-Ping Zhang. Overcoming the luminescence instability of colloidal mixed-halide perovskite quantum dots through ion motion confinement. Journal of Materials Chemistry C 2024, 12 (28) , 10487-10493. https://doi.org/10.1039/D4TC01279H
    85. Congyang Zhang, Luis K. Ono, Yabing Qi. Color/Spectral Stability of Mixed Halide Perovskite Light‐Emitting Diodes. Advanced Functional Materials 2024, 34 (27) https://doi.org/10.1002/adfm.202314762
    86. Yue Yu, Xinxing Liu, Sam Zhang, Jiangzhao Chen. Photoinduced phase segregation in wide-bandgap mixed-halide perovskite solar cells. Energy Materials and Devices 2024, 2 (2) , 9370037. https://doi.org/10.26599/EMD.2024.9370037
    87. Haiyan Wang, Qiaohe Wang, Kun Yang, Hangtian Li, Ao Liu, Yuxin Zhao, Zijiong Li. The self-healing and robust photostability of (PEA)2PbI4 perovskite via pressure-induced amorphization and recrystallization. Optical Materials 2024, 152 , 115449. https://doi.org/10.1016/j.optmat.2024.115449
    88. Fang Luo, Doha Lim, Hae-Jun Seok, Han-Ki Kim. Solvent-free preparation and thermocompression self-assembly: an exploration of performance improvement strategies for perovskite solar cells. RSC Advances 2024, 14 (24) , 17261-17294. https://doi.org/10.1039/D4RA02191F
    89. Lihui Liu, Yun Wang, Chenxi Liu, Jian Chen, Zijie Hou, Xuejing Liu, Kun Cao, Wei Shen, Shufen Chen. Knitting Interconnected Perovskite Grains with A Π‐Conjugated Passivator for Blue Light‐Emitting Diodes. Advanced Optical Materials 2024, 12 (15) https://doi.org/10.1002/adom.202302972
    90. Dongni Li, Xiangyu Sun, Yao Zhang, Zhen Guan, Yansong Yue, Qingya Wang, Lu Zhao, Fangze Liu, Jing Wei, Hongbo Li. Uniaxial‐Oriented Perovskite Films with Controllable Orientation. Advanced Science 2024, 11 (19) https://doi.org/10.1002/advs.202401184
    91. S. Akash, S. Akhil, V. Sanjana, A. Chakraborty, R. Geetha Balakrishna. Suppressing phase segregation in mixed halide CsPbI3-xBrx perovskites by dual passivation using sodium dodecyl sulphate. Solar Energy 2024, 274 , 112596. https://doi.org/10.1016/j.solener.2024.112596
    92. Vincent R. F. Schröder, Nicolas Fratzscher, Nicolas Zorn Morales, Daniel Steffen Rühl, Felix Hermerschmidt, Eva L. Unger, Emil J. W. List-Kratochvil. Bicolour, large area, inkjet-printed metal halide perovskite light emitting diodes. Materials Horizons 2024, 11 (8) , 1989-1996. https://doi.org/10.1039/D3MH02025H
    93. Jianfang Qin, Zhigang Che, Yifei Kang, Chenjing Liu, Dongdong Wu, Haiying Yang, Xiaotian Hu, Yan Zhan. Towards operation‐stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications. InfoMat 2024, 6 (4) https://doi.org/10.1002/inf2.12522
    94. Feifei Lu, Jianchao Dong, Jianheng Zhou, Ning Wang. Enhancing energy transfer via inhibition defect density of coupled quasi-2D perovskite layers for efficient sky-blue light-emitting diodes. Chemical Engineering Journal 2024, 485 , 149887. https://doi.org/10.1016/j.cej.2024.149887
    95. Ziyou Wu, Shuai Yuan, Shaoshuai Miao, Yiyi Li, Wenqi Zhang, Dandan Cao, Junyu Nie, Yi Wang, Xi-Cheng Ai, Jian-Ping Zhang. Unraveling the rapid ion migration in perovskite solar cells by circuit-switched transient photoelectric technique. The Journal of Chemical Physics 2024, 160 (11) https://doi.org/10.1063/5.0198438
    96. Nursultan Mussakhanuly, Arman Mahboubi Soufiani, Stefano Bernardi, Jianing Gan, Saroj Kumar Bhattacharyya, Robert Lee Chin, Hanif Muhammad, Milos Dubajic, Angus Gentle, Weijian Chen, Meng Zhang, Michael P. Nielsen, Shujuan Huang, John Asbury, Asaph Widmer‐Cooper, Jae Sung Yun, Xiaojing Hao. Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation. Advanced Materials 2024, 36 (11) https://doi.org/10.1002/adma.202311458
    97. Xiaorong Qi, Shuyan Fang, Yuchen Miao, Jun Wu, Liu Yang, Cheng Yang, Xu Wang, Fei Zheng, Feiyu Zhao, Shareen Shafique, Ziyang Hu. Impact of carrier extraction on photoinduced phase segregation of mixed-halide perovskites. Applied Physics Letters 2024, 124 (6) https://doi.org/10.1063/5.0188686
    98. Liang Qiao, Tianshi Ye, Tao Wang, Weiyu Kong, Ruitian Sun, Lin Zhang, Pengshuai Wang, Zhizhong Ge, Yong Peng, Xiaodan Zhang, Menglei Xu, Xunlei Yan, Jie Yang, Xinyu Zhang, Fang Zeng, Liyuan Han, Xudong Yang. Freezing Halide Segregation Under Intense Light for Photostable Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials 2024, 14 (7) https://doi.org/10.1002/aenm.202302983
    99. Klara Suchan, T. Jesper Jacobsson, Carolin Rehermann, Eva L. Unger, Thomas Kirchartz, Christian M. Wolff. Rationalizing Performance Losses of Wide Bandgap Perovskite Solar Cells Evident in Data from the Perovskite Database. Advanced Energy Materials 2024, 14 (5) https://doi.org/10.1002/aenm.202303420
    100. Fuqian Yang. Effects of size mismatch of halide ions on the phase stability of mixed halide perovskites. Physica Scripta 2024, 99 (2) , 025937. https://doi.org/10.1088/1402-4896/ad1adb
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2018, 18, 3, 2172–2178
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.8b00505
    Published March 2, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    6298

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.