ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids

  • Andrew H. Proppe
    Andrew H. Proppe
    Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3G4
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
  • Jixian Xu
    Jixian Xu
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
    More by Jixian Xu
  • Randy P. Sabatini
    Randy P. Sabatini
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
  • James Z. Fan
    James Z. Fan
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
    More by James Z. Fan
  • Bin Sun
    Bin Sun
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
    More by Bin Sun
  • Sjoerd Hoogland
    Sjoerd Hoogland
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
  • Shana O. Kelley
    Shana O. Kelley
    Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3G4
    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario Canada, M5S 3M2
  • Oleksandr Voznyy*
    Oleksandr Voznyy
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
    *E-mail: [email protected]
  • , and 
  • Edward H. Sargent*
    Edward H. Sargent
    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario Canada, M5S 3G4
    *E-mail: [email protected]
Cite this: Nano Lett. 2018, 18, 11, 7052–7059
Publication Date (Web):October 25, 2018
https://doi.org/10.1021/acs.nanolett.8b03020
Copyright © 2018 American Chemical Society

    Article Views

    3187

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Quantum dots (QDs) are promising candidates for solution-processed thin-film optoelectronic devices. Both the diffusion length and the mobility of photoexcited charge carriers in QD solids are critical determinants of solar cell performance; yet various techniques offer diverse values of these key parameters even in notionally similar films. Here we report diffusion lengths and interdot charge transfer rates using a 3D donor/acceptor technique that directly monitors the rate at which photoexcitations reach small-bandgap dot inclusions having a known spacing within a larger-bandgap QD matrix. Instead of relying on photoluminescence (which can be weak in strongly coupled QD solids), we use ultrafast transient absorption spectroscopy, a method where sensitivity is undiminished by exciton dissociation. We measure record diffusion lengths of ∼300 nm in metal halide exchanged PbS QD solids that have led to power conversion efficiencies of 12%, and determine 8 ps interdot hopping of carriers following photoexcitation, among the fastest rates reported for PbS QD solids. We also find that QD solids composed of smaller QDs (d = ∼3.2 nm) exhibit 5 times faster interdot charge transfer rates and 10 times lower trap state densities compared to larger (d = ∼5.5 nm) QDs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b03020.

    • Methods for QD synthesis, ligand exchange, and film deposition; transient absorption measurements; atomic force microscopy; time-resolved photoluminescence (TCSPC); absorbance and photoluminescence spectra of colloidal quantum dots; AFM images; fluence dependence for TA experiments; trapping lifetimes for 5.5 nm QDs; time-resolved PL data; colloidal QD lifetimes from microsecond TA experiments; interdot transfer dynamics for a film of 1:1: mixture of donor/acceptor QDs (950 nm/1060 nm) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 51 publications.

    1. Nima Taghipour, Mariona Dalmases, Guy Luke Whitworth, Yongjie Wang, Gerasimos Konstantatos. Ultrafast Cascade Charge Transfer in Multibandgap Colloidal Quantum Dot Solids Enables Threshold Reduction for Optical Gain and Stimulated Emission. Nano Letters 2023, 23 (18) , 8637-8642. https://doi.org/10.1021/acs.nanolett.3c02468
    2. Wenran Wang, Meng Zhang, Zhenxiao Pan, Gill M. Biesold, Shuang Liang, Huashang Rao, Zhiqun Lin, Xinhua Zhong. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews 2022, 122 (3) , 4091-4162. https://doi.org/10.1021/acs.chemrev.1c00478
    3. Dezhang Chen, Sunil B. Shivarudraiah, Pai Geng, Michael Ng, C.-H. Angus Li, Neha Tewari, Xinhui Zou, Kam Sing Wong, Liang Guo, Jonathan E. Halpert. Solution-Processed, Inverted AgBiS2 Nanocrystal Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (1) , 1634-1642. https://doi.org/10.1021/acsami.1c17133
    4. Hongyue Wang, Yangyang Guo, Hongxing Hao, Hongtao Bian, Herve Aubin, Yang Wei, Huixin Li, Taihong Liu, Aloyse Degiron, Hongqiang Wang. Bright CdSe/CdS Quantum Dot Light-Emitting Diodes with Modulated Carrier Dynamics via the Local Kirchhoff Law. ACS Applied Materials & Interfaces 2021, 13 (47) , 56476-56484. https://doi.org/10.1021/acsami.1c17152
    5. Mengxia Liu, Sachin Dev Verma, Zhilong Zhang, Jooyoung Sung, Akshay Rao. Nonequilibrium Carrier Transport in Quantum Dot Heterostructures. Nano Letters 2021, 21 (21) , 8945-8951. https://doi.org/10.1021/acs.nanolett.1c01892
    6. Sol Gutiérrez Álvarez, Weihua Lin, Mohamed Abdellah, Jie Meng, Karel Žídek, Tõnu Pullerits, Kaibo Zheng. Charge Carrier Diffusion Dynamics in Multisized Quaternary Alkylammonium-Capped CsPbBr3 Perovskite Nanocrystal Solids. ACS Applied Materials & Interfaces 2021, 13 (37) , 44742-44750. https://doi.org/10.1021/acsami.1c11676
    7. Qi Sun, Zixi Yin, Shiping Wang, Chunyi Zhao, Jing Leng, Wenming Tian, Shengye Jin. Long-Range Exciton Transport in Perovskite–Metal Organic Framework Solid Composites. The Journal of Physical Chemistry Letters 2020, 11 (21) , 9045-9050. https://doi.org/10.1021/acs.jpclett.0c02974
    8. Nazanin Mosleh, Majid Masteri-Farahani, Maryam Mohammadikish. New Core–Shell Nanocomposite Based on Co3O4 Quantum Dots and Fe-Infinite Coordination Polymer with Efficient Charge Separation Properties as Visible Light Photocatalyst and Photo-electrocatalyst. The Journal of Physical Chemistry C 2020, 124 (35) , 19289-19303. https://doi.org/10.1021/acs.jpcc.0c03880
    9. Ahmad R. Kirmani, Grant Walters, Taesoo Kim, Edward H. Sargent, Aram Amassian. Optimizing Solid-State Ligand Exchange for Colloidal Quantum Dot Optoelectronics: How Much Is Enough?. ACS Applied Energy Materials 2020, 3 (6) , 5385-5392. https://doi.org/10.1021/acsaem.0c00389
    10. Ahmad R. Kirmani, Flurin Eisner, Ahmed E. Mansour, Yuliar Firdaus, Neha Chaturvedi, Akmaral Seitkhan, Mohamad I. Nugraha, Emre Yarali, F. Pelayo Garcı́a de Arquer, Edward H. Sargent, Thomas D. Anthopoulos, Aram Amassian. Colloidal Quantum Dot Photovoltaics Using Ultrathin, Solution-Processed Bilayer In2O3/ZnO Electron Transport Layers with Improved Stability. ACS Applied Energy Materials 2020, 3 (6) , 5135-5141. https://doi.org/10.1021/acsaem.0c00831
    11. Bin Sun, Maral Vafaie, Larissa Levina, Mingyang Wei, Yitong Dong, Yajun Gao, Hao Ting Kung, Margherita Biondi, Andrew H. Proppe, Bin Chen, Min-Jae Choi, Laxmi Kishore Sagar, Oleksandr Voznyy, Shana O. Kelley, Frédéric Laquai, Zheng-Hong Lu, Sjoerd Hoogland, F. Pelayo García de Arquer, Edward H. Sargent. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density. Nano Letters 2020, 20 (5) , 3694-3702. https://doi.org/10.1021/acs.nanolett.0c00638
    12. Weihao Zheng, Huawei Liu, Jun Xu, Ying Jiang, Peng Fan, Wei Huang, Feng Jiang, Lihui Li, Xiaopeng Fan, Xiaoli Zhu, Xiujuan Zhuang, Anlian Pan, Dapeng Yu. Carrier-Funneling-Induced Efficient Energy Transfer in CdSxSe1–x Heterostructure Microplates. ACS Energy Letters 2019, 4 (12) , 2796-2804. https://doi.org/10.1021/acsenergylett.9b01942
    13. Michael S. Azzaro, Aaron K. Le, Honghao Wang, Sean T. Roberts. Ligand-Enhanced Energy Transport in Nanocrystal Solids Viewed with Two-Dimensional Electronic Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5602-5608. https://doi.org/10.1021/acs.jpclett.9b02040
    14. Wei Chen, Jialin Zhong, Junzi Li, Nitin Saxena, Lucas P. Kreuzer, Haochen Liu, Lin Song, Bo Su, Dan Yang, Kun Wang, Johannes Schlipf, Volker Körstgens, Tingchao He, Kai Wang, Peter Müller-Buschbaum. Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids. The Journal of Physical Chemistry Letters 2019, 10 (9) , 2058-2065. https://doi.org/10.1021/acs.jpclett.9b00869
    15. Guozheng Shi, Anusit Kaewprajak, Xufeng Ling, Akinobu Hayakawa, Sijie Zhou, Bin Song, YangWon Kang, Takahiro Hayashi, Mutlu Ege Altun, Masahiro Nakaya, Zeke Liu, Haibin Wang, Takashi Sagawa, Wanli Ma. Finely Interpenetrating Bulk Heterojunction Structure for Lead Sulfide Colloidal Quantum Dot Solar Cells by Convective Assembly. ACS Energy Letters 2019, 4 (4) , 960-967. https://doi.org/10.1021/acsenergylett.9b00053
    16. Hirokazu Tahara, Masanori Sakamoto, Toshiharu Teranishi, Yoshihiko Kanemitsu. Coherent electronic coupling in quantum dot solids induces cooperative enhancement of nonlinear optoelectronic responses. Nature Nanotechnology 2024, 93 https://doi.org/10.1038/s41565-024-01601-9
    17. Yong Xia, TaiMing Ji, Yu Lu, PengFei Xiang, ZhiXu Wu, XiaoKun Yang, Hui Deng. High‐Efficiency Infrared Sulfide Lead Quantum Dot Solar Cells via Mixed Halide Ions Ligand Engineering. Solar RRL 2024, 8 (2) https://doi.org/10.1002/solr.202300804
    18. Dan Wu, Gengxin Du, Haochen Liu, Wei Chen, Xin Li, Zhibei Wang, Haodong Tang, Bingyang Liu, Chenxi Liu, Yulong Chen, Zhulu Song, Weiwei Deng, Hongyan Yuan, Kai Wang, Xinyan Zhao. Flexible Microcomb Printed PbS Quantum Dot Film Enables Scalable Fabrication of Near Infrared Photodetector. Advanced Optical Materials 2023, 11 (23) https://doi.org/10.1002/adom.202300945
    19. A. V. Nevidimov. Computer Simulation of Charge Carrier Transport Processes in the Conducting Layers of Colloidal Quantum Dots. High Energy Chemistry 2023, 57 (S3) , S441-S444. https://doi.org/10.1134/S0018143923090114
    20. Yasushi Hamanaka, Satoshi Okuyama, Rin Yokoi, Toshihiro Kuzuya, Keiki Takeda, Chihiro Sekine. Photoexcited Carrier Transfer in CuInS 2 Nanocrystal Assembly by Suppressing Resonant‐Energy Transfer. ChemPhysChem 2023, 24 (21) https://doi.org/10.1002/cphc.202300029
    21. Thankappan Thrupthika, Devaraj Nataraj, Subramaniam Ramya, Arumugam Sangeetha, T. Daniel Thangadurai. Induced UV photon sensing properties in narrow bandgap CdTe quantum dots through controlling hot electron dynamics. Physical Chemistry Chemical Physics 2023, 25 (37) , 25331-25343. https://doi.org/10.1039/D3CP02424E
    22. Chuanglei Wang, Zhenjun Chen, Zheng Liu, Tianchan Ma, Xiya Chen, Menglong Zhang, Dongxiang Luo, Byung‐Ryool Hyun, Xiao Liu. Adjusting Microscale to Atomic‐Scale Structural Order in PbS Nanocrystal Superlattice for Enhanced Photodetector Performance. Small 2023, 19 (32) https://doi.org/10.1002/smll.202300975
    23. Hehe Huang, Xuliang Zhang, Chenyu Zhao, Jianyu Yuan. Efficient and stable hybrid conjugated polymer/perovskite quantum dot solar cells. Materials Chemistry Frontiers 2023, 7 (7) , 1423-1430. https://doi.org/10.1039/D3QM00015J
    24. Hehe Huang, Xuliang Zhang, Ruohua Gui, Chenyu Zhao, Junjun Guo, Yin Maung Maung, Hang Yin, Wanli Ma, Jianyu Yuan. High‐Efficiency Perovskite Quantum Dot Photovoltaic with Homogeneous Structure and Energy Landscape. Advanced Functional Materials 2023, 33 (13) https://doi.org/10.1002/adfm.202210728
    25. Chunxia Wu, Chuanbo Gao. Methods for ligand exchange. 2023, 277-301. https://doi.org/10.1016/B978-0-12-822425-0.00005-1
    26. Mathias Micheel, Raktim Baruah, Krishan Kumar, Maria Wächtler. Assembly, Properties, and Application of Ordered Group II–VI and IV–VI Colloidal Semiconductor Nanoparticle Films. Advanced Materials Interfaces 2022, 9 (28) https://doi.org/10.1002/admi.202201039
    27. Vladimir Pejović, Epimitheas Georgitzikis, Itai Lieberman, Paweł E. Malinowski, Paul Heremans, David Cheyns. Photodetectors Based on Lead Sulfide Quantum Dot and Organic Absorbers for Multispectral Sensing in the Visible to Short‐Wave Infrared Range. Advanced Functional Materials 2022, 32 (28) https://doi.org/10.1002/adfm.202201424
    28. Yao Wang, Chenghao Duan, Xuliang Zhang, Jianguo Sun, Xufeng Ling, Junwei Shi, Long Hu, Zizhen Zhou, Xianxin Wu, Wei Han, Xinfeng Liu, Claudio Cazorla, Dewei Chu, Shujuan Huang, Tom Wu, Jianyu Yuan, Wanli Ma. Electroluminescent Solar Cells Based on CsPbI 3 Perovskite Quantum Dots. Advanced Functional Materials 2022, 32 (6) https://doi.org/10.1002/adfm.202108615
    29. Guozheng Shi, Haibin Wang, Yaohong Zhang, Chen Cheng, Tianshu Zhai, Botong Chen, Xinyi Liu, Ryota Jono, Xinnan Mao, Yang Liu, Xuliang Zhang, Xufeng Ling, Yannan Zhang, Xing Meng, Yifan Chen, Steffen Duhm, Liang Zhang, Tao Li, Lu Wang, Shiyun Xiong, Takashi Sagawa, Takaya Kubo, Hiroshi Segawa, Qing Shen, Zeke Liu, Wanli Ma. The effect of water on colloidal quantum dot solar cells. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24614-7
    30. Fei Li, Yang Liu, Guozheng Shi, Wei Chen, Renjun Guo, Dong Liu, Yaohong Zhang, Yongjie Wang, Xing Meng, Xuliang Zhang, You Lv, Wei Deng, Qing Zhang, Yao Shi, Yifan Chen, Kai Wang, Qing Shen, Zeke Liu, Peter Müller‐Buschbaum, Wanli Ma. Matrix Manipulation of Directly‐Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. Advanced Functional Materials 2021, 31 (45) https://doi.org/10.1002/adfm.202104457
    31. Wei Chen, Haodong Tang, Yulong Chen, Julian E. Heger, Nian Li, Lucas P. Kreuzer, Yue Xie, Depeng Li, Carl Anthony, Zoe Pikramenou, Kar Wei Ng, Xiao Wei Sun, Kai Wang, Peter Müller-Buschbaum. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy 2020, 78 , 105254. https://doi.org/10.1016/j.nanoen.2020.105254
    32. Min-Jae Choi, F. Pelayo García de Arquer, Andrew H. Proppe, Ali Seifitokaldani, Jongmin Choi, Junghwan Kim, Se-Woong Baek, Mengxia Liu, Bin Sun, Margherita Biondi, Benjamin Scheffel, Grant Walters, Dae-Hyun Nam, Jea Woong Jo, Olivier Ouellette, Oleksandr Voznyy, Sjoerd Hoogland, Shana O. Kelley, Yeon Sik Jung, Edward. H. Sargent. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13437-2
    33. Nuri Yazdani, Samuel Andermatt, Maksym Yarema, Vasco Farto, Mohammad Hossein Bani-Hashemian, Sebastian Volk, Weyde M. M. Lin, Olesya Yarema, Mathieu Luisier, Vanessa Wood. Charge transport in semiconductors assembled from nanocrystal quantum dots. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16560-7
    34. Taewan Kim, Seyeong Lim, Sunhee Yun, Sohee Jeong, Taiho Park, Jongmin Choi. Design Strategy of Quantum Dot Thin‐Film Solar Cells. Small 2020, 16 (45) https://doi.org/10.1002/smll.202002460
    35. K V Reich. Conductivity of quantum dot arrays. Physics-Uspekhi 2020, 63 (10) , 994-1014. https://doi.org/10.3367/UFNe.2019.08.038649
    36. Akihiro Takahashi, Haibin Wang, Takeshi Fukuda, Norihiko Kamata, Takaya Kubo, Hiroshi Segawa. Annealing-Temperature Dependent Carrier-Transportation in ZnO/PbS Quantum Dot Solar Cells Fabricated Using Liquid-Phase Ligand Exchange Methods. Energies 2020, 13 (19) , 5037. https://doi.org/10.3390/en13195037
    37. Bo Hou, Byung‐Sung Kim, Harrison Ka Hin Lee, Yuljae Cho, Paul Giraud, Mengxia Liu, Jingchao Zhang, Matthew L. Davies, James R. Durrant, Wing Chung Tsoi, Zhe Li, Stoichko D. Dimitrov, Jung Inn Sohn, SeungNam Cha, Jong Min Kim. Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance. Advanced Functional Materials 2020, 30 (39) https://doi.org/10.1002/adfm.202004563
    38. Min‐Jae Choi, Se‐Woong Baek, Seungjin Lee, Margherita Biondi, Chao Zheng, Petar Todorovic, Peicheng Li, Sjoerd Hoogland, Zheng‐Hong Lu, F. Pelayo García de Arquer, Edward H. Sargent. Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency. Advanced Science 2020, 7 (15) https://doi.org/10.1002/advs.202000894
    39. Yitong Dong, Ya-Kun Wang, Fanglong Yuan, Andrew Johnston, Yuan Liu, Dongxin Ma, Min-Jae Choi, Bin Chen, Mahshid Chekini, Se-Woong Baek, Laxmi Kishore Sagar, James Fan, Yi Hou, Mingjian Wu, Seungjin Lee, Bin Sun, Sjoerd Hoogland, Rafael Quintero-Bermudez, Hinako Ebe, Petar Todorovic, Filip Dinic, Peicheng Li, Hao Ting Kung, Makhsud I. Saidaminov, Eugenia Kumacheva, Erdmann Spiecker, Liang-Sheng Liao, Oleksandr Voznyy, Zheng-Hong Lu, Edward H. Sargent. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology 2020, 15 (8) , 668-674. https://doi.org/10.1038/s41565-020-0714-5
    40. Bin Sun, Andrew Johnston, Chao Xu, Mingyang Wei, Ziru Huang, Zhang Jiang, Hua Zhou, Yajun Gao, Yitong Dong, Olivier Ouellette, Xiaopeng Zheng, Jiakai Liu, Min-Jae Choi, Yuan Gao, Se-Woong Baek, Frédéric Laquai, Osman M. Bakr, Dayan Ban, Oleksandr Voznyy, F. Pelayo García de Arquer, Edward H. Sargent. Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells. Joule 2020, 4 (7) , 1542-1556. https://doi.org/10.1016/j.joule.2020.05.011
    41. Wenbi Shcherbakov-Wu, William A. Tisdale. A time-domain view of charge carriers in semiconductor nanocrystal solids. Chemical Science 2020, 11 (20) , 5157-5167. https://doi.org/10.1039/C9SC05925C
    42. Heng Zhang, Qiang Su, Shuming Chen. Suppressing Förster Resonance Energy Transfer in Close‐Packed Quantum‐Dot Thin Film: Toward Efficient Quantum‐Dot Light‐Emitting Diodes with External Quantum Efficiency over 21.6%. Advanced Optical Materials 2020, 8 (10) https://doi.org/10.1002/adom.201902092
    43. Havid Aqoma, Imil Fadli Imran, Muhibullah Al Mubarok, Wisnu Tantyo Hadmojo, Young Rag Do, Sung‐Yeon Jang. Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions. Advanced Energy Materials 2020, 10 (7) https://doi.org/10.1002/aenm.201903294
    44. Olivier Ouellette, Antoine Lesage‐Landry, Benjamin Scheffel, Sjoerd Hoogland, F. Pelayo García de Arquer, Edward H. Sargent. Spatial Collection in Colloidal Quantum Dot Solar Cells. Advanced Functional Materials 2020, 30 (1) https://doi.org/10.1002/adfm.201908200
    45. Christopher J. Rourk. Functional neural electron transport. 2020, 25-111. https://doi.org/10.1016/bs.aiq.2020.08.001
    46. James Z. Fan, Nigel T. Andersen, Margherita Biondi, Petar Todorović, Bin Sun, Olivier Ouellette, Jehad Abed, Laxmi K. Sagar, Min‐Jae Choi, Sjoerd Hoogland, F. Pelayo García de Arquer, Edward H. Sargent. Mixed Lead Halide Passivation of Quantum Dots. Advanced Materials 2019, 31 (48) https://doi.org/10.1002/adma.201904304
    47. Se-Woong Baek, Sunhong Jun, Byeongsu Kim, Andrew H. Proppe, Olivier Ouellette, Oleksandr Voznyy, Changjo Kim, Junho Kim, Grant Walters, Jung Hoon Song, Sohee Jeong, Hye Ryung Byun, Mun Seok Jeong, Sjoerd Hoogland, F. Pelayo García de Arquer, Shana O. Kelley, Jung-Yong Lee, Edward H. Sargent. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nature Energy 2019, 4 (11) , 969-976. https://doi.org/10.1038/s41560-019-0492-1
    48. Yuanfang Yu, Yue Sun, Zhenliang Hu, Xuhong An, Dongming Zhou, Hongzhi Zhou, Wenhui Wang, Kaiyang Liu, Jie Jiang, Dandan Yang, Zainab Zafar, Haibo Zeng, Fengqiu Wang, Haiming Zhu, Junpeng Lu, Zhenhua Ni. Fast Photoelectric Conversion in the Near‐Infrared Enabled by Plasmon‐Induced Hot‐Electron Transfer. Advanced Materials 2019, 31 (43) https://doi.org/10.1002/adma.201903829
    49. Mengxia Liu, Yuelang Chen, Chih-Shan Tan, Rafael Quintero-Bermudez, Andrew H. Proppe, Rahim Munir, Hairen Tan, Oleksandr Voznyy, Benjamin Scheffel, Grant Walters, Andrew Pak Tao Kam, Bin Sun, Min-Jae Choi, Sjoerd Hoogland, Aram Amassian, Shana O. Kelley, F. Pelayo García de Arquer, Edward H. Sargent. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570 (7759) , 96-101. https://doi.org/10.1038/s41586-019-1239-7
    50. Pavel Moroz, Luis Royo Romero, Mikhail Zamkov. Colloidal semiconductor nanocrystals in energy transfer reactions. Chemical Communications 2019, 55 (21) , 3033-3048. https://doi.org/10.1039/C9CC00162J
    51. Mona Rafipoor, Rieke Koll, Jan‐Philip Merkl, Lisa Sarah Fruhner, Horst Weller, Holger Lange. Resonant Energy Transfer can Trigger Multiexciton Recombination in Dense Quantum Dot Ensembles. Small 2019, 15 (5) https://doi.org/10.1002/smll.201803798

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect