ACS Publications. Most Trusted. Most Cited. Most Read
Broadband Achromatic Metasurface-Refractive Optics
My Activity
    Letter

    Broadband Achromatic Metasurface-Refractive Optics
    Click to copy article linkArticle link copied!

    • Wei Ting Chen
      Wei Ting Chen
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
    • Alexander Y. Zhu
      Alexander Y. Zhu
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
    • Jared Sisler
      Jared Sisler
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      University of Waterloo, Waterloo ON N2L 3G1, Canada
      More by Jared Sisler
    • Yao-Wei Huang
      Yao-Wei Huang
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore
    • Kerolos M. A. Yousef
      Kerolos M. A. Yousef
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
    • Eric Lee
      Eric Lee
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      University of Waterloo, Waterloo ON N2L 3G1, Canada
      More by Eric Lee
    • Cheng-Wei Qiu
      Cheng-Wei Qiu
      Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore
    • Federico Capasso*
      Federico Capasso
      Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2018, 18, 12, 7801–7808
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.8b03567
    Published November 13, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Existing methods of correcting for chromatic aberrations in optical systems are limited to two approaches: varying the material dispersion in refractive lenses or incorporating grating dispersion via diffractive optical elements. Recently, single-layer broadband achromatic metasurface lenses have been demonstrated but are limited to diameters on the order of 100 μm due to the large required group delays. Here, we circumvent this limitation and design a metacorrector by combining a tunable phase and artificial dispersion to correct spherical and chromatic aberrations in a large spherical plano-convex lens. The tunability results from a variation in light confinement in sub-wavelength waveguides by locally tailoring the effective refractive index. The effectiveness of this approach is further validated by designing a metacorrector, which greatly increases the bandwidth of a state-of-the-art immersion objective (composed of 14 lenses and 7 types of glasses) from violet to near-infrared wavelengths. This concept of hybrid metasurface-refractive optics combines the advantages of both technologies in terms of size, scalability, complexity, and functionality.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b03567.

    • Additional details on materials and methods and figures showing a comparison of chromatic aberration corrections, SEM results, realized phases and dispersions, schematic diagrams, efficiency as a function of polarization, a comparison of focal-spot quality, a spectrum from an incoherent light source, imaging comparisons with and without metacorrectors, broadband incoherent imaging, and root-mean-square wavefront errors (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 175 publications.

    1. Vladislovas Cizas, Karolis Redeckas, Kasparas Stanaitis, Auguste Bieleviciute, Rusne Ivaskeviciute-Povilauskiene, Domas Jokubauskis, Mindaugas Karaliunas, Ernestas Nacius, Ignas Grigelionis, Linas Minkevicius. Simultaneous Transmission and Reflection Terahertz Homodyne Imaging System with Integrated Resonant C-Shaped Metalenses. ACS Photonics 2025, 12 (2) , 636-647. https://doi.org/10.1021/acsphotonics.4c01329
    2. Guanxing Zang, Jing Ren, Yuzhi Shi, Dan Peng, Peng Zheng, Kun Zheng, Zhijun Liu, Zhanshan Wang, Xinbin Cheng, Ai-Qun Liu, Weiming Zhu. Inverse Design of Aberration-Corrected Hybrid Metalenses for Large Field of View Thermal Imaging Across the Entire Longwave Infrared Atmospheric Window. ACS Nano 2024, 18 (49) , 33653-33663. https://doi.org/10.1021/acsnano.4c12546
    3. Qikai Chen, Jiacheng Zhou, Sijie Pian, Jingang Xu, Xingyi Li, Bihua Li, Chentao Lu, Zhuning Wang, Qi Jiang, Shanhe Qin, Hantao Zhan, Benhao Zhang, Xu Liu, Kaiwei Wang, Yaoguang Ma. Hybrid Meta-Optics Enabled Compact Augmented Reality Display with Computational Image Reinforcement. ACS Photonics 2024, 11 (9) , 3794-3803. https://doi.org/10.1021/acsphotonics.4c00989
    4. Mingze Liu, Weixing Zhao, Yilin Wang, Pengcheng Huo, Hui Zhang, Yan-qing Lu, Ting Xu. Achromatic and Coma-Corrected Hybrid Meta-Optics for High-Performance Thermal Imaging. Nano Letters 2024, 24 (25) , 7609-7615. https://doi.org/10.1021/acs.nanolett.4c01218
    5. Arseniy I. Kuznetsov, Mark L. Brongersma, Jin Yao, Mu Ku Chen, Uriel Levy, Din Ping Tsai, Nikolay I. Zheludev, Andrei Faraon, Amir Arbabi, Nanfang Yu, Debashis Chanda, Kenneth B. Crozier, Alexander V. Kildishev, Hao Wang, Joel K. W. Yang, Jason G. Valentine, Patrice Genevet, Jonathan A. Fan, Owen D. Miller, Arka Majumdar, Johannes E. Fröch, David Brady, Felix Heide, Ashok Veeraraghavan, Nader Engheta, Andrea Alù, Albert Polman, Harry A. Atwater, Prachi Thureja, Ramon Paniagua-Dominguez, Son Tung Ha, Angela I. Barreda, Jon A. Schuller, Isabelle Staude, Gustavo Grinblat, Yuri Kivshar, Samuel Peana, Susanne F. Yelin, Alexander Senichev, Vladimir M. Shalaev, Soham Saha, Alexandra Boltasseva, Junsuk Rho, Dong Kyo Oh, Joohoon Kim, Junghyun Park, Robert Devlin, Ragip A. Pala. Roadmap for Optical Metasurfaces. ACS Photonics 2024, 11 (3) , 816-865. https://doi.org/10.1021/acsphotonics.3c00457
    6. Joon-Suh Park, Soon Wei Daniel Lim, Arman Amirzhan, Hyukmo Kang, Karlene Karrfalt, Daewook Kim, Joel Leger, Augustine Urbas, Marcus Ossiander, Zhaoyi Li, Federico Capasso. All-Glass 100 mm Diameter Visible Metalens for Imaging the Cosmos. ACS Nano 2024, 18 (4) , 3187-3198. https://doi.org/10.1021/acsnano.3c09462
    7. Rui Jie Tang, Soon Wei Daniel Lim, Marcus Ossiander, Xinghui Yin, Federico Capasso. Time Reversal Differentiation of FDTD for Photonic Inverse Design. ACS Photonics 2023, 10 (12) , 4140-4150. https://doi.org/10.1021/acsphotonics.3c00694
    8. Jingjing Zhao, Aidan Van Vleck, Yonatan Winetraub, Lin Du, Yong Han, Sumaira Aasi, Kavita Yang Sarin, Adam de la Zerda. Rapid Cellular-Resolution Skin Imaging with Optical Coherence Tomography Using All-Glass Multifocal Metasurfaces. ACS Nano 2023, 17 (4) , 3442-3451. https://doi.org/10.1021/acsnano.2c09542
    9. Nasir Mahmood, Joohoon Kim, Muhammad Ashar Naveed, Yeseul Kim, Junhwa Seong, Seokwoo Kim, Trevon Badloe, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud, Junsuk Rho. Ultraviolet–Visible Multifunctional Vortex Metaplates by Breaking Conventional Rotational Symmetry. Nano Letters 2023, 23 (4) , 1195-1201. https://doi.org/10.1021/acs.nanolett.2c04193
    10. Mu Ku Chen, Xiaoyuan Liu, Yanni Sun, Din Ping Tsai. Artificial Intelligence in Meta-optics. Chemical Reviews 2022, 122 (19) , 15356-15413. https://doi.org/10.1021/acs.chemrev.2c00012
    11. Mingkun Chen, Jiaqi Jiang, Jonathan A. Fan. Algorithm-Driven Paradigms for Freeform Optical Engineering. ACS Photonics 2022, 9 (9) , 2860-2871. https://doi.org/10.1021/acsphotonics.2c00612
    12. Jacob Scheuer. Optical Metasurfaces Are Coming of Age: Short- and Long-Term Opportunities for Commercial Applications. ACS Photonics 2020, 7 (6) , 1323-1354. https://doi.org/10.1021/acsphotonics.9b01719
    13. Ranran Zhang, Qiuling Zhao, Xia Wang, Jensen Li, Wing Yim Tam. Circular Phase-Dichroism of Chiral Metasurface Using Birefringent Interference. Nano Letters 2020, 20 (4) , 2681-2687. https://doi.org/10.1021/acs.nanolett.0c00311
    14. Shane Colburn, Arka Majumdar. Simultaneous Achromatic and Varifocal Imaging with Quartic Metasurfaces in the Visible. ACS Photonics 2020, 7 (1) , 120-127. https://doi.org/10.1021/acsphotonics.9b01216
    15. Joon-Suh Park, Shuyan Zhang, Alan She, Wei Ting Chen, Peng Lin, Kerolos M. A. Yousef, Ji-Xin Cheng, Federico Capasso. All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. Nano Letters 2019, 19 (12) , 8673-8682. https://doi.org/10.1021/acs.nanolett.9b03333
    16. Maxwell D. Aiello, Adam S. Backer, Aryeh J. Sapon, Janis Smits, John D. Perreault, Patrick Llull, Victor M. Acosta. Achromatic Varifocal Metalens for the Visible Spectrum. ACS Photonics 2019, 6 (10) , 2432-2440. https://doi.org/10.1021/acsphotonics.9b00523
    17. Jae-Hyuck Yoo, Hoang T. Nguyen, Nathan J. Ray, Michael A. Johnson, William A. Steele, John M. Chesser, Salmaan H. Baxamusa, Selim Elhadj, Joseph T. McKeown, Manyalibo J. Matthews, Eyal Feigenbaum. Scalable Light-Printing of Substrate-Engraved Free-Form Metasurfaces. ACS Applied Materials & Interfaces 2019, 11 (25) , 22684-22691. https://doi.org/10.1021/acsami.9b07135
    18. Manuel Decker, Wei Ting Chen, Thomas Nobis, Alexander Y. Zhu, Mohammadreza Khorasaninejad, Zameer Bharwani, Federico Capasso, Jörg Petschulat. Imaging Performance of Polarization-Insensitive Metalenses. ACS Photonics 2019, 6 (6) , 1493-1499. https://doi.org/10.1021/acsphotonics.9b00221
    19. Jingen Lin, Jinbei Chen, Jianchao Zhang, Haowen Liang, Juntao Li, Xue-Hua Wang. High-performance achromatic flat lens by multiplexing meta-atoms on a stepwise phase dispersion compensation layer. Light: Science & Applications 2025, 14 (1) https://doi.org/10.1038/s41377-024-01731-8
    20. Jin Chen, Shao-Xin Huang, Ka Fai Chan, Geng-Bo Wu, Chi Hou Chan. 3D-printed aberration-free terahertz metalens for ultra-broadband achromatic super-resolution wide-angle imaging with high numerical aperture. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-024-55624-w
    21. Ahmed H. Dorrah, Joon-Suh Park, Alfonso Palmieri, Federico Capasso. Free-standing bilayer metasurfaces in the visible. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-58205-7
    22. Rentao Huang, Yuyan Peng, Weiquan Yang, Zhenyou Zou, Xiongtu Zhou, Tailiang Guo, Chaoxing Wu, Yongai Zhang. Simulation study of dual-focal achromatic metalens based on regional dispersion engineering. Optics Communications 2025, 582 , 131673. https://doi.org/10.1016/j.optcom.2025.131673
    23. Cameron Vo, Owen Anderson, Anna Wirth-Singh, Rose Johnson, Arka Majumdar, Zachary Coppens. Broadband long-range thermal imaging via meta-correctors. Applied Optics 2025, 64 (13) , 3473. https://doi.org/10.1364/AO.553334
    24. J. M. M. de Wit, F. Cussiol, H. Caglayan, J. Gómez Rivas. Diffraction and dispersion effects on the wavelength dependence of the focal length of metalenses. Applied Optics 2025, 64 (13) , 3598. https://doi.org/10.1364/AO.557927
    25. Heming Xin, Zuojun Zhang, Ying She, Jianming Liao, Guo Bai, Jiawei He, Xu Zhang, Cheng Huang, Xiaoliang Ma, Xiangang Luo. Single‐Layer Multiple Resonances Metasurface for Polarization‐Independent Broadband Achromatism. Advanced Optical Materials 2025, https://doi.org/10.1002/adom.202500438
    26. Ahmed H. Dorrah. Compound meta-optics: there is plenty of room at the top. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0772
    27. Ko-Han Shih, C. Kyle Renshaw. Metasurface-Refractive Hybrid Lens Modeling with Vector Field Physical Optics. Photonics 2025, 12 (4) , 401. https://doi.org/10.3390/photonics12040401
    28. Meiyan Pan, Yanxin Lu, Jintao Wang, Yihang Chen. Polarization-insensitive narrowband reflective wavefront manipulation through all-dielectric anisotropic subwavelength structures. iScience 2025, 28 (4) , 112147. https://doi.org/10.1016/j.isci.2025.112147
    29. Chenglin Xu, Maryvonne Chalony, Yijun Ding, Larry S. Melvin, Bernd Küchler, Bryan D. Stone, Li-Ce Hu, Evan Heller, Mayank Bahl, Rob Scarmozzino, , , . From design to manufacturing: complete inverse design flow for meta optics. 2025, 19. https://doi.org/10.1117/12.3038360
    30. Jun Chen, Zehai Guan, Feng Tang, Jingjun Wu, Xin Ye, Liming Yang. Metalens design with broadband achromatic and Longitudinal High-Tolerance Imaging. Optics Communications 2025, 577 , 131389. https://doi.org/10.1016/j.optcom.2024.131389
    31. Yichen Song, Shan Mao, Yufeng Tang, Jianlin Zhao. Metalens-based hybrid probe near-infrared endoscope objective. Optics Express 2025, 33 (3) , 5757. https://doi.org/10.1364/OE.550193
    32. Mingming Hou, Yan Chen, Junyu Li, Xiao Tao, Fei Yi. Unique thermal characteristics of polarization-insensitive metalenses over traditional refractive and diffractive lenses. Optics Express 2025, 33 (3) , 3986. https://doi.org/10.1364/OE.550261
    33. Guiyuan Cao, Shibiao Wei, Siqi Wang, Xining Xu, Wenbo Liu, Huihui Zhang, Jingheng Liu, Zhenqian Han, Weisong Zhao, Haoyu Li, Han Lin, Xiaocong Yuan, Baohua Jia. Multi‐Wavelength Achromatic Graphene Metalenses for Visible, NIR, and Beyond. Laser & Photonics Reviews 2025, 19 (4) https://doi.org/10.1002/lpor.202401542
    34. Tobias Wenger, J. Kent Wallace. Polarization-dependent metasurface for vector Zernike wavefront sensing with increased dynamic range. Optics Letters 2025, 50 (3) , 726. https://doi.org/10.1364/OL.544385
    35. Yaqin Zheng, Yuan Liao, Yulong Fan, Lei Zhang, Zhang-Kai Zhou, Dangyuan Lei. Unevenly distributed pixel-based camouflage metasurface hiding multiwavelength holograms in color printing. Advanced Photonics 2025, 7 (01) https://doi.org/10.1117/1.AP.7.1.016003
    36. Weiyu Chen, Ko-Han Shih, C. Kyle Renshaw. Dispersive Sweatt Model for Broadband Lens Design with Metasurfaces. Photonics 2025, 12 (1) , 43. https://doi.org/10.3390/photonics12010043
    37. Xinge Yang, Matheus Souza, Kunyi Wang, Praneeth Chakravarthula, Qiang Fu, Wolfgang Heidrich. End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model. 2024, 1-11. https://doi.org/10.1145/3680528.3687640
    38. Jiangtao Lv, Ruizhe Zhang, Chunli Liu, Zimeng Ge, Qiongchan Gu, Fu Feng, Guangyuan Si. Polarization-controlled metasurface design based on deep ResNet. Optics & Laser Technology 2024, 179 , 111396. https://doi.org/10.1016/j.optlastec.2024.111396
    39. Muhammad Afnan Ansari, Hammad Ahmed, Yan Li, Guanchao Wang, Jemma E. Callaghan, Ruoxing Wang, James Downing, Xianzhong Chen. Multifaceted control of focal points along an arbitrary 3D curved trajectory. Light: Science & Applications 2024, 13 (1) https://doi.org/10.1038/s41377-024-01565-4
    40. Ming Deng, Michele Cotrufo, Jian Wang, Jianji Dong, Zhichao Ruan, Andrea Alù, Lin Chen. Broadband angular spectrum differentiation using dielectric metasurfaces. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46537-9
    41. Jin Qin, Shibin Jiang, Shibin Li, Shaowei He, Weiming Zhu. Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering. Advanced Physics Research 2024, 3 (11) https://doi.org/10.1002/apxr.202400059
    42. Issar Amro, Fatima Fneish, Rawad Kansoh, Ahmad Sabra, Walid Tabbara. Inverse problems with hybrid lenses. Journal of Mathematical Analysis and Applications 2024, 539 (2) , 128645. https://doi.org/10.1016/j.jmaa.2024.128645
    43. Masanobu Iwanaga. Comprehensive Analysis of Optical Resonances and Sensing Performance in Metasurfaces of Silicon Nanogap Unit. Photonics 2024, 11 (11) , 1053. https://doi.org/10.3390/photonics11111053
    44. Fen Zhao, Baoze Huang, Qingxiao Liu, Junbo Yang. Broadband super-resolution wavelength-controlled zoom metalens. Journal of Physics D: Applied Physics 2024, 57 (41) , 415106. https://doi.org/10.1088/1361-6463/ad5f9b
    45. Lejia Wu, Saima Kanwal, Xin Chen, Jing Wen. Ultra-broadband absorber designed with the aid of the particle swarm optimization algorithm. Optical Materials Express 2024, 14 (10) , 2461. https://doi.org/10.1364/OME.537065
    46. Kaizhu Liu, Changsen Sun, Hsiang-Chen Chui. Telecom-band high contrast narrowband metalens for 3D imaging. Optics and Lasers in Engineering 2024, 180 , 108325. https://doi.org/10.1016/j.optlaseng.2024.108325
    47. Guanghao Chen, Junxiao Zhou, Li Chen, Fanglin Tian, Zhaowei Liu. Infrared color-sorting metasurfaces. Nanoscale 2024, 16 (30) , 14490-14497. https://doi.org/10.1039/D4NR01891E
    48. Tie Hu, Liqing Wen, Haowei Li, Shengqi Wang, Rui Xia, Zihan Mei, Zhenyu Yang, Ming Zhao. Aberration-corrected hybrid metalens for longwave infrared thermal imaging. Nanophotonics 2024, 13 (17) , 3059-3066. https://doi.org/10.1515/nanoph-2023-0918
    49. Yuhui Gan, Jianling Xiao, Tomasz Plaskocinski, Saydulla Persheyev, Mohammad Biabanifard, Hossein Abadi, Andrea Di Falco, , , . Flexible holographic metasurfaces for augmented reality near-eye display. 2024, 83. https://doi.org/10.1117/12.3017145
    50. Ko-Han Shih, C. Kyle Renshaw, , , . Metasurface hybrid lens physical modeling. 2024, 3. https://doi.org/10.1117/12.3012791
    51. Ko-Han Shih, C. Kyle Renshaw. Hybrid meta/refractive lens design with an inverse design using physical optics. Applied Optics 2024, 63 (15) , 4032. https://doi.org/10.1364/AO.516890
    52. Taylor Robertson, , , , . Integrated hybrid achromatic microlenses design and simulation. 2024, 77. https://doi.org/10.1117/12.2692526
    53. Lingyun Xie, Hengyi Wan, Kai Ou, Junming Long, Zining Wang, Yuchao Wang, Hui Yang, Zeyong Wei, Zhanshan Wang, Xinbin Cheng. High‐Efficiency Broadband Achromatic Metadevice for Spin‐to‐Orbital Angular Momentum Conversion of Light in the Near‐Infrared. Small Science 2024, 4 (5) https://doi.org/10.1002/smsc.202300273
    54. Guanghao Chen, Zachary Burns, Junxiao Zhou, Zhaowei Liu. Inverse design of metasurface based off-axis image relay. Optics Express 2024, 32 (9) , 15115. https://doi.org/10.1364/OE.519179
    55. Brandon T. Swartz, Hanyu Zheng, Gregory T. Forcherio, Jason Valentine. Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation. Science Advances 2024, 10 (6) https://doi.org/10.1126/sciadv.adk0024
    56. Myungkoo Kang, Brandon M. Triplett, Mikhail Y. Shalaginov, Skylar Deckoff-Jones, Cesar Blanco, Mia Truman, Elena Shirshneva-Vashchenko, Justin Cook, Qingyang Du, Tushar S. Karnik, Cosmin-Constantin Popescu, Anna Zachariou, Yifei Zhang, Casey M. Schwarz, Sensong An, Clayton Fowler, Hualiang Zhang, Ivan Divliansky, Leonid B. Glebov, Martin C. Richardson, Anuradha M. Agarwal, Clara Rivero-Baleine, Juejun Hu, Tian Gu, Kathleen A. Richardson. Photochemically Engineered Large‐Area Arsenic Sulfide Micro‐Gratings for Hybrid Diffractive–Refractive Infrared Platforms. Advanced Photonics Research 2024, 5 (1) https://doi.org/10.1002/adpr.202300241
    57. Jiangtao Lv, Ruizhe Zhang, Qiongchan Gu, Md Hemayet Uddin, Xiaoxiao Jiang, Junqiao Qi, Guangyuan Si, Qingdong Ou. Metasurfaces and their intelligent advances. Materials & Design 2024, 237 , 112610. https://doi.org/10.1016/j.matdes.2023.112610
    58. 马耀光 Ma Yaoguang, 高宇斌 Gao Yubin. 超构表面:设计原理与应用挑战(特邀). Chinese Journal of Lasers 2024, 51 (1) , 0103001. https://doi.org/10.3788/CJL231405
    59. 郝慧捷 Hao Huijie, 王新伟 Wang Xinwei, 刘俭 Liu Jian, 丁旭旻 Ding Xumin. 基于超构表面的光学计算与先进成像(特邀). Laser & Optoelectronics Progress 2024, 61 (16) , 1611008. https://doi.org/10.3788/LOP241385
    60. Cheng-Feng Pan, Hao Wang, Hongtao Wang, Parvathi Nair S, Qifeng Ruan, Simon Wredh, Yujie Ke, John You En Chan, Wang Zhang, Cheng-Wei Qiu, Joel K. W. Yang. 3D-printed multilayer structures for high–numerical aperture achromatic metalenses. Science Advances 2023, 9 (51) https://doi.org/10.1126/sciadv.adj9262
    61. Younggeun Lee, Mun Ji Low, Dongwook Yang, Han Ku Nam, Truong-Son Dinh Le, Seung Eon Lee, Hyogeun Han, Seunghwan Kim, Quang Huy Vu, Hongki Yoo, Hyosang Yoon, Joohyung Lee, Suchand Sandeep, Keunwoo Lee, Seung-Woo Kim, Young-Jin Kim. Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics. Light: Science & Applications 2023, 12 (1) https://doi.org/10.1038/s41377-023-01143-0
    62. Wei Ting Chen, Joon-Suh Park, Justin Marchioni, Sophia Millay, Kerolos M. A. Yousef, Federico Capasso. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38185-2
    63. Corey A. Richards, Christian R. Ocier, Dajie Xie, Haibo Gao, Taylor Robertson, Lynford L. Goddard, Rasmus E. Christiansen, David G. Cahill, Paul V. Braun. Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38858-y
    64. Brandon Born, Sung-Hoon Lee, Jung-Hwan Song, Jeong Yub Lee, Woong Ko, Mark L. Brongersma. Off-axis metasurfaces for folded flat optics. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41123-x
    65. Woojun Han, Jinsoo Jeong, Jaisoon Kim, Sun-Je Kim. Aberration Theory of a Flat, Aplanatic Metalens Doublet and the Design of a Meta-Microscope Objective Lens. Sensors 2023, 23 (22) , 9273. https://doi.org/10.3390/s23229273
    66. Zeqian Liu, Jiansen Du, Zongtao Chi, Hailin Cong, Bin Wang. An all-dielectric metasurface based on Fano resonance with tunable dual-peak insensitive polarization for high-performance refractive index sensing. Physical Chemistry Chemical Physics 2023, 25 (41) , 28094-28103. https://doi.org/10.1039/D3CP03339B
    67. Skyler Palatnick, Lorenzo König, Maxwell Millar-Blanchaer, James K. Wallace, Olivier Absil, Dimitri Mawet, Niyati Desai, Daniel Echeverri, Demis John, Jon A. Schuller, . Prospects for metasurfaces in exoplanet direct imaging systems: from principles to design. 2023, 26. https://doi.org/10.1117/12.2677834
    68. Ziwei Zhu, Zhaocheng Liu, Changxi Zheng. Metalens enhanced ray optics: an end-to-end wave-ray co-optimization framework. Optics Express 2023, 31 (16) , 26054. https://doi.org/10.1364/OE.496608
    69. Yanhao Chu, Xingjian Xiao, Xin Ye, Chen Chen, Shining Zhu, Tao Li. Design of achromatic hybrid metalens with secondary spectrum correction. Optics Express 2023, 31 (13) , 21399. https://doi.org/10.1364/OE.493216
    70. Stefan Wagner, Kevin Treptow, Sascha Weser, Marc Drexler, Serhat Sahakalkan, Wolfgang Eberhardt, Thomas Guenther, Christof Pruss, Alois Herkommer, André Zimmermann. Injection Molding of Encapsulated Diffractive Optical Elements. Micromachines 2023, 14 (6) , 1223. https://doi.org/10.3390/mi14061223
    71. Samuel Pinilla, Johannes E. Fröch, Seyyed Reza Miri Rostami, Vladimir Katkovnik, Igor Shevkunov, Arka Majumdar, Karen Egiazarian. Miniature color camera via flat hybrid meta-optics. Science Advances 2023, 9 (21) https://doi.org/10.1126/sciadv.adg7297
    72. Sajan Shrestha, Adam Overvig, Ming Lu, Aaron Stein, Nanfang Yu. Multi-element metasurface system for imaging in the near-infrared. Applied Physics Letters 2023, 122 (20) https://doi.org/10.1063/5.0141881
    73. Xiaoyan Huang, Weijun Yuan, Aaron Holman, Minho Kwon, Stuart J. Masson, Ricardo Gutierrez-Jauregui, Ana Asenjo-Garcia, Sebastian Will, Nanfang Yu. Metasurface holographic optical traps for ultracold atoms. Progress in Quantum Electronics 2023, 89 , 100470. https://doi.org/10.1016/j.pquantelec.2023.100470
    74. Isaac Nape, Bereneice Sephton, Pedro Ornelas, Chane Moodley, Andrew Forbes. Quantum structured light in high dimensions. APL Photonics 2023, 8 (5) https://doi.org/10.1063/5.0138224
    75. Xu Zhang, Haogang Cai, Soroosh Daqiqeh Rezaei, Daniel Rosenmann, Daniel Lopez. A universal metasurface transfer technique for heterogeneous integration. Nanophotonics 2023, 12 (8) , 1633-1642. https://doi.org/10.1515/nanoph-2022-0627
    76. Xiaoyu Che, Yefeng Yu, Zhishan Gao, Qun Yuan. A broadband achromatic Alvarez metalens. Optics & Laser Technology 2023, 159 , 108985. https://doi.org/10.1016/j.optlastec.2022.108985
    77. Yongjian Zheng, Shaonan Zheng, Yuan Dong, Lianxi Jia, Qize Zhong, Yuandong Gu, Ting Hu. Broadband Achromatic Metalens in the Long-Wave Infrared Regime. IEEE Photonics Journal 2023, 15 (2) , 1-7. https://doi.org/10.1109/JPHOT.2023.3243409
    78. Tie Hu, Shengqi Wang, Yunxuan Wei, Liqinng Wen, Xing Feng, Zhenyu Yang, Jinkun Zheng, Ming Zhao. Design of a centimeter-scale achromatic hybrid metalens with polarization insensitivity in the visible. Optics Letters 2023, 48 (7) , 1898. https://doi.org/10.1364/OL.482794
    79. Kai Ou, Hengyi Wan, Guangfeng Wang, Jingyuan Zhu, Siyu Dong, Tao He, Hui Yang, Zeyong Wei, Zhanshan Wang, Xinbin Cheng. Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications. Nanomaterials 2023, 13 (7) , 1235. https://doi.org/10.3390/nano13071235
    80. Zhenai Wang, Tingting Lang, Yanqing Qiu. Wideband Airy Beam Generation Using Reflective Metasurfaces with Both Phase and Amplitude Modulation. Photonics 2023, 10 (4) , 426. https://doi.org/10.3390/photonics10040426
    81. Lieven Penninck, Bavo Robben, Peter Muys, , , . Dispersion engineered hybrid meta-surface design for highly compact optical systems. 2023, 16. https://doi.org/10.1117/12.2651851
    82. Chenglin Xu, Evan Heller, Jan Bos, Robert Scarmozzino, Mayank Bahl, Li-Ce Hu, Nicholas Achuthan, , . Fully automated inverse design solution for metalenses/metasurfaces. 2023, 1. https://doi.org/10.1117/12.2657443
    83. Ye Yuan, Zilong Yan, Peifeng Zhang, Zhu Chang, Fengjiang Peng, Ruotong Chen, Zhenyuan Yang, Shizheng Chen, Qing Zhao, Xiaoping Huang. A Broadband Achromatic Dielectric Planar Metalens in Mid-IR Range. Photonic Sensors 2023, 13 (1) https://doi.org/10.1007/s13320-022-0667-4
    84. Mingli Wan, Xiaopeng Zhang, Shuqing Yuan, Junqiao Wang, Jinna He. Generating elliptic perfect optical vortex beams with efficient dielectric metasurface in the ultraviolet spectrum. Optics Communications 2023, 531 , 129224. https://doi.org/10.1016/j.optcom.2022.129224
    85. Yue Li, Xinlin Geng, Xianghong Kong, Xingsi Liu, Zhen Liu, Zheng Wang, Difei Liang, Qian Xie, Jianliang Xie, Longjiang Deng, Cheng‐Wei Qiu, Bo Peng. Picosecond Wide‐Angle Dynamic Beam Steering for Object Tracking. Laser & Photonics Reviews 2023, 17 (1) https://doi.org/10.1002/lpor.202200274
    86. Tian Gu, Hyun Jung Kim, Clara Rivero-Baleine, Juejun Hu. Reconfigurable metasurfaces towards commercial success. Nature Photonics 2023, 17 (1) , 48-58. https://doi.org/10.1038/s41566-022-01099-4
    87. Mingyang Geng, Xiaolu Yang, Hao Chen, Xinzhi Bo, Mengzi Li, Zhenguo Liu, Weibing Lu. Optically transparent graphene-based cognitive metasurface for adaptive frequency manipulation. Photonics Research 2023, 11 (1) , 129. https://doi.org/10.1364/PRJ.472868
    88. Dongliang Tang, Zhenglong Shao, Xin Xie, Yingjie Zhou, Xiaohu Zhang, Fan Fan, Shuangchun Wen, , , . Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electronic Advances 2023, 6 (4) , 220063-220063. https://doi.org/10.29026/oea.2023.220063
    89. Guiyuan Cao, Han Lin, Baohua Jia. Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting. Ultrafast Science 2023, 3 https://doi.org/10.34133/ultrafastscience.0018
    90. 唐剑雄 Tang Jianxiong, 龚岩栋 Gong Yandong, 庞恺 Pang Kai. 二维超构表面:超透镜应用及研究进展. Laser & Optoelectronics Progress 2023, 60 (21) , 2100004. https://doi.org/10.3788/LOP222602
    91. Yongli He, Boxiang Song, Jiang Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications. Frontiers of Optoelectronics 2022, 15 (1) https://doi.org/10.1007/s12200-022-00017-4
    92. Zhaoyi Li, Raphaël Pestourie, Joon-Suh Park, Yao-Wei Huang, Steven G. Johnson, Federico Capasso. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29973-3
    93. Ruixue Shi, Shuling Hu, Chuanqi Sun, Bin Wang, Qingzhong Cai. Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing. Nanomaterials 2022, 12 (23) , 4298. https://doi.org/10.3390/nano12234298
    94. Chunsheng Xia, Mingze Liu, Junmin Wang, Yilin Wang, Song Zhang, Peicheng Lin, Ting Xu. A polarization-insensitive infrared broadband achromatic metalens consisting of all-silicon anisotropic microstructures. Applied Physics Letters 2022, 121 (16) https://doi.org/10.1063/5.0120717
    95. Geng-Bo Wu, Shu-Yan Zhu, Stella W. Pang, Chi Hou Chan. Superheterodyne-inspired waveguide-integrated metasurfaces for flexible free-space light manipulation. Nanophotonics 2022, 11 (20) , 4499-4514. https://doi.org/10.1515/nanoph-2022-0352
    96. Prachi Thureja, Ruzan Sokhoyan, Claudio U. Hail, Jared Sisler, Morgan Foley, Meir Y. Grajower, Harry A. Atwater. Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics 2022, 11 (17) , 3745-3768. https://doi.org/10.1515/nanoph-2022-0155
    97. T.-W. Hsu, W. Zhu, T. Thiele, M. O. Brown, S. B. Papp, A. Agrawal, C. A. Regal. Single-Atom Trapping in a Metasurface-Lens Optical Tweezer. PRX Quantum 2022, 3 (3) https://doi.org/10.1103/PRXQuantum.3.030316
    98. Ko-Han Shih, C. Kyle Renshaw. Broadband metasurface aberration orrectors for hybrid meta/refractive MWIR lenses. Optics Express 2022, 30 (16) , 28438. https://doi.org/10.1364/OE.460941
    99. Mikhail Mamaikin, Yik-Long Li, Enrico Ridente, Wei Ting Chen, Joon-Suh Park, Alexander Y. Zhu, Federico Capasso, Matthew Weidman, Martin Schultze, Ferenc Krausz, Nicholas Karpowicz. Electric-field-resolved near-infrared microscopy. Optica 2022, 9 (6) , 616. https://doi.org/10.1364/OPTICA.454562
    100. Wei-Lun Hsu, Yen-Chun Chen, Shang Ping Yeh, Qiu-Chun Zeng, Yao-Wei Huang, Chih-Ming Wang. Review of Metasurfaces and Metadevices: Advantages of Different Materials and Fabrications. Nanomaterials 2022, 12 (12) , 1973. https://doi.org/10.3390/nano12121973
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2018, 18, 12, 7801–7808
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.8b03567
    Published November 13, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    8971

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.