ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry

  • Tianji Liu
    Tianji Liu
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
    More by Tianji Liu
  • Lucas V. Besteiro
    Lucas V. Besteiro
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
  • Tim Liedl
    Tim Liedl
    Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universtät München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
    More by Tim Liedl
  • Miguel A. Correa-Duarte
    Miguel A. Correa-Duarte
    Department of Physical Chemistry, Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research, Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310 Vigo, Spain
  • Zhiming Wang*
    Zhiming Wang
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    *Z.W.: E-mail: [email protected]
    More by Zhiming Wang
  • , and 
  • Alexander O. Govorov*
    Alexander O. Govorov
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
    *A.G.: E-mail: [email protected]
Cite this: Nano Lett. 2019, 19, 2, 1395–1407
Publication Date (Web):January 25, 2019
https://doi.org/10.1021/acs.nanolett.8b05179
Copyright © 2019 American Chemical Society
Article Views
3767
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Abstract Image

The use of biomaterials, with techniques such as DNA-directed assembly or biodirected synthesis, can surpass top-down fabrication techniques in creating plasmonic superstructures in terms of spatial resolution, range of functionality, and fabrication speed. In particular, by enabling a very precise placement of nanoparticles in a bioassembled complex or through the controlled biodirected shaping of single nanoparticles, plasmonic nanocrystals can show remarkably strong circular dichroism (CD) signals. We show that chiral bioplasmonic assemblies and single nanocrystals can enable polarization-sensitive photochemistry based on the generation of energetic (hot) electrons. It is now established that hot plasmonic electrons can induce surface photochemistry or even reshape plasmonic nanocrystals. We show that merging chiral plasmonic nanocrystal systems and the hot-election generation effect offers unique possibilities in photochemistry, such as polarization-sensitive photochemistry promoting nonchiral molecular reactions, chiral photoinduced growth of a colloid at the atomic level, and chiral photochemical destruction of chiral nanocrystals. In contrast, for chiral molecular systems, the equivalent of the described effects is challenging to observe because molecular species typically exhibit very small CD signals. Moreover, we compare our findings with traditional chiral photochemistry at the molecular level, identifying new, different regimes for chiral photochemistry with possibilities that are unique for plasmonic colloidal systems. In this study, we bring together the concept of hot-electron generation and the field of chiral colloidal plasmonics. Using chiral plasmonic nanorod complexes as a model system, we demonstrate remarkably strong CD in both optical extinction and generation rates of hot electrons. Studying the regime of steady-state excitation, we discuss the influence of geometrical and material parameters on the chiral effects involved in the generation of hot electrons. Optical chirality and the chiral hot-electron response in the nanorod dimers result from complex interparticle interactions, which can appear in the weak coupling regime or in the form of Rabi splitting. Regarding practical applications, our study suggests interesting opportunities in polarization-sensitive photochemistry, in chiral recognition or separation, and in promoting chiral crystal growth at the nanoscale.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b05179.

  • Model used in COMSOL, the chiro-optical properties of Ag dimers, the structure of normal modes in the dimers, and the maps of surface charge distribution (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 58 publications.

  1. Nandan Ghorai, Hirendra N. Ghosh. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment. Langmuir 2022, 38 (18) , 5339-5350. https://doi.org/10.1021/acs.langmuir.2c00446
  2. Lauren A. Warning, Ali Rafiei Miandashti, Anastasiia Misiura, Christy F. Landes, Stephan Link. Naturally Occurring Proteins Direct Chiral Nanorod Aggregation. The Journal of Physical Chemistry C 2022, 126 (5) , 2656-2668. https://doi.org/10.1021/acs.jpcc.1c09644
  3. Yoel Negrín-Montecelo, Artur Movsesyan, Jie Gao, Sven Burger, Zhiming M. Wang, Sylvain Nlate, Emilie Pouget, Reiko Oda, Miguel Comesaña-Hermo, Alexander O. Govorov, Miguel A. Correa-Duarte. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. Journal of the American Chemical Society 2022, 144 (4) , 1663-1671. https://doi.org/10.1021/jacs.1c10526
  4. Cuiping Ma, Peng Yu, Wenhao Wang, Yisong Zhu, Feng Lin, Jiaying Wang, Zhimin Jing, Xiang-Tian Kong, Peihang Li, Alexander O. Govorov, Dong Liu, Hongxing Xu, Zhiming Wang. Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect. ACS Nano 2021, 15 (10) , 16357-16367. https://doi.org/10.1021/acsnano.1c05658
  5. Oscar Ávalos-Ovando, Lucas V. Besteiro, Artur Movsesyan, Gil Markovich, Tim Liedl, Kevin Martens, Zhiming Wang, Miguel A. Correa-Duarte, Alexander O. Govorov. Chiral Photomelting of DNA-Nanocrystal Assemblies Utilizing Plasmonic Photoheating. Nano Letters 2021, 21 (17) , 7298-7308. https://doi.org/10.1021/acs.nanolett.1c02479
  6. Hebing Hu, Sribharani Sekar, Wenbing Wu, Yann Battie, Vincent Lemaire, Oriol Arteaga, Lisa V. Poulikakos, David J. Norris, Harald Giessen, Gero Decher, Matthias Pauly. Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano 2021, 15 (8) , 13653-13661. https://doi.org/10.1021/acsnano.1c04804
  7. Shuai Zu, Quan Sun, En Cao, Tomoya Oshikiri, Hiroaki Misawa. Revealing the Chiroptical Response of Plasmonic Nanostructures at the Nanofemto Scale. Nano Letters 2021, 21 (11) , 4780-4786. https://doi.org/10.1021/acs.nanolett.1c01322
  8. Stephan Link, (Senior Editor, The Journal of Physical Chemistry C)Gregory V. Hartland (Deputy Editor, The Journal of Physical Chemistry C). Virtual Issue on Chiral Plasmonics. The Journal of Physical Chemistry C 2021, 125 (19) , 10175-10178. https://doi.org/10.1021/acs.jpcc.1c03401
  9. Spencer D. Golze, Stefania Porcu, Chen Zhu, Eli Sutter, Pier Carlo Ricci, Edward C. Kinzel, Robert A. Hughes, Svetlana Neretina. Sequential Symmetry-Breaking Events as a Synthetic Pathway for Chiral Gold Nanostructures with Spiral Geometries. Nano Letters 2021, 21 (7) , 2919-2925. https://doi.org/10.1021/acs.nanolett.0c05105
  10. Kwan-Ming Ng, Samuel Kin-Man Lai, Ziyong Chen, Yu-Hong Cheng, Ho-Wai Tang, Wei Huang, Yang Su, Jun Yang. Harvesting More Energetic Photoexcited Electrons from Closely Packed Gold Nanoparticles. Journal of the American Society for Mass Spectrometry 2021, 32 (3) , 815-824. https://doi.org/10.1021/jasms.0c00480
  11. Yisong Zhu, Peng Yu, Tianji Liu, Hongxing Xu, Alexander O. Govorov, Zhiming Wang. Nanolayered Tamm Plasmon-Based Multicolor Hot Electron Photodetection for O- and C-Band Telecommunication. ACS Applied Electronic Materials 2021, 3 (2) , 639-650. https://doi.org/10.1021/acsaelm.0c00710
  12. Song Wang, Yuening Zhang, Xujin Qin, Li Zhang, Zhen Zhang, Wensheng Lu, Minghua Liu. Guanosine Assembly Enabled Gold Nanorods with Dual Thermo- and Photoswitchable Plasmonic Chiroptical Activity. ACS Nano 2020, 14 (5) , 6087-6096. https://doi.org/10.1021/acsnano.0c01819
  13. Ali Rafiei Miandashti, Larousse Khosravi Khorashad, Martin E. Kordesch, Alexander O. Govorov, Hugh H. Richardson. Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids. ACS Nano 2020, 14 (4) , 4188-4195. https://doi.org/10.1021/acsnano.9b09062
  14. Larousse Khosravi Khorashad, Lucas V. Besteiro, Miguel A. Correa-Duarte, Sven Burger, Zhiming M. Wang, Alexander O. Govorov. Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth. Journal of the American Chemical Society 2020, 142 (9) , 4193-4205. https://doi.org/10.1021/jacs.9b11124
  15. Andreas Horrer, Yinping Zhang, Davy Gérard, Jérémie Béal, Mathieu Kociak, Jérôme Plain, Renaud Bachelot. Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules. Nano Letters 2020, 20 (1) , 509-516. https://doi.org/10.1021/acs.nanolett.9b04247
  16. Wenhao Wang, Lucas V. Besteiro, Tianji Liu, Cuo Wu, Jiachen Sun, Peng Yu, Le Chang, Zhiming Wang, Alexander O. Govorov. Generation of Hot Electrons with Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry. ACS Photonics 2019, 6 (12) , 3241-3252. https://doi.org/10.1021/acsphotonics.9b01180
  17. Hyo-Yong Ahn, SeokJae Yoo, Nam Heon Cho, Ryeong Myeong Kim, Hyeohn Kim, Ji-Hyeok Huh, Seungwoo Lee, Ki Tae Nam. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. Accounts of Chemical Research 2019, 52 (10) , 2768-2783. https://doi.org/10.1021/acs.accounts.9b00264
  18. Le Chang, Lucas V. Besteiro, Jiachen Sun, Eva Yazmin Santiago, Stephen K. Gray, Zhiming Wang, Alexander O. Govorov. Electronic Structure of the Plasmons in Metal Nanocrystals: Fundamental Limitations for the Energy Efficiency of Hot Electron Generation. ACS Energy Letters 2019, 4 (10) , 2552-2568. https://doi.org/10.1021/acsenergylett.9b01617
  19. Hiromi Okamoto. Optical manipulation with nanoscale chiral fields and related photochemical phenomena. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022, 52 , 100531. https://doi.org/10.1016/j.jphotochemrev.2022.100531
  20. Luca Mascaretti, Andrea Schirato, Paolo Fornasiero, Alexandra Boltasseva, Vladimir M. Shalaev, Alessandro Alabastri, Alberto Naldoni. Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. Nanophotonics 2022, Article ASAP.
  21. Jianmei Li, Jingyi Liu, Zirui Guo, Zeyu Chang, Yang Guo. Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors. Molecules 2022, 27 (9) , 2807. https://doi.org/10.3390/molecules27092807
  22. Artur Movsesyan, Eva Yazmin Santiago, Sven Burger, Miguel A. Correa‐Duarte, Lucas V. Besteiro, Zhiming Wang, Alexander O. Govorov. Plasmonic Nanocrystals with Complex Shapes for Photocatalysis and Growth: Contrasting Anisotropic Hot‐Electron Generation with the Photothermal Effect. Advanced Optical Materials 2022, 10 (10) , 2102663. https://doi.org/10.1002/adom.202102663
  23. Mihir Dass, Lilli Kuen, Gregor Posnjak, Sven Burger, Tim Liedl. Visible wavelength spectral tuning of absorption and circular dichroism of DNA-assembled Au/Ag core–shell nanorod assemblies. Materials Advances 2022, 3 (8) , 3438-3445. https://doi.org/10.1039/D1MA01211H
  24. Bowen Kang, Tingting Zhang, Lei Yan, Chengxiang Gou, Zihe Jiang, Min Ji, Li Chen, Zhenglong Zhang, Hairong Zheng, Hongxing Xu. Local controllability of hot electron and thermal effects enabled by chiral plasmonic nanostructures. Nanophotonics 2022, 11 (6) , 1195-1202. https://doi.org/10.1515/nanoph-2021-0780
  25. Bi-Yuan Wu, Zhang-Xing Shi, Feng Wu, Ming-Jun Wang, Xiao-Hu Wu. Strong chirality in twisted bilayer α-MoO 3. Chinese Physics B 2022, 31 (4) , 044101. https://doi.org/10.1088/1674-1056/ac3740
  26. Vikas Yadav, Soumik Siddhanta. Engineering chiral plasmonic nanostructures for gain-assisted plasmon amplification and tunable enhancement of circular dichroism. Materials Advances 2022, 3 (3) , 1825-1833. https://doi.org/10.1039/D1MA01067K
  27. Yang Chen, Wei Du, Qing Zhang, Oscar Ávalos-Ovando, Jing Wu, Qing-Hua Xu, Na Liu, Hiromi Okamoto, Alexander O. Govorov, Qihua Xiong, Cheng-Wei Qiu. Multidimensional nanoscopic chiroptics. Nature Reviews Physics 2022, 4 (2) , 113-124. https://doi.org/10.1038/s42254-021-00391-6
  28. Jiawei Lv, Xiaoqing Gao, Bing Han, Yanfei Zhu, Ke Hou, Zhiyong Tang. Self-assembled inorganic chiral superstructures. Nature Reviews Chemistry 2022, 6 (2) , 125-145. https://doi.org/10.1038/s41570-021-00350-w
  29. Yun-Cheng Ku, Mao-Kuen Kuo, Jiunn-Woei Liaw. Winding Poynting vector of light around plasmonic nanostructure. Journal of Quantitative Spectroscopy and Radiative Transfer 2022, 278 , 108005. https://doi.org/10.1016/j.jqsrt.2021.108005
  30. Lili Tan, Shang‐Jie Yu, Yiran Jin, Jiaming Li, Peng‐peng Wang. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality‐Dependent Photocatalysis. Angewandte Chemie International Edition 2022, https://doi.org/10.1002/anie.202112400
  31. Lili Tan, Shang‐Jie Yu, Yiran Jin, Jiaming Li, Peng‐peng Wang. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality‐Dependent Photocatalysis. Angewandte Chemie 2022, https://doi.org/10.1002/ange.202112400
  32. Wenbing Wu, Matthias Pauly. Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Materials Advances 2022, 3 (1) , 186-215. https://doi.org/10.1039/D1MA00915J
  33. Artur Movsesyan, Lucas V. Besteiro, Xiang‐Tian Kong, Zhiming Wang, Alexander O. Govorov. Engineering Strongly Chiral Plasmonic Lattices with Achiral Unit Cells for Sensing and Photodetection. Advanced Optical Materials 2021, , 2101943. https://doi.org/10.1002/adom.202101943
  34. An’an Wu, Yoshito Y. Tanaka, Tsutomu Shimura. Giant chiroptical response of twisted metal nanorods due to strong plasmon coupling. APL Photonics 2021, 6 (12) , 126104. https://doi.org/10.1063/5.0069371
  35. Qin Chen, Xianghong Nan, Mingjie Chen, Dahui Pan, Xianguang Yang, Long Wen. Nanophotonic Color Routing. Advanced Materials 2021, 33 (49) , 2103815. https://doi.org/10.1002/adma.202103815
  36. Hao Yang, Huacheng Li, Pan Tang, Xiang Lan. Progress and perspective on chiral plasmonic nanostructures enabled by DNA programming methodology. Materials Advances 2021, 2 (22) , 7336-7349. https://doi.org/10.1039/D1MA00781E
  37. Yameng Zhu, Mengdan Guan, Jin Wang, Huixiang Sheng, Yaqi Chen, Yan Liang, Qiming Peng, Gang Lu. Plasmon-mediated photochemical transformation of inorganic nanocrystals. Applied Materials Today 2021, 24 , 101125. https://doi.org/10.1016/j.apmt.2021.101125
  38. Biyuan Wu, Mingjun Wang, Peng Yu, Feng Wu, Xiaohu Wu. Strong circular dichroism triggered by near-field perturbation. Optical Materials 2021, 118 , 111255. https://doi.org/10.1016/j.optmat.2021.111255
  39. Lucas V. Besteiro, Xiang‐Tian Kong, Zhiming M. Wang, Alexander O. Govorov. Theory of Plasmonic Excitations. 2021,,, 1-35. https://doi.org/10.1002/9783527826971.ch1
  40. Hao Xie, Kaiyu Wang, Yue Li, Fei Zhao, Yang Ye, Weixiang Ye, Weihai Ni. Gold [email protected] Oxide Core–Shell Heterostructures: Synthesis, Single‐Particle Characterizations, and Enhanced Hot Electron Generation. Advanced Optical Materials 2021, 9 (13) , 2002136. https://doi.org/10.1002/adom.202002136
  41. Yisong Zhu, Hongxing Xu, Peng Yu, Zhiming Wang. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Applied Physics Reviews 2021, 8 (2) , 021305. https://doi.org/10.1063/5.0029050
  42. Jungho Mun, Minkyung Kim, Younghwan Yang, Trevon Badloe, Jincheng Ni, Yang Chen, Cheng-Wei Qiu, Junsuk Rho. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-00367-8
  43. Wiktor Lewandowski, Nataša Vaupotič, Damian Pociecha, Ewa Górecka, Luis M. Liz‐Marzán. Chirality of Liquid Crystals Formed from Achiral Molecules Revealed by Resonant X‐Ray Scattering. Advanced Materials 2020, 32 (41) , 1905591. https://doi.org/10.1002/adma.201905591
  44. Sang Won Im, Hyo‐Yong Ahn, Ryeong Myeong Kim, Nam Heon Cho, Hyeohn Kim, Yae‐Chan Lim, Hye‐Eun Lee, Ki Tae Nam. Chiral Surface and Geometry of Metal Nanocrystals. Advanced Materials 2020, 32 (41) , 1905758. https://doi.org/10.1002/adma.201905758
  45. Zhaolong Cao, Han Gao, Meng Qiu, Wei Jin, Shaozhi Deng, Kwok‐Yin Wong, Dangyuan Lei. Chirality Transfer from Sub‐Nanometer Biochemical Molecules to Sub‐Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. Advanced Materials 2020, 32 (41) , 1907151. https://doi.org/10.1002/adma.201907151
  46. Cristiano Matricardi, Juan Luis Garcia‐Pomar, Pau Molet, Luis Alberto Pérez, Maria Isabel Alonso, Mariano Campoy‐Quiles, Agustín Mihi. High‐Throughput Nanofabrication of Metasurfaces with Polarization‐Dependent Response. Advanced Optical Materials 2020, 8 (20) , 2000786. https://doi.org/10.1002/adom.202000786
  47. D. Hidalgo, J.M. Martín-Marroquín. Power-to-methane, coupling CO2 capture with fuel production: An overview. Renewable and Sustainable Energy Reviews 2020, 132 , 110057. https://doi.org/10.1016/j.rser.2020.110057
  48. Shao-Ding Liu, Jun-Yan Liu, Zhaolong Cao, Jin-Li Fan, Dangyuan Lei. Dynamic tuning of enhanced intrinsic circular dichroism in plasmonic stereo-metamolecule array with surface lattice resonance. Nanophotonics 2020, 9 (10) , 3419-3434. https://doi.org/10.1515/nanoph-2020-0130
  49. O. L. Stroyuk, S. Ya. Kuchmy. Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: a Review. Theoretical and Experimental Chemistry 2020, 56 (3) , 143-173. https://doi.org/10.1007/s11237-020-09648-0
  50. Juncai Wang, Xiaoling Wu, Wei Ma, Chuanlai Xu. Chiral AuCuAu Heterogeneous Nanorods with Tailored Optical Activity. Advanced Functional Materials 2020, 30 (17) , 2000670. https://doi.org/10.1002/adfm.202000670
  51. F. Reyes Gómez, Osvaldo N. Oliveira, Pablo Albella, J. R. Mejía-Salazar. Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks. Physical Review B 2020, 101 (15) https://doi.org/10.1103/PhysRevB.101.155403
  52. Tianji Liu, Rongyang Xu, Peng Yu, Zhiming Wang, Junichi Takahara. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 2020, 9 (5) , 1115-1137. https://doi.org/10.1515/nanoph-2019-0505
  53. Yoon Young Lee, Nam Heon Cho, Sang Won Im, Hye‐Eun Lee, Hyo‐Yong Ahn, Ki Tae Nam. Chiral 432 Helicoid II Nanoparticle Synthesized with Glutathione and Poly(T) 20 Nucleotide. ChemNanoMat 2020, 6 (3) , 362-367. https://doi.org/10.1002/cnma.201900709
  54. Kristina Shrestha, Juvinch R. Vicente, Ali Rafiei Miandashti, Jixin Chen, Hugh H. Richardson. Time-resolved temperature-jump measurements and steady-state thermal imaging of nanoscale heat transfer of gold nanostructures on AlGaN:Er 3+ thin films. The Journal of Chemical Physics 2020, 152 (3) , 034706. https://doi.org/10.1063/1.5133844
  55. Peng Yu, Bao-Qing Wang, Xiao-Hu Wu, Wen-Hao Wang, Hong-Xing Xu, Zhi-Ming Wang, , , . Circular dichroism of honeycomb-shaped elliptical hole absorber. Acta Physica Sinica 2020, 69 (20) , 207101. https://doi.org/10.7498/aps.69.20200843
  56. Maciej Bagiński, Martyna Tupikowska, Guillermo González‐Rubio, Michał Wójcik, Wiktor Lewandowski. Shaping Liquid Crystals with Gold Nanoparticles: Helical Assemblies with Tunable and Hierarchical Structures Via Thin‐Film Cooperative Interactions. Advanced Materials 2020, 32 (1) , 1904581. https://doi.org/10.1002/adma.201904581
  57. Ievgen I. Nedrygailov, Song Yi Moon, Jeong Young Park. Hot electron-driven electrocatalytic hydrogen evolution reaction on metal–semiconductor nanodiode electrodes. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-42566-3
  58. Jingyu Shang, Xuesong Xu, Kuichao Liu, Yanan Bao, Yangyang, Ming He. LSPR-driven upconversion enhancement and photocatalytic H2 evolution for Er-Yb:TiO2/MoO3-x nano-semiconductor heterostructure. Ceramics International 2019, 45 (13) , 16625-16630. https://doi.org/10.1016/j.ceramint.2019.05.203

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE