ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Spin–Orbit Interaction of Light in Plasmonic Lattices

  • Shai Tsesses
    Shai Tsesses
    Andrew and Erna Viterbi Department of Electrical Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
    More by Shai Tsesses
  • Kobi Cohen
    Kobi Cohen
    Andrew and Erna Viterbi Department of Electrical Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
    More by Kobi Cohen
  • Evgeny Ostrovsky
    Evgeny Ostrovsky
    Andrew and Erna Viterbi Department of Electrical Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
  • Bergin Gjonaj
    Bergin Gjonaj
    Faculty of Medical Sciences, Albanian University, Durres St., Tirana 1000, Albania
  • , and 
  • Guy Bartal*
    Guy Bartal
    Andrew and Erna Viterbi Department of Electrical Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
    *E-mail: [email protected]
    More by Guy Bartal
Cite this: Nano Lett. 2019, 19, 6, 4010–4016
Publication Date (Web):May 2, 2019
https://doi.org/10.1021/acs.nanolett.9b01343
Copyright © 2019 American Chemical Society

    Article Views

    3183

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)

    Abstract

    Abstract Image

    In the past decade, the spin–orbit interaction (SOI) of light has been a driving force in the design of metamaterials, metasurfaces, and schemes for light-matter interaction. A hallmark of the spin–orbit interaction of light is the spin-based plasmonic effect, converting spin angular momentum of propagating light to near-field orbital angular momentum. Although this effect has been thoroughly investigated in circular symmetry, it has yet to be characterized in a noncircular geometry, where whirling, periodic plasmonic fields are expected. Using phase-resolved near-field microscopy, we experimentally demonstrate the SOI of circularly polarized light in nanostructures possessing dihedral symmetry. We show how interaction with hexagonal slits results in four topologically different plasmonic lattices, controlled by engineered boundary conditions, and reveal a cyclic nature of the spin-based plasmonic effect which does not exist for circular symmetry. Finally, we calculate the optical forces generated by the plasmonic lattices, predicting that light with mere spin angular momentum can exert torque on a multitude of particles in an ordered fashion to form an optical nanomotor array. Our findings may be of use in both biology and chemistry, as a means for simultaneous trapping, manipulation, and excitation of multiple objects, controlled by the polarization of light.

    Cited By

    This article is cited by 45 publications.

    1. Xinrui Lei, Qiwen Zhan. Topological Charge Constrained Photonic Skyrmion Defects in Split Plasmonic Vortices. ACS Photonics 2023, Article ASAP.
    2. Peng Shi, Heng Li, Luping Du, Xiaocong Yuan. Spin-Momentum Properties in the Paraxial Optical Systems. ACS Photonics 2023, 10 (7) , 2332-2343. https://doi.org/10.1021/acsphotonics.2c01535
    3. Atreyie Ghosh, Sena Yang, Yanan Dai, Hrvoje Petek. The Spin Texture Topology of Polygonal Plasmon Fields. ACS Photonics 2023, 10 (1) , 13-23. https://doi.org/10.1021/acsphotonics.2c01491
    4. Huan-Li Zhou, Xiao-Yang Zhang, Xiao-Mei Xue, Yi Yang, Shan-Jiang Wang, Dan Su, Zong-Ru Yang, Yun-Fan Wang, Yuanjun Song, Jingyuan Wu, Weiping Wu, Tong Zhang. Nanoscale Valley Modulation by Surface Plasmon Interference. Nano Letters 2022, 22 (17) , 6923-6929. https://doi.org/10.1021/acs.nanolett.2c01442
    5. Chen-Bin Huang, Jer-Shing Huang. Integrated plasmonics nanocircuits. 2024, 245-283. https://doi.org/10.1016/B978-0-323-85379-8.00009-5
    6. YuLu QIN, Rui WANG, YunQuan LIU. Ultrafast photoelectron imaging with high spatiotemporal and energy resolution. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (10) , 100003. https://doi.org/10.1360/SSPMA-2022-0442
    7. Xiaojin Yin, Pengqi Hao, Yupei Zhang, Ziyue Zhao, Jinze Wu, Jinhong Li. Propagation of noninteger cylindrical vector vortex beams in a gradient-index fiber. Optics Letters 2023, 48 (9) , 2484. https://doi.org/10.1364/OL.489429
    8. Xi Tang, Yan Kuai, Zetao Fan, Fengya Lu, Haofeng Zang, Junxue Chen, Qiwen Zhan, Douguo Zhang. Achiral and Chiral Optical Force Within Topological Optical Lattices Generated with Plasmonic Metasurfaces and Tunable Incident Beam. Physical Review Applied 2023, 19 (5) https://doi.org/10.1103/PhysRevApplied.19.054016
    9. Juniper Foxley, Kenneth L. Knappenberger. Magneto-Optical Properties of Noble Metal Nanostructures. Annual Review of Physical Chemistry 2023, 74 (1) , 53-72. https://doi.org/10.1146/annurev-physchem-062322-043108
    10. Aiping Yang, Xinrui Lei, Peng Shi, Fanfei Meng, Min Lin, Luping Du, Xiaocong Yuan. Spin‐Manipulated Photonic Skyrmion‐Pair for Pico‐Metric Displacement Sensing. Advanced Science 2023, 10 (12) https://doi.org/10.1002/advs.202205249
    11. Shai Tsesses, Raphael Dahan, Kangpeng Wang, Tomer Bucher, Kobi Cohen, Ori Reinhardt, Guy Bartal, Ido Kaminer. Tunable photon-induced spatial modulation of free electrons. Nature Materials 2023, 22 (3) , 345-352. https://doi.org/10.1038/s41563-022-01449-1
    12. Mingsong Wang, Guangwei Hu, Saroj Chand, Michele Cotrufo, Yohannes Abate, Kenji Watanabe, Takashi Taniguchi, Gabriele Grosso, Cheng-Wei Qiu, Andrea Alù. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2022, 2 (1) https://doi.org/10.1186/s43593-022-00018-y
    13. Yuanhao Lang, Quan Xu, Xieyu Chen, Jie Han, Xiaohan Jiang, Yuehong Xu, Ming Kang, Xueqian Zhang, Andrea Alù, Jiaguang Han, Weili Zhang. On‐Chip Plasmonic Vortex Interferometers. Laser & Photonics Reviews 2022, 16 (10) https://doi.org/10.1002/lpor.202200242
    14. Guillermo F. Quinteiro Rosen, Pablo I. Tamborenea, Tilmann Kuhn. Interplay between optical vortices and condensed matter. Reviews of Modern Physics 2022, 94 (3) https://doi.org/10.1103/RevModPhys.94.035003
    15. Yulong Wang, Changjun Min, Yuquan Zhang, Fu Feng, Guangyuan Si, Ling Li, Xiaocong Yuan. Drawing structured plasmonic field with on-chip metalens. Nanophotonics 2022, 11 (9) , 1969-1976. https://doi.org/10.1515/nanoph-2021-0308
    16. Jinxiao Wang, Jianfeng Yang, Jun Yang. Regulation mechanism for the formation and microwave absorbing performance of CNT/CoFe-MOF derived hierarchical composite. International Journal of Smart and Nano Materials 2022, 5 , 1-20. https://doi.org/10.1080/19475411.2022.2070681
    17. Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photonics Research 2022, 10 (4) , 947. https://doi.org/10.1364/PRJ.447311
    18. Ruirui Zhang, Manna Gu, Rui Sun, Xiangyu Zeng, Yuqin Zhang, Yu Zhang, Chen Cheng, Zijun Zhan, Chao Chen, Xiaorong Ren, Changwei He, Chunxiang Liu, Chuanfu Cheng. Plasmonic metasurfaces manipulating the two spin components from spin–orbit interactions of light with lattice field generations. Nanophotonics 2022, 11 (2) , 391-404. https://doi.org/10.1515/nanoph-2021-0567
    19. Xinrui Lei, Aiping Yang, Peng Shi, Zhenwei Xie, Luping Du, Anatoly V. Zayats, Xiaocong Yuan. Photonic Spin Lattices: Symmetry Constraints for Skyrmion and Meron Topologies. Physical Review Letters 2021, 127 (23) https://doi.org/10.1103/PhysRevLett.127.237403
    20. Peng Shi, Luping Du, Xiaocong Yuan. Spin photonics: from transverse spin to photonic skyrmions. Nanophotonics 2021, 10 (16) , 3927-3943. https://doi.org/10.1515/nanoph-2021-0046
    21. Tong Cui, Lin Sun, Benfeng Bai, Hong‐Bo Sun. Probing and Imaging Photonic Spin‐Orbit Interactions in Nanostructures. Laser & Photonics Reviews 2021, 15 (11) https://doi.org/10.1002/lpor.202100011
    22. Xiantong Yu, Xin Wang, Zhao Li, Litao Zhao, Feifan Zhou, Junle Qu, Jun Song. Spin Hall effect of light based on a surface plasmonic platform. Nanophotonics 2021, 10 (12) , 3031-3048. https://doi.org/10.1515/nanoph-2021-0217
    23. Hao Ge, Xiang-Yuan Xu, Le Liu, Rui Xu, Zhi-Kang Lin, Si-Yuan Yu, Ming Bao, Jian-Hua Jiang, Ming-Hui Lu, Yan-Feng Chen. Observation of Acoustic Skyrmions. Physical Review Letters 2021, 127 (14) https://doi.org/10.1103/PhysRevLett.127.144502
    24. Peng Shi, Luping Du, Mingjie Li, Xiaocong Yuan. Symmetry‐Protected Photonic Chiral Spin Textures by Spin–Orbit Coupling. Laser & Photonics Reviews 2021, 15 (9) https://doi.org/10.1002/lpor.202000554
    25. Zhihai Liu, Kai Zhang, Wei Jin, Yu Zhang, Yaxun Zhang, Jianzhong Zhang, Jun Yang, Libo Yuan. Light-induced micro-vibrator with controllable amplitude and frequency. Optics Express 2021, 29 (17) , 27228. https://doi.org/10.1364/OE.431380
    26. Grisha Spektor, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, Meir Orenstein. Orbital angular momentum multiplication in plasmonic vortex cavities. Science Advances 2021, 7 (33) , eabg5571. https://doi.org/10.1126/sciadv.abg5571
    27. Peng Shi, Aiping Yang, Fanfei Meng, Jiashuo Chen, Yuquan Zhang, Zhenwei Xie, Luping Du, Xiaocong Yuan. Optical near-field measurement for spin-orbit interaction of light. Progress in Quantum Electronics 2021, 78 , 100341. https://doi.org/10.1016/j.pquantelec.2021.100341
    28. Yanan Dai, Zhikang Zhou, Atreyie Ghosh, Sena Yang, Chen-Bin Huang, Hrvoje Petek. Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bulletin 2021, 46 (8) , 738-746. https://doi.org/10.1557/s43577-021-00152-x
    29. Yahong Chen, Andreas Norrman, Sergey A. Ponomarenko, Ari T. Friberg. Spin density in partially coherent surface-plasmon-polariton vortex fields. Physical Review A 2021, 103 (6) https://doi.org/10.1103/PhysRevA.103.063511
    30. Qiang Zhang, Zhenwei Xie, Luping Du, Peng Shi, Xiaocong Yuan. Bloch-type photonic skyrmions in optical chiral multilayers. Physical Review Research 2021, 3 (2) https://doi.org/10.1103/PhysRevResearch.3.023109
    31. Kobi Frischwasser, Kobi Cohen, Jakob Kher-Alden, Shimon Dolev, Shai Tsesses, Guy Bartal. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nature Photonics 2021, 237 https://doi.org/10.1038/s41566-021-00782-2
    32. Peng Shi, Luping Du, Congcong Li, Anatoly V. Zayats, Xiaocong Yuan. Transverse spin dynamics in structured electromagnetic guided waves. Proceedings of the National Academy of Sciences 2021, 118 (6) https://doi.org/10.1073/pnas.2018816118
    33. Yiqi Fang, Meng Han, Peipei Ge, Zhenning Guo, Xiaoyang Yu, Yongkai Deng, Chengyin Wu, Qihuang Gong, Yunquan Liu. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nature Photonics 2021, 15 (2) , 115-120. https://doi.org/10.1038/s41566-020-00709-3
    34. Rodrigo Gutiérrez-Cuevas, Emilio Pisanty. Optical polarization skyrmionic fields in free space. Journal of Optics 2021, 23 (2) , 024004. https://doi.org/10.1088/2040-8986/abe8b2
    35. Peng Shi, Luping Du, Xiaocong Yuan. Strong spin–orbit interaction of photonic skyrmions at the general optical interface. Nanophotonics 2020, 9 (15) , 4619-4628. https://doi.org/10.1515/nanoph-2020-0430
    36. Tim Meiler, Bettina Frank, Harald Giessen. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment. Optics Express 2020, 28 (22) , 33614. https://doi.org/10.1364/OE.399583
    37. Yigal Ilin, Shai Tsesses, Guy Bartal, Yoav Sagi. Sub-wavelength spin excitations in ultracold gases created by stimulated Raman transitions. New Journal of Physics 2020, 22 (9) , 093071. https://doi.org/10.1088/1367-2630/abb68a
    38. S. A. Dyakov, N. A. Gippius, I. M. Fradkin, S. G. Tikhodeev. Vertical Routing of Spinning-Dipole Radiation from a Chiral Metasurface. Physical Review Applied 2020, 14 (2) https://doi.org/10.1103/PhysRevApplied.14.024090
    39. Tonglu Xing, Tairong Bai, Yang Tang, Zhiyu Lu, Yulan Huang, Aliaksei Balmakou, Jicheng Wang. Characteristics of a bidirectional multifunction focusing and plasmon-launching lens with multiple periscope-like waveguides. Optics Express 2020, 28 (14) , 20334. https://doi.org/10.1364/OE.395816
    40. Genyan Li, Xiao Li, Lei Zhang, Jun Chen. Gain-induced large optical torque in optical twist settings. Chinese Physics B 2020, 29 (8) , 084201. https://doi.org/10.1088/1674-1056/ab9616
    41. Yang Zhao, Cheng-Xi Yang, Jia-Xi Zhu, Feng Lin, Zhe-Yu Fang, Xing Zhu. Optical spin-to-orbital angular momentum conversion in structured optical fields*. Chinese Physics B 2020, 29 (6) , 067301. https://doi.org/10.1088/1674-1056/ab862a
    42. Timothy J. Davis, David Janoschka, Pascal Dreher, Bettina Frank, Frank-J. Meyer zu Heringdorf, Harald Giessen. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 2020, 368 (6489) , eaba6415. https://doi.org/10.1126/science.aba6415
    43. Yu Zhang, Siyu Lin, Zhihai Liu, Yaxun Zhang, Jianzhong Zhang, Jun Yang, Libo Yuan. Laser-induced rotary micromotor with high energy conversion efficiency. Photonics Research 2020, 8 (4) , 534. https://doi.org/10.1364/PRJ.381397
    44. Shai Tsesses, Kobi Cohen, Evgeny Ostrovsky, Bergin Gjonaj, Tomer Bucher, Shay Sapir, Guy Bartal. Spin-orbit interaction of light in plasmonic lattices: modified and broken angular momentum conservation. 2020, FTu4A.3. https://doi.org/10.1364/CLEO_QELS.2020.FTu4A.3
    45. Ruirui Zhang, Yuqin Zhang, Li Ma, Xiangyu Zeng, Xing Li, Zijun Zhan, Xiaorong Ren, Changwei He, Chunxiang Liu, Chuanfu Cheng. Nanoscale optical lattices of arbitrary orders manipulated by plasmonic metasurfaces combining geometrical and dynamic phases. Nanoscale 2019, 11 (29) , 14024-14031. https://doi.org/10.1039/C9NR03381E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect