ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Evolution of the Solid–Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy

  • William Huang
    William Huang
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
  • Peter M. Attia
    Peter M. Attia
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
  • Hansen Wang
    Hansen Wang
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    More by Hansen Wang
  • Sara E. Renfrew
    Sara E. Renfrew
    Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
  • Norman Jin
    Norman Jin
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    More by Norman Jin
  • Supratim Das
    Supratim Das
    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    More by Supratim Das
  • Zewen Zhang
    Zewen Zhang
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    More by Zewen Zhang
  • David T. Boyle
    David T. Boyle
    Department of Chemistry, Stanford University, Stanford, California 94305, United States
  • Yuzhang Li
    Yuzhang Li
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    More by Yuzhang Li
  • Martin Z. Bazant
    Martin Z. Bazant
    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  • Bryan D. McCloskey
    Bryan D. McCloskey
    Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
  • William C. Chueh*
    William C. Chueh
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
    *E-mail: [email protected]
  • , and 
  • Yi Cui*
    Yi Cui
    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
    *E-mail: [email protected]
    More by Yi Cui
Cite this: Nano Lett. 2019, 19, 8, 5140–5148
Publication Date (Web):July 19, 2019
https://doi.org/10.1021/acs.nanolett.9b01515
Copyright © 2019 American Chemical Society

    Article Views

    4854

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (9 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The stability of modern lithium-ion batteries depends critically on an effective solid–electrolyte interphase (SEI), a passivation layer that forms on the carbonaceous negative electrode as a result of electrolyte reduction. However, a nanoscopic understanding of how the SEI evolves with battery aging remains limited due to the difficulty in characterizing the structural and chemical properties of this sensitive interphase. In this work, we image the SEI on carbon black negative electrodes using cryogenic transmission electron microscopy (cryo-TEM) and track its evolution during cycling. We find that a thin, primarily amorphous SEI nucleates on the first cycle, which further evolves into one of two distinct SEI morphologies upon further cycling: (1) a compact SEI, with a high concentration of inorganic components that effectively passivates the negative electrode; and (2) an extended SEI spanning hundreds of nanometers. This extended SEI grows on particles that lack a compact SEI and consists primarily of alkyl carbonates. The diversity in observed SEI morphologies suggests that SEI growth is a highly heterogeneous process. The simultaneous emergence of these distinct SEI morphologies highlights the necessity of effective passivation by the SEI, as large-scale extended SEI growths negatively impact lithium-ion transport, contribute to capacity loss, and may accelerate battery failure.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.9b01515.

    • Methods, calculations of capacity loss and solvent diffusivity, average SEI thicknesses, TEM, SEM, AFM, DEMS, XPS, and EELS characterization of pristine and cycled carbon black electrodes (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 113 publications.

    1. Cuixia Cheng, Yadong Zhou, Yaobin Xu, Hao Jia, Jumyeong Kim, Wu Xu, Chongmin Wang, Peiyuan Gao, Zihua Zhu. Dynamic Molecular Investigation of the Solid-Electrolyte Interphase of an Anode-Free Lithium Metal Battery Using In Situ Liquid SIMS and Cryo-TEM. Nano Letters 2023, 23 (18) , 8385-8391. https://doi.org/10.1021/acs.nanolett.3c00709
    2. Chao Li, Zhenye Liang, Zizhao Li, Daofan Cao, Daxian Zuo, Jian Chang, Jun Wang, Yonghong Deng, Ke Liu, Xian Kong, Jiayu Wan. Self-Assembly Monolayer Inspired Stable Artificial Solid Electrolyte Interphase Design for Next-Generation Lithium Metal Batteries. Nano Letters 2023, 23 (9) , 4014-4022. https://doi.org/10.1021/acs.nanolett.3c00783
    3. Divya Chalise, Robert Jonson, Joseph Schaadt, Pallab Barai, Yuqiang Zeng, Sumanjeet Kaur, Sean D. Lubner, Venkat Srinivasan, Michael C. Tucker, Ravi S. Prasher. Using Thermal Interface Resistance for Noninvasive Operando Mapping of Buried Interfacial Lithium Morphology in Solid-State Batteries. ACS Applied Materials & Interfaces 2023, 15 (13) , 17344-17352. https://doi.org/10.1021/acsami.2c23038
    4. Hang Yuan, Guoxu Zheng, Daqing Zhang, Xu Yang. Review on Action Mechanism and Characterization of Natural/Artificial Solid Electrolyte Interphase of Lithium Battery: Latest Progress and Future Directions. Energy & Fuels 2023, 37 (2) , 833-857. https://doi.org/10.1021/acs.energyfuels.2c02920
    5. Eric J. McShane, Helen K. Bergstrom, Peter J. Weddle, David E. Brown, Andrew M. Colclasure, Bryan D. McCloskey. Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging. ACS Energy Letters 2022, 7 (8) , 2734-2744. https://doi.org/10.1021/acsenergylett.2c01059
    6. M. S. S. Malik Mubashir Gulzar . Mathematical Modeling of Aging Mechanisms in Lithium-Ion Batteries. , 111-133. https://doi.org/10.1021/bk-2022-1413.ch005
    7. Zewen Zhang, Yi Cui, Rafael Vila, Yanbin Li, Wenbo Zhang, Weijiang Zhou, Wah Chiu, Yi Cui. Cryogenic Electron Microscopy for Energy Materials. Accounts of Chemical Research 2021, 54 (18) , 3505-3517. https://doi.org/10.1021/acs.accounts.1c00183
    8. Sang Cheol Kim, Xian Kong, Rafael A. Vilá, William Huang, Yuelang Chen, David T. Boyle, Zhiao Yu, Hansen Wang, Zhenan Bao, Jian Qin, Yi Cui. Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. Journal of the American Chemical Society 2021, 143 (27) , 10301-10308. https://doi.org/10.1021/jacs.1c03868
    9. Justin R. Pinca, William G. Duborg, Ryan Jorn. Ion Association and Electrolyte Structure at Surface Films in Lithium-Ion Batteries. The Journal of Physical Chemistry C 2021, 125 (13) , 7054-7066. https://doi.org/10.1021/acs.jpcc.1c00393
    10. Yuki Kamikawa, Koji Amezawa, Kenjiro Terada. Energy-Loss Near-Edge Structures and Low-Loss Structures of Polymers in a Solid Electrolyte Interface Formed from Fluoroethylene Carbonate on a Si Anode Clarified by DFT Calculations. The Journal of Physical Chemistry C 2021, 125 (7) , 3890-3900. https://doi.org/10.1021/acs.jpcc.0c10204
    11. Zeyu Shen, Weidong Zhang, Siyuan Li, Shulan Mao, Xinyang Wang, Fang Chen, Yingying Lu. Tuning the Interfacial Electronic Conductivity by Artificial Electron Tunneling Barriers for Practical Lithium Metal Batteries. Nano Letters 2020, 20 (9) , 6606-6613. https://doi.org/10.1021/acs.nanolett.0c02371
    12. Yanbin Li, William Huang, Yuzhang Li, Wah Chiu, Yi Cui. Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience. ACS Nano 2020, 14 (8) , 9263-9276. https://doi.org/10.1021/acsnano.0c05020
    13. Ryan Jorn, Lauren Raguette, Shaniya Peart. Investigating the Mechanism of Lithium Transport at Solid Electrolyte Interphases. The Journal of Physical Chemistry C 2020, 124 (30) , 16261-16270. https://doi.org/10.1021/acs.jpcc.0c03018
    14. William Huang, Hansen Wang, David T. Boyle, Yuzhang Li, Yi Cui. Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy. ACS Energy Letters 2020, 5 (4) , 1128-1135. https://doi.org/10.1021/acsenergylett.0c00194
    15. Yue Chen, Wenkai Wu, Sergio Gonzalez-Munoz, Leonardo Forcieri, Charlie Wells, Samuel P. Jarvis, Fangling Wu, Robert Young, Avishek Dey, Mark Isaacs, Mangayarkarasi Nagarathinam, Robert G. Palgrave, Nuria Tapia-Ruiz, Oleg V. Kolosov. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37033-7
    16. Chang Wang, Ying Chen, Weiling Luan, Songyang Li, Yiming Yao, Haofeng Chen. Interpretable deep learning for accelerated fading recognition of lithium-ion batteries. eTransportation 2023, 18 , 100281. https://doi.org/10.1016/j.etran.2023.100281
    17. Qingyuan Li, Huibo Wang, Yueyang Wang, Guoxing Sun, Zongjin Li, Yanyan Zhang, Huaiyu Shao, Yinzhu Jiang, Yuxin Tang, Rui Liang. Critical Review of Emerging Pre‐metallization Technologies for Rechargeable Metal‐Ion Batteries. Small 2023, 1 https://doi.org/10.1002/smll.202306262
    18. Hang In Cho, Sung Hoon Lee, Min Ho Shin, Chong Rae Park. Correlation between the morphology of carbon nanofibers and the transport characteristics of Li-ions in a battery anode under fast charging conditions. Carbon 2023, 213 , 118247. https://doi.org/10.1016/j.carbon.2023.118247
    19. Lihua Chu, Yuxin Shi, Ze Li, Changxu Sun, Hao Yan, Jing Ma, Xuchen Li, Chaofeng Liu, Jianan Gu, Kai Liu, Lehao Liu, Bing Jiang, Yingfeng Li, Meicheng Li. Solid electrolyte interphase on anodes in rechargeable lithium batteries. Nano Research 2023, 16 (9) , 11589-11603. https://doi.org/10.1007/s12274-023-5702-2
    20. Andrew Weng, Everardo Olide, Iaroslav Kovalchuk, Jason B. Siegel, Anna Stefanopoulou. Modeling Battery Formation: Boosted SEI Growth, Multi-Species Reactions, and Irreversible Expansion. Journal of The Electrochemical Society 2023, 170 (9) , 090523. https://doi.org/10.1149/1945-7111/aceffe
    21. Jian Tan, Longli Ma, Zhiheng Li, Yuan Wang, Mingxin Ye, Jianfeng Shen. Structural insights into solid electrolyte interphase (SEI) on lithium metal anode: From design strategies to the stability evaluation. Materials Today 2023, 137 https://doi.org/10.1016/j.mattod.2023.09.004
    22. Josef Rizell, Anton Zubayer, Matthew Sadd, Filippa Lundin, Nataliia Mozhzhukhina, Fredrik Eriksson, Jens Birch, Alexei Vorobiev, Shizhao Xiong, Aleksandar Matic. Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes. Small Structures 2023, 6 https://doi.org/10.1002/sstr.202300119
    23. Yue Yin, Xiaoli Dong. Electrolyte engineering and material modification for graphite‐based lithium‐ion batteries operated at low temperature. Interdisciplinary Materials 2023, 2 (4) , 569-588. https://doi.org/10.1002/idm2.12105
    24. Guochen Sun, Jian Gao, Hong Li. A novel calculation strategy for optimized prediction of the reduction of electrochemical window at anode. Chinese Physics B 2023, 32 (7) , 078201. https://doi.org/10.1088/1674-1056/accd51
    25. Haorui Shen, Pei Tang, Qian Wei, Yutong Zhang, Tong Yu, Huicong Yang, Rui Zhang, Kaiping Tai, Jun Tan, Shuo Bai, Feng Li. Directing Highly Ordered and Dense Li Deposition to Achieve Stable Li Metal Batteries. Small 2023, 19 (24) https://doi.org/10.1002/smll.202206000
    26. Xiangyan Li, Bing Han, Yucheng Zou, Ruohong Ke, Yonghong Deng, Sudong Wu, Yusheng Zhao, Huaiyu Shao, Junpo Guo, Meng Gu. Observing the structural diversity of electrochemically deposited lithium metal in three dimensions. Journal of Power Sources 2023, 567 , 232948. https://doi.org/10.1016/j.jpowsour.2023.232948
    27. Yao Gao, Biao Zhang. Probing the Mechanically Stable Solid Electrolyte Interphase and the Implications in Design Strategies. Advanced Materials 2023, 35 (18) https://doi.org/10.1002/adma.202205421
    28. Chao Lv, Zhen Tong, Shi-Yuan Zhou, Si-Yu Pan, Hong-Gang Liao, Yao Zhou, Jun-Tao Li. Spontaneous local redox reaction to passivate CNTs as lightweight current collector for high energy density lithium ion batteries. Journal of Energy Chemistry 2023, 80 , 553-561. https://doi.org/10.1016/j.jechem.2023.01.056
    29. Debbie Zhuang, Martin Z. Bazant. Population effects driving active material degradation in intercalation electrodes. Physical Review E 2023, 107 (4) https://doi.org/10.1103/PhysRevE.107.044603
    30. Simon Feiler, Philip Daubinger, Lukas Gold, Sarah Hartmann, Guinevere A. Giffin. Interplay between Elastic and Electrochemical Properties during Active Material Transitions and Aging of a Lithium‐Ion Battery. Batteries & Supercaps 2023, 6 (4) https://doi.org/10.1002/batt.202200518
    31. Meysam Esmaeilpour, Saibal Jana, Hongjiao Li, Mohammad Soleymanibrojeni, Wolfgang Wenzel. A Solution‐Mediated Pathway for the Growth of the Solid Electrolyte Interphase in Lithium‐Ion Batteries. Advanced Energy Materials 2023, 13 (14) https://doi.org/10.1002/aenm.202203966
    32. Smita Sahu, Jamie M. Foster. A continuum model for lithium plating and dendrite formation in lithium-ion batteries: Formulation and validation against experiment. Journal of Energy Storage 2023, 60 , 106516. https://doi.org/10.1016/j.est.2022.106516
    33. Hongzhi Wang, Ning Qin, Yingzhi Li, Zhiqiang Li, Fangchang Zhang, Wen Luo, Chun Zeng, Zhouguang Lu, Hua Cheng. Nafion as a facile binder additive stabilizes solid electrolyte interphase on graphite anode. Carbon 2023, 205 , 435-443. https://doi.org/10.1016/j.carbon.2023.01.058
    34. Zachary A.H. Goodwin, Michael McEldrew, Boris Kozinsky, Martin Z. Bazant. Theory of Cation Solvation and Ionic Association in Nonaqueous Solvent Mixtures. PRX Energy 2023, 2 (1) https://doi.org/10.1103/PRXEnergy.2.013007
    35. Chang-Heum Jo, Kee-Sun Sohn, Seung-Taek Myung. Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Materials 2023, 57 , 471-496. https://doi.org/10.1016/j.ensm.2023.02.040
    36. Lukas Köbbing, Arnulf Latz, Birger Horstmann. Growth of the solid-electrolyte interphase: Electron diffusion versus solvent diffusion. Journal of Power Sources 2023, 561 , 232651. https://doi.org/10.1016/j.jpowsour.2023.232651
    37. Zhenlu Yu, Qun Liu, Changsheng Chen, Ye Zhu, Biao Zhang. Regulating the interfacial chemistry enables fast-kinetics hard carbon anodes for potassium ion batteries. Journal of Power Sources 2023, 557 , 232592. https://doi.org/10.1016/j.jpowsour.2022.232592
    38. Wendi Guo, Zhongchao Sun, Søren Byg Vilsen, Jinhao Meng, Daniel Ioan Stroe. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods. Journal of Energy Storage 2022, 56 , 105992. https://doi.org/10.1016/j.est.2022.105992
    39. Cheng Zeng, Jianing Liang, Can Cui, Tianyou Zhai, Huiqiao Li. Dynamic Investigation of Battery Materials via Advanced Visualization: From Particle, Electrode to Cell Level. Advanced Materials 2022, 34 (52) , 2200777. https://doi.org/10.1002/adma.202200777
    40. Elizabeth Zhang, Matthew Mecklenburg, Xintong Yuan, Chongzhen Wang, Bo Liu, Yuzhang Li. Expanding the cryogenic electron microscopy toolbox to reveal diverse classes of battery solid electrolyte interphase. iScience 2022, 25 (12) , 105689. https://doi.org/10.1016/j.isci.2022.105689
    41. Chenxu Wang, Ryan Odstrcil, Jin Liu, Wei-Hong Zhong. Protein-modified SEI formation and evolution in Li metal batteries. Journal of Energy Chemistry 2022, 73 , 248-258. https://doi.org/10.1016/j.jechem.2022.06.017
    42. Jingchao Zhang, Jie Wen, Wei-Di Liu, Xiaoya Cui, Yanan Chen. Cryo-EM for nanomaterials: Progress and perspective. Science China Materials 2022, 65 (10) , 2613-2626. https://doi.org/10.1007/s40843-022-2120-8
    43. Fangyuan Cheng, Xiaoyu Zhang, Peng Wei, Shixiong Sun, Yue Xu, Qing Li, Chun Fang, Jiantao Han, Yunhui Huang. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Science Bulletin 2022, 30 https://doi.org/10.1016/j.scib.2022.10.007
    44. Aniruddha Jana, A. Surya Mitra, Supratim Das, William C. Chueh, Martin Z. Bazant, R. Edwin García. Physics-based, reduced order degradation model of lithium-ion batteries. Journal of Power Sources 2022, 545 , 231900. https://doi.org/10.1016/j.jpowsour.2022.231900
    45. Yangyang Wu, Xinlin Long, Junyong Lu, Yiting Wu, Ren Zhou, Lang Liu. Effect of temperature on the high-rate pulse charging of lithium-ion batteries. Journal of Electroanalytical Chemistry 2022, 922 , 116773. https://doi.org/10.1016/j.jelechem.2022.116773
    46. Jiaqi Meng, Guofeng Jia, Hongjun Yang, Min Wang. Recent advances for SEI of hard carbon anode in sodium-ion batteries: A mini review. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.986541
    47. Muhammad Yousaf, Ufra Naseer, Ali Imran, Yiju Li, Waseem Aftab, Asif Mahmood, Nasir Mahmood, Xuan Zhang, Peng Gao, Yingying Lu, Shaojun Guo, Hongge Pan, Yinzhu Jiang. Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Materials Today 2022, 58 , 238-274. https://doi.org/10.1016/j.mattod.2022.06.022
    48. Lars von Kolzenberg, Martin Werres, Jonas Tetzloff, Birger Horstmann. Transition between growth of dense and porous films: theory of dual-layer SEI. Physical Chemistry Chemical Physics 2022, 24 (31) , 18469-18476. https://doi.org/10.1039/D2CP00188H
    49. Nikita S Dutta, Nakita K Noel, Craig B Arnold, Katherine Jungjohann, Mowafak Al-Jassim. Combining Spatial and Temporal Resolution in Cryo-TEM of Device Materials. Microscopy and Microanalysis 2022, 28 (S1) , 2162-2163. https://doi.org/10.1017/S1431927622008364
    50. Lars von Kolzenberg, Jochen Stadler, Johannes Fath, Madeleine Ecker, Birger Horstmann, Arnulf Latz. A four parameter model for the solid-electrolyte interphase to predict battery aging during operation. Journal of Power Sources 2022, 539 , 231560. https://doi.org/10.1016/j.jpowsour.2022.231560
    51. Xia-Xia Ma, Xin Shen, Xiang Chen, Zhong-Heng Fu, Nan Yao, Rui Zhang, Qiang Zhang. The Origin of Fast Lithium‐Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes. Small Structures 2022, 3 (8) https://doi.org/10.1002/sstr.202200071
    52. Mingquan Liu, Yahui Wang, Feng Wu, Ying Bai, Ying Li, Yuteng Gong, Xin Feng, Yu Li, Xinran Wang, Chuan Wu. Advances in Carbon Materials for Sodium and Potassium Storage. Advanced Functional Materials 2022, 32 (31) https://doi.org/10.1002/adfm.202203117
    53. Hanying Xu, Zhanping Li, Tongchao Liu, Ce Han, Chong Guo, He Zhao, Qin Li, Jun Lu, Khalil Amine, Xinping Qiu. Impacts of Dissolved Ni 2+ on the Solid Electrolyte Interphase on a Graphite Anode. Angewandte Chemie 2022, 134 (30) https://doi.org/10.1002/ange.202202894
    54. Hanying Xu, Zhanping Li, Tongchao Liu, Ce Han, Chong Guo, He Zhao, Qin Li, Jun Lu, Khalil Amine, Xinping Qiu. Impacts of Dissolved Ni 2+ on the Solid Electrolyte Interphase on a Graphite Anode. Angewandte Chemie International Edition 2022, 61 (30) https://doi.org/10.1002/anie.202202894
    55. Hongkui Zheng, Xiner Lu, Kai He. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. Journal of Energy Chemistry 2022, 68 , 454-493. https://doi.org/10.1016/j.jechem.2021.12.001
    56. Janet S. Ho, Zihua Zhu, Philip Stallworth, Steve G. Greenbaum, Sheng S. Zhang, Kang Xu. Quantifying Lithium Ion Exchange in Solid Electrolyte Interphase (SEI) on Graphite Anode Surfaces. Inorganics 2022, 10 (5) , 64. https://doi.org/10.3390/inorganics10050064
    57. Maximilian Fichtner, Kristina Edström, Elixabete Ayerbe, Maitane Berecibar, Arghya Bhowmik, Ivano E. Castelli, Simon Clark, Robert Dominko, Merve Erakca, Alejandro A. Franco, Alexis Grimaud, Birger Horstmann, Arnulf Latz, Henning Lorrmann, Marcel Meeus, Rekha Narayan, Frank Pammer, Janna Ruhland, Helge Stein, Tejs Vegge, Marcel Weil. Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Advanced Energy Materials 2022, 12 (17) https://doi.org/10.1002/aenm.202102904
    58. Leah Rynearson, Nuwanthi D. Rodrigo, Chamithri Jayawardana, Brett L. Lucht. Electrolytes Containing Triethyl Phosphate Solubilized Lithium Nitrate for Improved Silicon Anode Performance. Journal of The Electrochemical Society 2022, 169 (4) , 040537. https://doi.org/10.1149/1945-7111/ac6455
    59. Marco S. Reis, Benben Jiang. Predicting the lifetime of Lithium–Ion batteries: Integrated feature extraction and modeling through sequential Unsupervised-Supervised Projections (USP). Chemical Engineering Science 2022, 252 , 117510. https://doi.org/10.1016/j.ces.2022.117510
    60. Yiqun Liu, Y. Gene Liao, Ming‐Chia Lai. Aging experiments on the 20 Ah lithium‐ion polymer battery cells. Energy Storage 2022, 4 (2) https://doi.org/10.1002/est2.312
    61. Nan Qin, Liming Jin, Yanyan Lu, Qiang Wu, Junsheng Zheng, Cunman Zhang, Zonghai Chen, Jim P. Zheng. Over‐Potential Tailored Thin and Dense Lithium Carbonate Growth in Solid Electrolyte Interphase for Advanced Lithium Ion Batteries. Advanced Energy Materials 2022, 12 (15) https://doi.org/10.1002/aenm.202103402
    62. Linda J. Bolay, Tobias Schmitt, Simon Hein, Omar S. Mendoza-Hernandez, Eiji Hosono, Daisuke Asakura, Koichi Kinoshita, Hirofumi Matsuda, Minoru Umeda, Yoshitsugu Sone, Arnulf Latz, Birger Horstmann. Microstructure-resolved degradation simulation of lithium-ion batteries in space applications. Journal of Power Sources Advances 2022, 14 , 100083. https://doi.org/10.1016/j.powera.2022.100083
    63. Zhiqiang Li, Xinglong Huang, Long Kong, Ning Qin, Zhenyu Wang, Lihong Yin, Yingzhi Li, Qingmeng Gan, Kemeng Liao, Shuai Gu, Tengfei Zhang, He Huang, Lina Wang, Guangfu Luo, Xing Cheng, Zhouguang Lu. Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries. Energy Storage Materials 2022, 45 , 40-47. https://doi.org/10.1016/j.ensm.2021.11.037
    64. So‐Huei Kang, Kyung Min Lee, Seok‐Kyu Cho, Ji Eun Lee, Donghoo Won, Sang‐Young Lee, Sang Kyu Kwak, Changduk Yang. Guanine‐Based G‐Quadruplexes Templated by Various Cations toward Potential Use as Single‐Ion Conductors. ChemSusChem 2022, 15 (4) https://doi.org/10.1002/cssc.202102201
    65. Bharath Umesh, Purna Chandra Rath, Jagabandhu Patra, Rahmandhika Firdauzha Hary Hernandha, Subhasis Basu Majumder, Xinpei Gao, Dominic Bresser, Stefano Passerini, Hong-Zheng Lai, Tseng-Lung Chang, Jeng-Kuei Chang. High-Li+-fraction ether-side-chain pyrrolidinium–asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries. Chemical Engineering Journal 2022, 430 , 132693. https://doi.org/10.1016/j.cej.2021.132693
    66. Zewen Zhang, Yuzhang Li, Rong Xu, Weijiang Zhou, Yanbin Li, Solomon T. Oyakhire, Yecun Wu, Jinwei Xu, Hansen Wang, Zhiao Yu, David T. Boyle, William Huang, Yusheng Ye, Hao Chen, Jiayu Wan, Zhenan Bao, Wah Chiu, Yi Cui. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 2022, 375 (6576) , 66-70. https://doi.org/10.1126/science.abi8703
    67. Chong Yan, Qiang Zhang. Towards the Intercalation and Lithium Plating Mechanism for High Safety and Fast-Charging Lithium-ion Batteries: A Review. Energy Lab 2022, 1 https://doi.org/10.54227/elab.20220011
    68. Suting Weng, Yejing Li, Xuefeng Wang. Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives. iScience 2021, 24 (12) , 103402. https://doi.org/10.1016/j.isci.2021.103402
    69. Xiang Liu, Liang Yin, Dongsheng Ren, Li Wang, Yang Ren, Wenqian Xu, Saul Lapidus, Hewu Wang, Xiangming He, Zonghai Chen, Gui-Liang Xu, Minggao Ouyang, Khalil Amine. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24404-1
    70. Benben Jiang, William E. Gent, Fabian Mohr, Supratim Das, Marc D. Berliner, Michael Forsuelo, Hongbo Zhao, Peter M. Attia, Aditya Grover, Patrick K. Herring, Martin Z. Bazant, Stephen J. Harris, Stefano Ermon, William C. Chueh, Richard D. Braatz. Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols. Joule 2021, 5 (12) , 3187-3203. https://doi.org/10.1016/j.joule.2021.10.010
    71. Bing Han, Xiangyan Li, Shuang Bai, Yucheng Zou, Bingyu Lu, Minghao Zhang, Xiaomin Ma, Zhi Chang, Ying Shirley Meng, Meng Gu. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 2021, 4 (11) , 3741-3752. https://doi.org/10.1016/j.matt.2021.09.019
    72. Seung Mi Oh, Jinju Song, Soyeon Lee, Il-Chan Jang. Effect of current rate on the formation of the solid electrolyte interphase layer at the graphite anode in lithium-ion batteries. Electrochimica Acta 2021, 397 , 139269. https://doi.org/10.1016/j.electacta.2021.139269
    73. Junxiong Wu, Muhammad Ihsan-Ul-Haq, Yuming Chen, Jang-Kyo Kim. Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy 2021, 89 , 106489. https://doi.org/10.1016/j.nanoen.2021.106489
    74. Vallabha Rao Rikka, Sumit Ranjan Sahu, Abhijit Chatterjee, R. Gopalan, G. Sundararajan, Raju Prakash. Composition‐Dependent Long‐Term Stability of Mosaic Solid‐Electrolyte Interface for Long‐Life Lithium‐Ion Battery. Batteries & Supercaps 2021, 4 (11) , 1720-1730. https://doi.org/10.1002/batt.202100127
    75. Yuqiang Zeng, Divya Chalise, Sean D. Lubner, Sumanjeet Kaur, Ravi S. Prasher. A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging. Energy Storage Materials 2021, 41 , 264-288. https://doi.org/10.1016/j.ensm.2021.06.008
    76. Yang He, Lin Jiang, Tianwu Chen, Yaobin Xu, Haiping Jia, Ran Yi, Dingchuan Xue, Miao Song, Arda Genc, Cedric Bouchet-Marquis, Lee Pullan, Ted Tessner, Jinkyoung Yoo, Xiaolin Li, Ji-Guang Zhang, Sulin Zhang, Chongmin Wang. Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nature Nanotechnology 2021, 16 (10) , 1113-1120. https://doi.org/10.1038/s41565-021-00947-8
    77. David E. Brown, Eric J. McShane, Zachary M. Konz, Kristian B. Knudsen, Bryan D. McCloskey. Detecting onset of lithium plating during fast charging of Li-ion batteries using operando electrochemical impedance spectroscopy. Cell Reports Physical Science 2021, 2 (10) , 100589. https://doi.org/10.1016/j.xcrp.2021.100589
    78. Wentao Yao, Peichao Zou, Min Wang, Houchao Zhan, Feiyu Kang, Cheng Yang. Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews 2021, 4 (3) , 601-631. https://doi.org/10.1007/s41918-021-00106-6
    79. Manuel Weiss, Raffael Ruess, Johannes Kasnatscheew, Yehonatan Levartovsky, Natasha Ronith Levy, Philip Minnmann, Lukas Stolz, Thomas Waldmann, Margret Wohlfahrt‐Mehrens, Doron Aurbach, Martin Winter, Yair Ein‐Eli, Jürgen Janek. Fast Charging of Lithium‐Ion Batteries: A Review of Materials Aspects. Advanced Energy Materials 2021, 11 (33) https://doi.org/10.1002/aenm.202101126
    80. Jun-Fan Ding, Rui Xu, Chong Yan, Bo-Quan Li, Hong Yuan, Jia-Qi Huang. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. Journal of Energy Chemistry 2021, 59 , 306-319. https://doi.org/10.1016/j.jechem.2020.11.016
    81. Xiaoxue Chen, Gaofeng Ge, Wenyu Wang, Bao Zhang, Jianjun Jiang, Xuelin Yang, Yuzhang Li, Li Wang, Xiangming He, Yongming Sun. In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Science China Chemistry 2021, 64 (8) , 1417-1425. https://doi.org/10.1007/s11426-021-1023-4
    82. Fangrong Hu, Mingyang Zhang, Wenbin Qi, Jieyun Zheng, Yue Sun, Jianyu Kang, Hailong Yu, Qiyu Wang, Shijuan Chen, Xinhua Sun, Baogang Quan, Junjie Li, Changzhi Gu, Hong Li. Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives*. Chinese Physics B 2021, 30 (6) , 068202. https://doi.org/10.1088/1674-1056/abf558
    83. Tomaž Katrašnik, Igor Mele, Klemen Zelič. Multi-scale modelling of Lithium-ion batteries: From transport phenomena to the outbreak of thermal runaway. Energy Conversion and Management 2021, 236 , 114036. https://doi.org/10.1016/j.enconman.2021.114036
    84. Peter M. Attia, Stephen J. Harris, William C. Chueh. Benefits of Fast Battery Formation in a Model System. Journal of The Electrochemical Society 2021, 168 (5) , 050543. https://doi.org/10.1149/1945-7111/abff35
    85. David T. Boyle, William Huang, Hansen Wang, Yuzhang Li, Hao Chen, Zhiao Yu, Wenbo Zhang, Zhenan Bao, Yi Cui. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy 2021, 6 (5) , 487-494. https://doi.org/10.1038/s41560-021-00787-9
    86. Jianhui Zheng, Zhijin Ju, Baolin Zhang, Jianwei Nai, Tiefeng Liu, Yujing Liu, Qifan Xie, Wenkui Zhang, Yao Wang, Xinyong Tao. Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A 2021, 9 (16) , 10251-10259. https://doi.org/10.1039/D0TA11444H
    87. Jian Tan, John Matz, Pei Dong, Jianfeng Shen, Mingxin Ye. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Advanced Energy Materials 2021, 11 (16) https://doi.org/10.1002/aenm.202100046
    88. Zhenxing Wang, Zhenhua Sun, Juan Li, Ying Shi, Chengguo Sun, Baigang An, Hui-Ming Cheng, Feng Li. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chemical Society Reviews 2021, 50 (5) , 3178-3210. https://doi.org/10.1039/D0CS01017K
    89. Tao Gao, Yu Han, Dimitrios Fraggedakis, Supratim Das, Tingtao Zhou, Che-Ning Yeh, Shengming Xu, William C. Chueh, Ju Li, Martin Z. Bazant. Interplay of Lithium Intercalation and Plating on a Single Graphite Particle. Joule 2021, 5 (2) , 393-414. https://doi.org/10.1016/j.joule.2020.12.020
    90. Donal P. Finegan, Juner Zhu, Xuning Feng, Matt Keyser, Marcus Ulmefors, Wei Li, Martin Z. Bazant, Samuel J. Cooper. The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety. Joule 2021, 5 (2) , 316-329. https://doi.org/10.1016/j.joule.2020.11.018
    91. Haiping Wu, Hao Jia, Chongmin Wang, Ji‐Guang Zhang, Wu Xu. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Advanced Energy Materials 2021, 11 (5) https://doi.org/10.1002/aenm.202003092
    92. Simon Lorger, Kai Narita, Robert Usiskin, Joachim Maier. Enhanced ion transport in Li 2 O and Li 2 S films. Chemical Communications 2021, 164 https://doi.org/10.1039/D1CC00557J
    93. Zewen Zhang, Jinlong Yang, William Huang, Hansen Wang, Weijiang Zhou, Yanbin Li, Yuzhang Li, Jinwei Xu, Wenxiao Huang, Wah Chiu, Yi Cui. Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter 2021, 4 (1) , 302-312. https://doi.org/10.1016/j.matt.2020.10.021
    94. Yang Yang, Zongjing Lu, Jing Xia, Yang Liu, Ke Wang, Xi Wang. Crystalline and amorphous carbon double-modified silicon anode: Towards large-scale production and superior lithium storage performance. Chemical Engineering Science 2021, 229 , 116054. https://doi.org/10.1016/j.ces.2020.116054
    95. Caleb Stetson, Yanli Yin, Andrew Norman, Steven P. Harvey, Manuel Schnabel, Chunmei Ban, Chun-Sheng Jiang, Steven C. DeCaluwe, Mowafak Al-Jassim. Evolution of solid electrolyte interphase and active material in the silicon wafer model system. Journal of Power Sources 2021, 482 , 228946. https://doi.org/10.1016/j.jpowsour.2020.228946
    96. Zhe Deng, Xing Lin, Zhenyu Huang, Jintao Meng, Yun Zhong, Guangting Ma, Yu Zhou, Yue Shen, Han Ding, Yunhui Huang. Recent Progress on Advanced Imaging Techniques for Lithium‐Ion Batteries. Advanced Energy Materials 2021, 11 (2) https://doi.org/10.1002/aenm.202000806
    97. Selcuk Atalay, Muhammad Sheikh, Alessandro Mariani, Yu Merla, Ed Bower, W. Dhammika Widanage. Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction. Journal of Power Sources 2020, 478 , 229026. https://doi.org/10.1016/j.jpowsour.2020.229026
    98. Yu-Xing Yao, Chong Yan, Qiang Zhang. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chemical Communications 2020, 56 (93) , 14570-14584. https://doi.org/10.1039/D0CC05084A
    99. Hao Chen, Peter Benedek, Khande-Jaé Fisher, Vanessa Wood, Yi Cui. Self-assembled materials for electrochemical energy storage. MRS Bulletin 2020, 45 (10) , 815-822. https://doi.org/10.1557/mrs.2020.247
    100. Yaobin Xu, Haiping Wu, Hao Jia, Mark H. Engelhard, Ji-Guang Zhang, Wu Xu, Chongmin Wang. Sweeping potential regulated structural and chemical evolution of solid-electrolyte interphase on Cu and Li as revealed by cryo-TEM. Nano Energy 2020, 76 , 105040. https://doi.org/10.1016/j.nanoen.2020.105040
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect