ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia

  • Emil Karshalev
    Emil Karshalev
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
  • Yue Zhang
    Yue Zhang
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    More by Yue Zhang
  • Berta Esteban-Fernández de Ávila
    Berta Esteban-Fernández de Ávila
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
  • Mara Beltrán-Gastélum
    Mara Beltrán-Gastélum
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
  • Yijie Chen
    Yijie Chen
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    More by Yijie Chen
  • Rodolfo Mundaca-Uribe
    Rodolfo Mundaca-Uribe
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
  • Fangyu Zhang
    Fangyu Zhang
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    More by Fangyu Zhang
  • Bryan Nguyen
    Bryan Nguyen
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    More by Bryan Nguyen
  • Yao Tong
    Yao Tong
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    More by Yao Tong
  • Ronnie H. Fang
    Ronnie H. Fang
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
  • Liangfang Zhang*
    Liangfang Zhang
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    *E-mail: [email protected]. Tel: 858-246-0999.
  • , and 
  • Joseph Wang*
    Joseph Wang
    Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
    *E-mail: [email protected]. Tel: 858-246-0128.
    More by Joseph Wang
Cite this: Nano Lett. 2019, 19, 11, 7816–7826
Publication Date (Web):October 7, 2019
https://doi.org/10.1021/acs.nanolett.9b02832
Copyright © 2019 American Chemical Society

    Article Views

    2744

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    As the most common nutritional disorder, iron deficiency represents a major public health problem with broad impacts on physical and mental development. However, treatment is often compromised by low iron bioavailability and undesired side effects. Here, we report on the development of active mineral delivery vehicles using Mg-based micromotors, which can autonomously propel in gastrointestinal fluids, aiding in the dynamic delivery of minerals. Iron and selenium are combined as a model mineral payload in the micromotor platform. We demonstrate the ability of our mineral-loaded micromotors to replenish iron and selenium stores in an anemic mouse model after 30 days of treatment, normalizing hematological parameters such as red blood count, hemoglobin, and hematocrit. Additionally, the micromotor platform exhibits no toxicity after the treatment regimen. This proof-of-concept study indicates that micromotor-based active delivery of mineral supplements represents an attractive approach toward alleviating nutritional deficiencies.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.9b02832.

    • Enteric layer coating process, microscope and fluorescence images of loaded passive control particles, mouse weight after 30 days of treatment, and calculation of daily recommended values and upper limits of minerals for mice (PDF)

    • Video S1 (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Rodolfo Mundaca-Uribe, Maya Holay, Amal Abbas, Nelly Askarinam, Janna Sofia Sage-Sepulveda, Luke Kubiatowicz, Ronnie H. Fang, Liangfang Zhang, Joseph Wang. A Microstirring Oral Pill for Improving the Glucose-Lowering Effect of Metformin. ACS Nano 2023, 17 (10) , 9272-9279. https://doi.org/10.1021/acsnano.3c00581
    2. Yun Wang, Jie Shen, Stephan Handschuh-Wang, Ming Qiu, Shiwei Du, Ben Wang. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS Nano 2023, 17 (1) , 27-50. https://doi.org/10.1021/acsnano.2c04716
    3. Hongying Peng, Shi Shi, Zhenni Lu, Lingyan Liu, Shuxin Peng, Peng Wei, Tao Yi. HOCl-Activated Reactive Organic Selenium Delivery Platform for Alleviation of Inflammation. Bioconjugate Chemistry 2022, 33 (9) , 1602-1608. https://doi.org/10.1021/acs.bioconjchem.2c00349
    4. Dong Wang, Chengtao Chen, Jun Sun, Hang Ao, Wencheng Xiao, Huangxian Ju, Jie Wu. Refillable Fuel-Loading Microshell Motors for Persistent Motion in a Fuel-Free Environment. ACS Applied Materials & Interfaces 2022, 14 (23) , 27074-27082. https://doi.org/10.1021/acsami.2c05442
    5. Cong Xu, Shuanghu Wang, Hong Wang, Kun Liu, Shiyu Zhang, Bin Chen, Hao Liu, Fei Tong, Fei Peng, Yingfeng Tu, Yingjia Li. Magnesium-Based Micromotors as Hydrogen Generators for Precise Rheumatoid Arthritis Therapy. Nano Letters 2021, 21 (5) , 1982-1991. https://doi.org/10.1021/acs.nanolett.0c04438
    6. Nitee Kumari, Sumit Kumar, Mamata Karmacharya, Sateesh Dubbu, Taewan Kwon, Varsha Singh, Keun Hwa Chae, Amit Kumar, Yoon-Kyoung Cho, In Su Lee. Surface-Textured Mixed-Metal-Oxide Nanocrystals as Efficient Catalysts for ROS Production and Biofilm Eradication. Nano Letters 2021, 21 (1) , 279-287. https://doi.org/10.1021/acs.nanolett.0c03639
    7. Yue Dong, Lu Wang, Jie Wang, Shijie Wang, Yu Wang, Dongdong Jin, Peng Chen, Wei Du, Li Zhang, Bi-Feng Liu. Graphene-Based Helical Micromotors Constructed by “Microscale Liquid Rope-Coil Effect” with Microfluidics. ACS Nano 2020, 14 (12) , 16600-16613. https://doi.org/10.1021/acsnano.0c07067
    8. Lijun Cai, Yu Wang, Zhiqiang Luo, Jinglin Wang, Haozhen Ren, Yuanjin Zhao. Designing self-triggered micro/milli devices for gastrointestinal tract drug delivery. Expert Opinion on Drug Delivery 2023, 20 (10) , 1415-1425. https://doi.org/10.1080/17425247.2023.2269092
    9. Baozhen Zhang, Lizhen Zhu, Hong Pan, Lintao Cai. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opinion on Drug Delivery 2023, 20 (10) , 1427-1441. https://doi.org/10.1080/17425247.2023.2270915
    10. Ehsan Rahimi, Roger Sanchis‐Gual, Xiangzhong Chen, Amin Imani, Yaiza Gonzalez‐Garcia, Edouard Asselin, Arjan Mol, Lorenzo Fedrizzi, Salvador Pané, Maria Lekka. Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro‐ and Nanoswimmers: A Review. Advanced Functional Materials 2023, 33 (44) https://doi.org/10.1002/adfm.202210345
    11. Rodolfo Mundaca-Uribe, Nelly Askarinam, Ronnie H. Fang, Liangfang Zhang, Joseph Wang. Towards multifunctional robotic pills. Nature Biomedical Engineering 2023, 23 https://doi.org/10.1038/s41551-023-01090-6
    12. Ying Wang, Xiaoqing Zhou, Fangbao Jiao, Zhenqi Zhang, Junbo Gong, Dandan Han, Hongzhen Li, Qi Zhang. Constructing core@self-shell structured energetic nanomaterials by autologous surface molecular reconfiguration: The DATNBI case. Chemical Engineering Journal 2023, 471 , 144415. https://doi.org/10.1016/j.cej.2023.144415
    13. Elika Aghaei, Mehryar Jannesari Ghomsheh, Kamyar Behrouzi, Azadeh Jafari, Mehrdad Raisee Dehkordi. Bioinspired enzyme-powered microswimmer for pH-sensitive locomotion in the gastric mucus. AIP Advances 2023, 13 (8) https://doi.org/10.1063/5.0154573
    14. Lei Kong, Li Huang, Lin Lin, Zhimin Zheng, Yu Li, Qixing Wang, Guangyi Liu. A Survey for Possible Technologies of Micro/Nanomachines Used for Molecular Communication Within 6G Application Scenarios. IEEE Internet of Things Journal 2023, 10 (13) , 11240-11263. https://doi.org/10.1109/JIOT.2023.3255412
    15. Mengyue Li, Xingyue Hu, Ying Zhao, Niandong Jiao. An Overview of Recent Progress in Micro/Nanorobots for Biomedical Applications. Advanced Materials Technologies 2023, 8 (11) https://doi.org/10.1002/admt.202201928
    16. Srushti Karadkar, Abhishekh Tiwari, Atul Changdev Chaskar. Recent advancements in Janus nanoparticle-based biosensing platforms. International Nano Letters 2023, 13 (2) , 93-115. https://doi.org/10.1007/s40089-022-00385-x
    17. L. Xie, Z. Cong, S. Tang, M. Yang, Y. Li, C. Ren, Q. Chen, D. Lu, F. Wan, X. Zhang, S. Wu. Oncolytic adenovirus-loaded magnetic-driven Janus tumor cell robots for active and targeted virotherapy of homologous carcinoma. Materials Today Chemistry 2023, 30 , 101560. https://doi.org/10.1016/j.mtchem.2023.101560
    18. . Design and Preparation. 2023, 21-60. https://doi.org/10.1002/9783527839773.ch3
    19. Cagatay M. Oral, Martin Pumera. In vivo applications of micro/nanorobots. Nanoscale 2023, 15 (19) , 8491-8507. https://doi.org/10.1039/D3NR00502J
    20. Chenxin Lu, Ruoyao Li, Zhaohua Miao, Fei Wang, Zhengbao Zha. Emerging metallenes: synthesis strategies, biological effects and biomedical applications. Chemical Society Reviews 2023, 52 (8) , 2833-2865. https://doi.org/10.1039/D2CS00586G
    21. Miguel A. Ramos Docampo. On Nanomachines and Their Future Perspectives in Biomedicine. Advanced Biology 2023, 7 (4) https://doi.org/10.1002/adbi.202200308
    22. Wei Liu, Ya Liu, He Li, Hongmei Nie, Maoye Tian, Wei Long. Biomedical Micro‐/Nanomotors: Design, Imaging, and Disease Treatment. Advanced Functional Materials 2023, 33 (15) https://doi.org/10.1002/adfm.202212452
    23. Ying Feng, Miao An, Yang Liu, Muhammad Tariq Sarwar, Huaming Yang. Advances in Chemically Powered Micro/Nanorobots for Biological Applications: A Review. Advanced Functional Materials 2023, 33 (1) https://doi.org/10.1002/adfm.202209883
    24. Dinesh K. Patel, Tejal V. Patil, Keya Ganguly, Sayan Deb Dutta, Rachmi Luthfikasari, Ki-Taek Lim. Polymer Nanohybrid-Based Smart Platforms for Controlled Delivery and Wound Management. 2023, 171-199. https://doi.org/10.1007/978-3-031-16084-4_8
    25. Qihan Zhang, Yuwei Yan, Jun Liu, Yingjie Wu, Qiang He. Supramolecular colloidal motors via chemical self-assembly. Current Opinion in Colloid & Interface Science 2022, 62 , 101642. https://doi.org/10.1016/j.cocis.2022.101642
    26. Roberto Maria-Hormigos, Beatriz Jurado-Sánchez, Alberto Escarpa. Biocompatible micromotors for biosensing. Analytical and Bioanalytical Chemistry 2022, 414 (24) , 7035-7049. https://doi.org/10.1007/s00216-022-04287-x
    27. Fangyu Zhang, Zhengxing Li, Yaou Duan, Amal Abbas, Rodolfo Mundaca-Uribe, Lu Yin, Hao Luan, Weiwei Gao, Ronnie H. Fang, Liangfang Zhang, Joseph Wang. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Science Robotics 2022, 7 (70) https://doi.org/10.1126/scirobotics.abo4160
    28. Di Zhang, Shuyi Liu, Jianguo Guan, Fangzhi Mou. “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.1002171
    29. Yuting Zhou, Liguo Dai, Niandong Jiao. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. Micromachines 2022, 13 (7) , 1068. https://doi.org/10.3390/mi13071068
    30. Ziyu Wu, Rui Wu, Xiaoyun Li, Xingwen Wang, Xueting Tang, Kaiyuan Tan, Mimi Wan, Chun Mao, Xingquan Xu, Huiming Jiang, Jiawei Li, Min Zhou, Dongquan Shi. Multi‐Pathway Microenvironment Regulation for Atherosclerosis Therapy Based on Beta‐Cyclodextrin/L‐Arginine/Au Nanomotors with Dual‐Mode Propulsion. Small 2022, 18 (9) https://doi.org/10.1002/smll.202104120
    31. Hyunsik Choi, Sang Hoon Jeong, Tae Yeon Kim, Jeeyoon Yi, Sei Kwang Hahn. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioactive Materials 2022, 9 , 54-62. https://doi.org/10.1016/j.bioactmat.2021.08.004
    32. Shahar Erez, Emil Karshalev, Yue Wu, Joseph Wang, Gilad Yossifon. Electrical Propulsion and Cargo Transport of Microbowl Shaped Janus Particles. Small 2022, 18 (3) https://doi.org/10.1002/smll.202101809
    33. Miao Yan, Kang Liang, Dongyuan Zhao, Biao Kong. Core‐Shell Structured Micro‐Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small 2022, 18 (3) https://doi.org/10.1002/smll.202102887
    34. Ming You, Daniel Mukasa, Wei Gao. Microrobots in the Gastrointestinal Tract. 2022, 349-367. https://doi.org/10.1007/978-3-030-80197-7_14
    35. Jiarong Zhou, Emil Karshalev, Rodolfo Mundaca‐Uribe, Berta Esteban‐Fernández de Ávila, Nishta Krishnan, Crystal Xiao, Christian J. Ventura, Hua Gong, Qiangzhe Zhang, Weiwei Gao, Ronnie H. Fang, Joseph Wang, Liangfang Zhang. Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials 2021, 33 (49) https://doi.org/10.1002/adma.202103505
    36. Beatriz Jurado-Sánchez, Susana Campuzano, José M. Pingarrón, Alberto Escarpa. Janus particles and motors: unrivaled devices for mastering (bio)sensing. Microchimica Acta 2021, 188 (12) https://doi.org/10.1007/s00604-021-05053-z
    37. Hyunsik Choi, Jeeyoon Yi, Seong Hwi Cho, Sei Kwang Hahn. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021, 279 , 121201. https://doi.org/10.1016/j.biomaterials.2021.121201
    38. Duo Wang, Dongshi Guan, Jinghong Su, Xu Zheng, Guoqing Hu. Distinct dynamics of self-propelled bowl-shaped micromotors caused by shape effect: Concave vs convex. Physics of Fluids 2021, 33 (12) https://doi.org/10.1063/5.0076060
    39. Marta Pacheco, Beatriz Jurado-Sánchez, Alberto Escarpa. Functional coatings enable navigation of light-propelled micromotors in blood for effective biodetoxification. Nanoscale 2021, 13 (40) , 17106-17115. https://doi.org/10.1039/D1NR04842B
    40. Joaquin Llacer‐Wintle, Antón Rivas‐Dapena, Xiang‐Zhong Chen, Eva Pellicer, Bradley J. Nelson, Josep Puigmartí‐Luis, Salvador Pané. Biodegradable Small‐Scale Swimmers for Biomedical Applications. Advanced Materials 2021, 33 (42) https://doi.org/10.1002/adma.202102049
    41. Miguel A. Ramos-Docampo, Edit Brodszkij, Marcel Ceccato, Morten Foss, Mads Folkjær, Nina Lock, Brigitte Städler. Surface polymerization induced locomotion. Nanoscale 2021, 13 (22) , 10035-10043. https://doi.org/10.1039/D1NR01465J
    42. Kexin Hou, Yandong Zhang, Meili Bao, Yanhao Liu, Jinmeng Wang, Chao Xin, Zengyan Wei, Hua Zhang, Zhiguang Wu, Zhenyu Wang. Biosafety of micro/nanomotors towards medical application. Materials Advances 2021, 2 (11) , 3441-3458. https://doi.org/10.1039/D1MA00174D
    43. Mimi Wan, Ting Li, Huan Chen, Chun Mao, Jian Shen. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angewandte Chemie 2021, 133 (24) , 13266-13284. https://doi.org/10.1002/ange.202013689
    44. Mimi Wan, Ting Li, Huan Chen, Chun Mao, Jian Shen. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angewandte Chemie International Edition 2021, 60 (24) , 13158-13176. https://doi.org/10.1002/anie.202013689
    45. Rodolfo Mundaca‐Uribe, Emil Karshalev, Berta Esteban‐Fernández de Ávila, Xiaoli Wei, Bryan Nguyen, Irene Litvan, Ronnie H. Fang, Liangfang Zhang, Joseph Wang. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science 2021, 8 (12) https://doi.org/10.1002/advs.202100389
    46. Shuanghu Wang, Kun Liu, Quan Zhou, Cong Xu, Junbin Gao, Zhen Wang, Fei Wang, Bin Chen, Yicheng Ye, Juanfeng Ou, Jiamiao Jiang, Daniela A. Wilson, Shuwen Liu, Fei Peng, Yingfeng Tu. Hydrogen‐Powered Microswimmers for Precise and Active Hydrogen Therapy Towards Acute Ischemic Stroke. Advanced Functional Materials 2021, 31 (19) https://doi.org/10.1002/adfm.202009475
    47. Jianting Zhang, Zhoujiang Chen, Ranjith Kumar Kankala, Shi-Bin Wang, Ai-Zheng Chen. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery. International Journal of Pharmaceutics 2021, 596 , 120275. https://doi.org/10.1016/j.ijpharm.2021.120275
    48. Ada-Ioana Bunea, Rafael Taboryski. Recent Advances in Microswimmers for Biomedical Applications. Micromachines 2020, 11 (12) , 1048. https://doi.org/10.3390/mi11121048
    49. Fernando Soto, Jie Wang, Rajib Ahmed, Utkan Demirci. Medical Micro/Nanorobots in Precision Medicine. Advanced Science 2020, 7 (21) https://doi.org/10.1002/advs.202002203
    50. Motilal Mathesh, Jiawei Sun, Daniela A. Wilson. Enzyme catalysis powered micro/nanomotors for biomedical applications. Journal of Materials Chemistry B 2020, 8 (33) , 7319-7334. https://doi.org/10.1039/D0TB01245A
    51. Arijit Ghosh, Weinan Xu, Neha Gupta, David H. Gracias. Active matter therapeutics. Nano Today 2020, 31 , 100836. https://doi.org/10.1016/j.nantod.2019.100836
    52. Kang Xiong, Leilei Xu, Jinwei Lin, Fangzhi Mou, Jianguo Guan. Mg-Based Micromotors with Motion Responsive to Dual Stimuli. Research 2020, 2020 https://doi.org/10.34133/2020/6213981

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect