ACS Publications. Most Trusted. Most Cited. Most Read
Band Filling and Cross Quantum Capacitance in Ion-Gated Semiconducting Transition Metal Dichalcogenide Monolayers
My Activity
    Letter

    Band Filling and Cross Quantum Capacitance in Ion-Gated Semiconducting Transition Metal Dichalcogenide Monolayers
    Click to copy article linkArticle link copied!

    • Haijing Zhang*
      Haijing Zhang
      DQMP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
      GAP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
      *E-mail: [email protected]
    • Christophe Berthod
      Christophe Berthod
      DQMP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
    • Helmuth Berger
      Helmuth Berger
      Institut de Physique de la Matière Complexe, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
    • Thierry Giamarchi
      Thierry Giamarchi
      DQMP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
    • Alberto F. Morpurgo*
      Alberto F. Morpurgo
      DQMP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
      GAP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2019, 19, 12, 8836–8845
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b03667
    Published October 31, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ionic liquid gated field-effect transistors (FETs) based on semiconducting transition metal dichalcogenides (TMDs) are used to study a rich variety of extremely interesting physical phenomena, but important aspects of how charge carriers are accumulated in these systems are not understood. We address these issues by means of a systematic experimental study of transport in monolayer MoSe2 and WSe2 as a function of magnetic field and gate voltage, exploring accumulated densities of carriers ranging from approximately 1014 cm–2 holes in the valence band to 4 × 1014 cm–2 electrons in the conduction band. We identify the conditions when the chemical potential enters different valleys in the monolayer band structure (the K and Q valley in the conduction band and the two spin-split K-valleys in the valence band) and find that an independent electron picture describes the occupation of states well. Unexpectedly, however, the experiments show very large changes in the device capacitance when multiple valleys are occupied that are not at all compatible with the commonly expected quantum capacitance contribution of these systems, CQ = e2/ (dμ/dn). A theoretical analysis of all terms responsible for the total capacitance shows that under general conditions a term is present besides the usual quantum capacitance, which becomes important for very small distances between the capacitor plates. This term, which we call cross quantum capacitance, originates from screening of the electric field generated by charges on one plate from charges sitting on the other plate. The effect is negligible in normal capacitors but large in ionic liquid FETs because of the atomic proximity between the ions in the gate and the accumulated charges on the TMD, and it accounts for all our experimental observations. Our findings therefore reveal an important contribution to the capacitance of physical systems that had been virtually entirely neglected until now.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.9b03667.

    • Device fabrication process and transport measurement; reproducibility of transport measurement; origin of the cross quantum capacitance: theoretical discussion; additional figures(PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 34 publications.

    1. Wu-Sin Kim, Nojoon Myoung, Myung-Ho Bae, Ju-Jin Kim. Role of Quantum Capacitance in a Carbon Nanotube Tunneling Device. ACS Applied Electronic Materials 2024, 6 (5) , 3474-3479. https://doi.org/10.1021/acsaelm.4c00279
    2. Théo Hennequin, Manoel Manghi, Adrien Noury, François Henn, Vincent Jourdain, John Palmeri. Influence of the Quantum Capacitance on Electrolyte Conductivity through Carbon Nanotubes. The Journal of Physical Chemistry Letters 2024, 15 (8) , 2177-2183. https://doi.org/10.1021/acs.jpclett.3c03248
    3. Shubham Sukumar Awate, Brendan Mostek, Shalini Kumari, Chengye Dong, Joshua A. Robinson, Ke Xu, Susan K. Fullerton-Shirey. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors. ACS Applied Materials & Interfaces 2023, 15 (12) , 15785-15796. https://doi.org/10.1021/acsami.2c13140
    4. Robert K. A. Bennett, Eric Pop. How Do Quantum Effects Influence the Capacitance and Carrier Density of Monolayer MoS2 Transistors?. Nano Letters 2023, 23 (5) , 1666-1672. https://doi.org/10.1021/acs.nanolett.2c03913
    5. Dongdong Ding, Zhuangzhuang Qu, Xiangyan Han, Chunrui Han, Quan Zhuang, Xiang-Long Yu, Ruirui Niu, Zhiyu Wang, Zhuoxian Li, Zizhao Gan, Jiansheng Wu, Jianming Lu. Multivalley Superconductivity in Monolayer Transition Metal Dichalcogenides. Nano Letters 2022, 22 (19) , 7919-7926. https://doi.org/10.1021/acs.nanolett.2c02947
    6. Chih-Yi Cheng, Wei-Liang Pai, Yi-Hsun Chen, Naomi Tabudlong Paylaga, Pin-Yun Wu, Chun-Wei Chen, Chi-Te Liang, Fang-Cheng Chou, Raman Sankar, Michael S. Fuhrer, Shao-Yu Chen, Wei-Hua Wang. Phase Modulation of Self-Gating in Ionic Liquid-Functionalized InSe Field-Effect Transistors. Nano Letters 2022, 22 (6) , 2270-2276. https://doi.org/10.1021/acs.nanolett.1c04522
    7. Bojja Aditya Reddy, Evgeniy Ponomarev, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, Céline Barreteau, Enrico Giannini, Alberto F. Morpurgo. Synthetic Semimetals with van der Waals Interfaces. Nano Letters 2020, 20 (2) , 1322-1328. https://doi.org/10.1021/acs.nanolett.9b04810
    8. José Guimarães, Dorsa S. Fartab, Michal Moravec, Marcus Schmidt, Michael Baenitz, Burkhard Schmidt, Haijing Zhang. Concurrence of directional Kondo transport and incommensurate magnetic order in the layered material AgCrSe2. Communications Physics 2024, 7 (1) https://doi.org/10.1038/s42005-024-01671-0
    9. Valeria Demontis, Domenic Prete, Enver Faella, Filippo Giubileo, Valentina Zannier, Ofelia Durante, Lucia Sorba, Antonio Di Bartolomeo, Francesco Rossella. Persistent polarization effects and memory properties in ionic-liquid gated InAs nanowire transistors. Nano Express 2024, 5 (3) , 035007. https://doi.org/10.1088/2632-959X/ad6581
    10. Yang Li, Yu Yao, LeLe Wang, LiWei Wang, YunCong Pang, ZhongZhong Luo, Subramanian Arunprabaharan, ShuJuan Liu, Qiang Zhao. Metal oxide ion gated transistors based sensors. Science China Technological Sciences 2024, 67 (4) , 1040-1060. https://doi.org/10.1007/s11431-023-2567-2
    11. Zengrui Tian, Mingjie Liu, Lexiang Yin, Xiaoyi Wu, Xuewen Xu. Facile synthesis of tungsten nitride/carbide quantum dots supported on amorphous carbon for supercapacitor applications. Journal of Materials Science: Materials in Electronics 2024, 35 (8) https://doi.org/10.1007/s10854-024-12357-2
    12. Seo‐Jin Kim, Jihang Zhu, Mario M. Piva, Marcus Schmidt, Dorsa Fartab, Andrew P. Mackenzie, Michael Baenitz, Michael Nicklas, Helge Rosner, Ashley M. Cook, Rafael González‐Hernández, Libor Šmejkal, Haijing Zhang. Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor. Advanced Science 2024, 11 (6) https://doi.org/10.1002/advs.202307306
    13. Shamiul Alam, Md Shafayat Hossain, Kai Ni, Vijaykrishnan Narayanan, Ahmedullah Aziz. Voltage-controlled cryogenic Boolean logic gates based on ferroelectric SQUID and heater cryotron. Journal of Applied Physics 2024, 135 (1) https://doi.org/10.1063/5.0172531
    14. Dorsa S. Fartab, José Guimarães, Marcus Schmidt, Haijing Zhang. Highly tunable Rashba spin-orbit coupling and crossover from weak localization to weak antilocalization in ionic-gated tellurium. Physical Review B 2023, 108 (11) https://doi.org/10.1103/PhysRevB.108.115305
    15. Nicola Melchioni, Giacomo Trupiano, Giorgio Tofani, Riccardo Bertini, Andrea Mezzetta, Federica Bianco, Lorenzo Guazzelli, Fabio Beltram, Christian Silvio Pomelli, Stefano Roddaro, Alessandro Tredicucci, Federico Paolucci. Optical grade bromide-based thin film electrolytes. Applied Physics Letters 2023, 122 (24) https://doi.org/10.1063/5.0153394
    16. Ajoy Kumar Saha, Partha Sarathi Gupta, Hafizur Rahaman. First principle study of electronic and optical properties of WS 2(1-x) Se 2x obtained by isoelectronic Se substitution on S-site of monolayer WS 2. Physica Scripta 2023, 98 (6) , 065906. https://doi.org/10.1088/1402-4896/accc13
    17. Chuanwu Cao, Margherita Melegari, Marc Philippi, Daniil Domaretskiy, Nicolas Ubrig, Ignacio Gutiérrez‐Lezama, Alberto F. Morpurgo. Full Control of Solid‐State Electrolytes for Electrostatic Gating. Advanced Materials 2023, 35 (18) https://doi.org/10.1002/adma.202211993
    18. J. Zhang, J.C. Ma. Manipulating the magnetic and electric transport properties of La0.7Sr0.3MnO3 epitaxial thin film through ionic liquid-gated technology. Thin Solid Films 2023, 768 , 139699. https://doi.org/10.1016/j.tsf.2023.139699
    19. Benjamin I. Weintrub, Yu-Ling Hsieh, Sviatoslav Kovalchuk, Jan N. Kirchhof, Kyrylo Greben, Kirill I. Bolotin. Generating intense electric fields in 2D materials by dual ionic gating. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34158-z
    20. Daniil Domaretskiy, Marc Philippi, Marco Gibertini, Nicolas Ubrig, Ignacio Gutiérrez-Lezama, Alberto F. Morpurgo. Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field. Nature Nanotechnology 2022, 17 (10) , 1078-1083. https://doi.org/10.1038/s41565-022-01183-4
    21. Erik Piatti, Luca Guglielmero, Giorgio Tofani, Andrea Mezzetta, Lorenzo Guazzelli, Felicia D'Andrea, Stefano Roddaro, Christian Silvio Pomelli. Ionic liquids for electrochemical applications: Correlation between molecular structure and electrochemical stability window. Journal of Molecular Liquids 2022, 364 , 120001. https://doi.org/10.1016/j.molliq.2022.120001
    22. Daniel Vaquero, Vito Clericò, Juan Salvador-Sánchez, Jorge Quereda, Enrique Diez, Ana M. Pérez-Muñoz. Ionic-Liquid Gating in Two-Dimensional TMDs: The Operation Principles and Spectroscopic Capabilities. Micromachines 2021, 12 (12) , 1576. https://doi.org/10.3390/mi12121576
    23. Sergii Morozov, Christian Wolff, N. Asger Mortensen. Room‐Temperature Low‐Voltage Control of Excitonic Emission in Transition Metal Dichalcogenide Monolayers. Advanced Optical Materials 2021, 9 (22) https://doi.org/10.1002/adom.202101305
    24. Christophe Berthod, Haijing Zhang, Alberto F. Morpurgo, Thierry Giamarchi. Theory of cross quantum capacitance. Physical Review Research 2021, 3 (4) https://doi.org/10.1103/PhysRevResearch.3.043036
    25. Mohammad Suleiman, Martin F. Sarott, Morgan Trassin, Maria Badarne, Yachin Ivry. Nonvolatile voltage-tunable ferroelectric-superconducting quantum interference memory devices. Applied Physics Letters 2021, 119 (11) https://doi.org/10.1063/5.0061160
    26. Krishna Balasubramanian. Quantum capacitance of coupled two-dimensional electron gases. Journal of Physics: Condensed Matter 2021, 33 (28) , 28LT01. https://doi.org/10.1088/1361-648X/abe64f
    27. Ignacio Gutiérrez-Lezama, Nicolas Ubrig, Evgeniy Ponomarev, Alberto F. Morpurgo. Ionic gate spectroscopy of 2D semiconductors. Nature Reviews Physics 2021, 3 (7) , 508-519. https://doi.org/10.1038/s42254-021-00317-2
    28. Davide Romanin, Giovanni A. Ummarino, Erik Piatti. Migdal-Eliashberg theory of multi-band high-temperature superconductivity in field-effect-doped hydrogenated (111) diamond. Applied Surface Science 2021, 536 , 147723. https://doi.org/10.1016/j.apsusc.2020.147723
    29. Rachel E. Owyeung, Sameer Sonkusale, Matthew J. Panzer. Opportunities for ionic liquid/ionogel gating of emerging transistor architectures. Journal of Vacuum Science & Technology B 2021, 39 (1) https://doi.org/10.1116/6.0000678
    30. Fitri Aulia Permatasari, Muhammad Alief Irham, Satria Zulkarnaen Bisri, Ferry Iskandar. Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials 2021, 11 (1) , 91. https://doi.org/10.3390/nano11010091
    31. Frank Volmer, Manfred Ersfeld, Lars Rathmann, Maximilian Heithoff, Luca Kotewitz, Mark Lohmann, Bowen Yang, Kenji Watanabe, Takashi Taniguchi, Ludwig Bartels, Jing Shi, Christoph Stampfer, Bernd Beschoten. How Photoinduced Gate Screening and Leakage Currents Dynamically Change the Fermi Level in 2D Materials. physica status solidi (RRL) – Rapid Research Letters 2020, 14 (10) https://doi.org/10.1002/pssr.202000298
    32. Erik Piatti, Alberto Pasquarelli, Renato S. Gonnelli. Orientation-dependent electric transport and band filling in hole co-doped epitaxial diamond films. Applied Surface Science 2020, 528 , 146795. https://doi.org/10.1016/j.apsusc.2020.146795
    33. Davide Romanin, Thomas Brumme, Dario Daghero, Renato S. Gonnelli, Erik Piatti. Strong band-filling-dependence of the scattering lifetime in gated MoS2 nanolayers induced by the opening of intervalley scattering channels. Journal of Applied Physics 2020, 128 (6) https://doi.org/10.1063/5.0017921
    34. Jonas Zipfel, Marvin Kulig, Raül Perea-Causín, Samuel Brem, Jonas D. Ziegler, Roberto Rosati, Takashi Taniguchi, Kenji Watanabe, Mikhail M. Glazov, Ermin Malic, Alexey Chernikov. Exciton diffusion in monolayer semiconductors with suppressed disorder. Physical Review B 2020, 101 (11) https://doi.org/10.1103/PhysRevB.101.115430

    Nano Letters

    Cite this: Nano Lett. 2019, 19, 12, 8836–8845
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b03667
    Published October 31, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2928

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.