Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate
My Activity
    Letter

    Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate
    Click to copy article linkArticle link copied!

    • Subhojit Dutta
      Subhojit Dutta
      Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
    • Elizabeth A. Goldschmidt
      Elizabeth A. Goldschmidt
      Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
    • Sabyasachi Barik
      Sabyasachi Barik
      Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
    • Uday Saha
      Uday Saha
      Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
      More by Uday Saha
    • Edo Waks*
      Edo Waks
      Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
      *E-mail: [email protected]
      More by Edo Waks
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 1, 741–747
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b04679
    Published December 19, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.9b04679.

    • Waveguide absorption measurements and the optical setup for time-resolved photoluminescence and spectral hole burning measurements (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 62 publications.

    1. Jake Horder, Dominic Scognamiglio, Ádám Ganyecz, Viktor Ivády, Nathan Coste, Mehran Kianinia, Milos Toth, Igor Aharonovich. Near-Coherent Quantum Emitters in Hexagonal Boron Nitride with Discrete Polarization Axes. ACS Photonics 2024, Article ASAP.
    2. Henry Carfagno, Melissa A. Guidry, Joshua Yang, Lauren McCabe, Joshua M. O. Zide, Jelena Vučković, Matthew F. Doty. Inverse Designed Couplers for Use in Gallium Arsenide Photonics. ACS Photonics 2023, 10 (5) , 1286-1292. https://doi.org/10.1021/acsphotonics.2c01864
    3. Subhojit Dutta, Yuqi Zhao, Uday Saha, Demitry Farfurnik, Elizabeth A. Goldschmidt, Edo Waks. An Atomic Frequency Comb Memory in Rare-Earth-Doped Thin-Film Lithium Niobate. ACS Photonics 2023, 10 (4) , 1104-1109. https://doi.org/10.1021/acsphotonics.2c01835
    4. Anna Fedotova, Luca Carletti, Attilio Zilli, Frank Setzpfandt, Isabelle Staude, Andrea Toma, Marco Finazzi, Costantino De Angelis, Thomas Pertsch, Dragomir N. Neshev, Michele Celebrano. Lithium Niobate Meta-Optics. ACS Photonics 2022, 9 (12) , 3745-3763. https://doi.org/10.1021/acsphotonics.2c00835
    5. Stefania Castelletto, Alberto Peruzzo, Cristian Bonato, Brett C. Johnson, Marina Radulaski, Haiyan Ou, Florian Kaiser, Joerg Wrachtrup. Silicon Carbide Photonics Bridging Quantum Technology. ACS Photonics 2022, 9 (5) , 1434-1457. https://doi.org/10.1021/acsphotonics.1c01775
    6. Alexandre Fossati, Shuping Liu, Jenny Karlsson, Akio Ikesue, Alexandre Tallaire, Alban Ferrier, Diana Serrano, Philippe Goldner. A Frequency-Multiplexed Coherent Electro-optic Memory in Rare Earth Doped Nanoparticles. Nano Letters 2020, 20 (10) , 7087-7093. https://doi.org/10.1021/acs.nanolett.0c02200
    7. Yuqi Zhao, Dylan Renaud, Demitry Farfurnik, Yuxi Jiang, Subhojit Dutta, Neil Sinclair, Marko Lončar, Edo Waks. Cavity-enhanced narrowband spectral filters using rare-earth ions doped in thin-film lithium niobate. npj Nanophotonics 2024, 1 (1) https://doi.org/10.1038/s44310-024-00023-8
    8. Xiaotian Xue, Jing Qiu, Tingting Ding, Wenjun Ding, Jiayu Wang, Yongzhi Tang, Yuting Zhang, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Integrated erbium-doped waveguide amplifier on lithium niobate on insulator. Optical Materials Express 2024, 14 (8) , 1985. https://doi.org/10.1364/OME.532439
    9. Laurent Labonté, Olivier Alibart, Virginia D’Auria, Florent Doutre, Jean Etesse, Gregory Sauder, Anthony Martin, Éric Picholle, Sébastien Tanzilli. Integrated Photonics for Quantum Communications and Metrology. PRX Quantum 2024, 5 (1) https://doi.org/10.1103/PRXQuantum.5.010101
    10. Fan-Song Meng, Yu-Jing Yang, Feng Chen, Jia-Min Liu, De-Long Zhang. 1.76 μm on-chip gain characteristics of Tm3+ in a rib waveguide based on Tm3+-doped LiNbO3 thin-film on insulator. Journal of Luminescence 2024, 266 , 120279. https://doi.org/10.1016/j.jlumin.2023.120279
    11. Mohammadreza Younesi, Daniel Yang, Wei-Yuan Chung, Hao-Yun Liu, Mohit Kumar, Omid Abed, Anna Fedotova, Reinhard Geiss, Frank Setzpfandt, Yen-Hung Chen, Thomas Pertsch. Erbium doping of lithium niobate on insulator using low-temperature ion exchange. Optical Materials Express 2024, 14 (1) , 157. https://doi.org/10.1364/OME.500099
    12. Yuan Shen, Xiaoqian Shu, Lingmei Ma, Shaoliang Yu, Gengxin Chen, Liu Liu, Renyou Ge, Bigeng Chen, Yunjiang Rao. Ultra-high extinction ratio optical pulse generation with a thin film lithium niobate modulator for distributed acoustic sensing. Photonics Research 2024, 12 (1) , 40. https://doi.org/10.1364/PRJ.504867
    13. Likai Yang, Sihao Wang, Mohan Shen, Jiacheng Xie, Hong X. Tang. Controlling single rare earth ion emission in an electro-optical nanocavity. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37513-w
    14. Chunyan Jin, Chenxiong Wang, Lun Qu, Di Zhang, Qiang Liu, Jingfei You, Dahuai Zheng, Wei Wu, Wei Cai, Mengxin Ren, Jingjun Xu. Fast Lithium Niobate Photodetector. Laser & Photonics Reviews 2023, 17 (12) https://doi.org/10.1002/lpor.202300503
    15. Rohit K. Ramakrishnan, Aravinth Balaji Ravichandran, Arpita Mishra, Archana Kaushalram, Gopalkrishna Hegde, Srinivas Talabattula, Peter P. Rohde. Integrated photonic platforms for quantum technology: a review. ISSS Journal of Micro and Smart Systems 2023, 12 (2) , 83-104. https://doi.org/10.1007/s41683-023-00115-1
    16. Likai Yang, Yuntao Xu, Chunzhen Li, Jiacheng Xie, Mohan Shen, Hong X. Tang. Piezoelectric loss of superconducting microwave resonators integrated with thin-film lithium niobate. Physical Review Applied 2023, 20 (5) https://doi.org/10.1103/PhysRevApplied.20.054026
    17. Wenqing Sun, Yi Liu, Carolina Romero, Javier R. Vázquez de Aldana, Feng Ren, Yuechen Jia, Xiaoli Sun, Feng Chen. Q-switched vortex waveguide laser generation based on LNOI thin films with implanted Ag nanoparticles. Optics Express 2023, 31 (22) , 36725. https://doi.org/10.1364/OE.503501
    18. Zong‐Quan Zhou, Chao Liu, Chuan‐Feng Li, Guang‐Can Guo, Daniel Oblak, Mi Lei, Andrei Faraon, Margherita Mazzera, Hugues de Riedmatten. Photonic Integrated Quantum Memory in Rare‐Earth Doped Solids. Laser & Photonics Reviews 2023, 17 (10) https://doi.org/10.1002/lpor.202300257
    19. Stefania Castelletto, Alberto Boretti. Perspective on Solid‐State Single‐Photon Sources in the Infrared for Quantum Technology. Advanced Quantum Technologies 2023, 6 (10) https://doi.org/10.1002/qute.202300145
    20. Chun-Ju Wu, Daniel Riedel, Andrei Ruskuc, Ding Zhong, Hyounghan Kwon, Andrei Faraon. Near-infrared hybrid quantum photonic interface for 171 Yb 3 + solid-state qubits. Physical Review Applied 2023, 20 (4) https://doi.org/10.1103/PhysRevApplied.20.044018
    21. Meng Ju, Hongkuan Yuan, Wenhao Ji, Lei Zhao, Yang Xiao, Yauyuen Yeung. Photoluminescence and energy transfer mechanisms of Tm 3+ doped Y 2 O 3 laser crystals: experimental and theoretical insights. Physical Chemistry Chemical Physics 2023, 25 (37) , 25273-25279. https://doi.org/10.1039/D3CP03692H
    22. Difeng Yin, Shupeng Yu, Zhiwei Fang, Qinfen Huang, Lang Gao, Zhe Wang, Jian Liu, Ting Huang, Haisu Zhang, Min Wang, Ya Cheng. On-chip electro-optically tunable Fabry-Perot cavity laser on erbium doped thin film lithium niobate. Optical Materials Express 2023, 13 (9) , 2644. https://doi.org/10.1364/OME.498346
    23. Robert M. Pettit, Farhang Hadad Farshi, Sean E. Sullivan, Álvaro Véliz-Osorio, Manish Kumar Singh. A perspective on the pathway to a scalable quantum internet using rare-earth ions. Applied Physics Reviews 2023, 10 (3) https://doi.org/10.1063/5.0156874
    24. Changqing Wang, Zhoutian Fu, Wenbo Mao, Jinran Qie, A. Douglas Stone, Lan Yang. Non-Hermitian optics and photonics: from classical to quantum. Advances in Optics and Photonics 2023, 15 (2) , 442. https://doi.org/10.1364/AOP.475477
    25. A. Gassenq, H-S Nguyen, E. Cleyet-Merle, S. Cueff, A. Pereira. Diffraction grating enhanced photoluminescence from etching-free erbium thin films. Optics Letters 2023, 48 (11) , 2893. https://doi.org/10.1364/OL.486893
    26. . Investigation of the clock transition and its pressure-dependent behavior of the trigonal 171Yb3+ centers in lithium niobate crystal. Journal of Applied Physics 2023https://doi.org/10.1063/5.0144292
    27. A. Gassenq, Y. Guyot, E. Cleyet-Merle, S. Cueff, H.-S. Nguyen, A. Pereira. Infrared micro-emitters made by pulsed laser deposition lift-off-based processing. Applied Physics A 2023, 129 (4) https://doi.org/10.1007/s00339-023-06549-6
    28. H S Carfagno, L N McCabe, J M O Zide, M F Doty. A sleeve and bulk method for fabrication of photonic structures with features on multiple length scales. Nanotechnology 2023, 34 (3) , 035302. https://doi.org/10.1088/1361-6528/ac9391
    29. Yuanlin Zheng, Yuanhua Li, Xianfeng Chen. Lithium niobate on insulator for nonlinear and quantum applications. 2023, 467-488. https://doi.org/10.1016/B978-0-32-398384-6.00023-1
    30. Priyam Singh, Santosh Kachhap, Prabhakar Singh, S.K. Singh. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coordination Chemistry Reviews 2022, 472 , 214795. https://doi.org/10.1016/j.ccr.2022.214795
    31. Dongmin Pak, Arindam Nandi, Michael Titze, Edward S. Bielejec, Hadiseh Alaeian, Mahdi Hosseini. Long-range cooperative resonances in rare-earth ion arrays inside photonic resonators. Communications Physics 2022, 5 (1) https://doi.org/10.1038/s42005-022-00871-w
    32. Yuechen Jia, Jiangwei Wu, Xiaoli Sun, Xiongshuo Yan, Ranran Xie, Lei Wang, Yuping Chen, Feng Chen. Integrated Photonics Based on Rare‐Earth Ion‐Doped Thin‐Film Lithium Niobate. Laser & Photonics Reviews 2022, 16 (9) https://doi.org/10.1002/lpor.202200059
    33. Xiaoli Sun, Yan Sheng, Xu Gao, Yue Liu, Feng Ren, Yang Tan, Zaixing Yang, Yuechen Jia, Feng Chen. Self‐Powered Lithium Niobate Thin‐Film Photodetectors. Small 2022, 18 (35) https://doi.org/10.1002/smll.202203532
    34. Xuejun Xu, Masaya Hiraishi, Tomohiro Inaba, Tai Tsuchizawa, Atsushi Ishizawa, Haruki Sanada, Takehiko Tawara, Jevon Longdell, Katsuya Oguri, Hideki Gotoh. Erbium-Doped Rare-Earth Oxide Thin Film Waveguides for Integrated Quantum Photonic Devices. 2022, 1-2. https://doi.org/10.1109/CLEO-PR62338.2022.10432154
    35. Sihao Wang, Likai Yang, Mohan Shen, Wei Fu, Yuntao Xu, Rufus L. Cone, Charles W. Thiel, Hong X. Tang. Er : Li Nb O 3 with High Optical Coherence Enabling Optical Thickness Control. Physical Review Applied 2022, 18 (1) https://doi.org/10.1103/PhysRevApplied.18.014069
    36. Federico Chiossi, Eloïse Lafitte-Houssat, Kangwei Xia, Fiammetta Sardi, Zhonghan Zhang, Sacha Welinski, Perrine Berger, Loic Morvan, Varvara Foteinou, Alban Ferrier, Diana Serrano, Roman Kolesov, Jörg Wrachtrup, Philippe Goldner. Photon echo, spectral hole burning, and optically detected magnetic resonance in Yb 3 + 171 : LiNbO 3 bulk crystal and waveguides. Physical Review B 2022, 105 (18) https://doi.org/10.1103/PhysRevB.105.184115
    37. Zhenda Xie, Shining Zhu. LiNbO3 crystals: from bulk to film. Advanced Photonics 2022, 4 (03) https://doi.org/10.1117/1.AP.4.3.030502
    38. Kangwei Xia, Fiammetta Sardi, Colin Sauerzapf, Thomas Kornher, Hans-Werner Becker, Zsolt Kis, Laszlo Kovacs, Denis Dertli, Jonas Foglszinger, Roman Kolesov, Jörg Wrachtrup. Tunable microcavities coupled to rare-earth quantum emitters. Optica 2022, 9 (4) , 445. https://doi.org/10.1364/OPTICA.453527
    39. Uday Saha, Edo Waks. Design of an Integrated Bell-State Analyzer on a Thin-Film Lithium Niobate Platform. IEEE Photonics Journal 2022, 14 (1) , 1-9. https://doi.org/10.1109/JPHOT.2021.3136502
    40. N. Harada, A. Tallaire, D. Serrano, A. Seyeux, P. Marcus, X. Portier, C. Labbé, P. Goldner, A. Ferrier. Controlling the interfacial reactions and environment of rare-earth ions in thin oxide films towards wafer-scalable quantum technologies. Materials Advances 2022, 3 (1) , 300-311. https://doi.org/10.1039/D1MA00753J
    41. Xuejun Xu, Masaya Hiraishi, Tomohiro Inaba, Tai Tsuchizawa, Atsushi Ishizawa, Haruki Sanada, Takehiko Tawara, Jevon Longdell, Katsuya Oguri, Hideki Gotoh. Erbium-doped Rare-Earth Oxide Thin Film Waveguides for Integrated Quantum Photonic Devices. 2022, CTuP8A_01. https://doi.org/10.1364/CLEOPR.2022.CTuP8A_01
    42. S. K. Singh, Priyam Singh, Santosh Kachhap, Prabhakar Singh. Lanthanide-Based Hybrid Nanostructures: Synthesis, Interactions and Multifunctional Applications. SSRN Electronic Journal 2022, 20 https://doi.org/10.2139/ssrn.4051640
    43. Pai Zhou, Xia-Xia Li, Xue-Yan Xing, Yu-Hui Chen, Xiang-Dong Zhang, . Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica 2022, 71 (6) , 064203. https://doi.org/10.7498/aps.71.20211803
    44. Xin-Xin Hu, Zhu-Bo Wang, Pengfei Zhang, Guang-Jie Chen, Yan-Lei Zhang, Gang Li, Xu-Bo Zou, Tiancai Zhang, Hong X. Tang, Chun-Hua Dong, Guang-Can Guo, Chang-Ling Zou. Noiseless photonic non-reciprocity via optically-induced magnetization. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22597-z
    45. K. C. Chen, E. Bersin, D. Englund. A polarization encoded photon-to-spin interface. npj Quantum Information 2021, 7 (1) https://doi.org/10.1038/s41534-020-00337-3
    46. Christian E. Rüter, Kore Hasse, Feng Chen, Detlef Kip. Optical characterization of a neodymium-doped lithium-niobate-on-insulator (LNOI). Optical Materials Express 2021, 11 (12) , 4007. https://doi.org/10.1364/OME.440852
    47. Ran Cheng, Shuai Huang, Qiang Xu, Xiumin Xie, Wei Zhang, Qiang Zhou, Guangwei Deng, You Wang, Hai-Zhi Song. Research Progress of Lithium Niobate Waveguide and Its Application in Quantum Information Technology. 2021, 877-896. https://doi.org/10.1109/PIERS53385.2021.9694903
    48. Sina Saravi, Thomas Pertsch, Frank Setzpfandt. Lithium Niobate on Insulator: An Emerging Platform for Integrated Quantum Photonics. Advanced Optical Materials 2021, 9 (22) https://doi.org/10.1002/adom.202100789
    49. Ran‐Ran Xie, Gui‐Qin Li, Feng Chen, Gui‐Lu Long. Microresonators in Lithium Niobate Thin Films. Advanced Optical Materials 2021, 9 (19) https://doi.org/10.1002/adom.202100539
    50. Dongmin Pak, Arindam Nandi, Michael Titze, Edward S Bielejec, Mahdi Hosseini. Optical Properties of Rare Earth Ion Arrays Embedded into Lithium Niobate Micro-ring Resonators. 2021, 1-2. https://doi.org/10.1109/IPC48725.2021.9592868
    51. Di Zhu, Linbo Shao, Mengjie Yu, Rebecca Cheng, Boris Desiatov, C. J. Xin, Yaowen Hu, Jeffrey Holzgrafe, Soumya Ghosh, Amirhassan Shams-Ansari, Eric Puma, Neil Sinclair, Christian Reimer, Mian Zhang, Marko Lončar. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 2021, 13 (2) , 242. https://doi.org/10.1364/AOP.411024
    52. M. Nicolle, J. N. Becker, C. Weinzetl, I. A. Walmsley, P. M. Ledingham. Gigahertz-bandwidth optical memory in Pr 3+ :Y 2 SiO 5. Optics Letters 2021, 46 (12) , 2948. https://doi.org/10.1364/OL.423642
    53. Likai Yang, Sihao Wang, Mohan Shen, Yuntao Xu, Jiacheng Xie, Hong X. Tang. Photonic integration of Er 3+ :Y 2 SiO 5 with thin-film lithium niobate by flip chip bonding. Optics Express 2021, 29 (10) , 15497. https://doi.org/10.1364/OE.423659
    54. Qiang Luo, ZhenZhong Hao, Chen Yang, Ru Zhang, DaHuai Zheng, ShiGuo Liu, HongDe Liu, Fang Bo, YongFa Kong, GuoQuan Zhang, JingJun Xu. Microdisk lasers on an erbium-doped lithium-niobite chip. Science China Physics, Mechanics & Astronomy 2021, 64 (3) https://doi.org/10.1007/s11433-020-1637-8
    55. Alban Gassenq, Etienne Cleyet-Merle, Hoshang Sahib, Bruno Baguenard, Ali Belarouci, Régis Orobtchouk, Frederic Lerouge, Stephan Guy, Antonio Pereira. Rare-earth doped micro-emitters made by lift-off processing in pulsed laser deposited layers on Si substrate. Optics Express 2021, 29 (5) , 7321. https://doi.org/10.1364/OE.416450
    56. Yuechen Jia, Lei Wang, Feng Chen. Ion-cut lithium niobate on insulator technology: Recent advances and perspectives. Applied Physics Reviews 2021, 8 (1) https://doi.org/10.1063/5.0037771
    57. Bei Wei, Wu-Hao Cai, Chunling Ding, Guang-Wei Deng, Ryosuke Shimizu, Qiang Zhou, Rui-Bo Jin. Mid-infrared spectrally-uncorrelated biphotons generation from doped PPLN: a theoretical investigation. Optics Express 2021, 29 (1) , 256. https://doi.org/10.1364/OE.412603
    58. Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research 2020, 8 (12) , 1910. https://doi.org/10.1364/PRJ.395305
    59. Yi Lu, Benjamin Johnston, Peter Dekker, Michael J. Withford, Judith M. Dawes. Channel Waveguides in Lithium Niobate and Lithium Tantalate. Molecules 2020, 25 (17) , 3925. https://doi.org/10.3390/molecules25173925
    60. Dongmin Pak, Haechan An, Arindam Nandi, Xiaodong Jiang, Yi Xuan, Mahdi Hosseini. Ytterbium-implanted photonic resonators based on thin film lithium niobate. Journal of Applied Physics 2020, 128 (8) https://doi.org/10.1063/5.0016164
    61. Nao Harada, Alban Ferrier, Diana Serrano, Mauro Persechino, Emrick Briand, Romain Bachelet, Ian Vickridge, Jean-Jacques Ganem, Philippe Goldner, Alexandre Tallaire. Chemically vapor deposited Eu3+:Y2O3 thin films as a material platform for quantum technologies. Journal of Applied Physics 2020, 128 (5) https://doi.org/10.1063/5.0010833
    62. Meiling Zhang, Guijun Hu, Xibin Wang. On-Chip Electro-Optic Modulator With Loss Compensation Based on Polymeric Active-Integrated Waveguides. IEEE Access 2020, 8 , 116470-116477. https://doi.org/10.1109/ACCESS.2020.3003676

    Nano Letters

    Cite this: Nano Lett. 2020, 20, 1, 741–747
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.9b04679
    Published December 19, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    3483

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.